TY - THES A1 - Köhler, Juliane T1 - Dynamik der angeregten Zustände Bor-haltiger pi-Systeme und Donor-substituierter Truxenone T1 - Excited states dynamics of boron containing pi-systems and donor substituted truxenones N2 - Im ersten Teil wurde die Dynamik des ersten angeregten Zustandes von drei Truxenonen untersucht. Nach Anregung im sichtbaren Bereich findet ein Elektrontransfer zwischen den Triarylamin-Donor und dem Truxenon-Akzeptor statt. Um die Abhängigkeit der Rate für den Rücktransfer von der elektronischen Kopplung zu untersuchen, wurde diese zum einen über den Abstand zwischen Donor und Akzeptor und zum anderen über die Position der Verknüpfung eingestellt. In einer ersten Studie wurde Truxenon 1, bei dem der direkt über das Stickstoff-Atom an den Akzeptor gekuppelt ist, mit dem System 2 verglichen, bei den die Einheiten über einen Phenyl-Spacer verbunden sind. Der Rücktransfer sollte dabei für das System 1 schneller sein, da ein kurzer Abstand mit einer starken elektronischen Kopplung einhergeht und damit auch mit einem schnellen Elektronentransfer. Allerdings wird die große Rate für das System mit dem größeren Abstand beobachtet (2). Dieses Ergebnis kann mit der Geometrie der Moleküle und der größeren sterischen Hinderung in 1 erklärt werden, aus der eine geringere elektronische Kopplung resultiert. In einem weiteren Experiment wurde die Stärke der elektronischen Kopplung in Abhängigkeit von der Position der Verknüpfung in Bezug auf den Phenyl-Spacer untersucht. Zu diesem Zweck wurden die Systeme 2 und 3 miteinander verglichen. Während in 2 die Einheiten in para-Position verknüpft sind, sind Donor und Akzeptor in 3 in meta-Position an den Phenyl-Spacer gekuppelt. Letzteres System zeichnet sich dabei durch eine geringere Resonanzstabilisierung aus. Dies hat eine geringere elektronische Kopplung zur Folge, was sich auch in den UV/Vis-Spektren zeigt. Die langwelligste Absorption ist hier bei höheren Energien zu beobachten. Zudem deuten die transienten Spektren an, dass in erster Linie nicht der ladungsgetrennte Zustand abgeregt wird sondern vielmehr die Truxenon-Einheit selbst. Im zweiten Teil wurden die Resonanz-Raman-Spektren vier verschiedener Borole aufgenommen. Dabei wurden zwei signifikanten Moden beobachtet, die beim pi –pi∗ -Übergang in ihrer Intensität verstärkt werden. Eine Bande bei 1598 cm-1 wird der symmetrischen Ringatmung zugeordnet, die aus einer Expansion des Borol-Rings resultiert. Eine zweite Schwingung bei 1298 cm-1 resultiert aus einer B-R Streckschwingung. Für System 5 wird diese Schwingung mit einer hohen Intensität beobachtet, während die Bande bei den Systemen 6-8, die mit einem Aryl-Rest substituiert sind, mit sehr geringer Intensität auftritt und deshalb lediglich mit einem hochauflösendem Setup detektiert werden kann. Aufgrund der schwachen Resonanzverstärkung kann von einer schwachen Wechselwirkung zwischen dem Bor und dem Aryl-Rest ausgegangen werden. In Borol 5, in dem eine Ferrocen-Einheit an das Bor gebunden ist, ist die Situation eine andere: nach Anregung des pi-pi*-Übergangs wird die Population im BC_4-Ring verschoben. Dadurch kann vom Eisen keine Elektronendichte mehr in das p_z-Orbital des Bors verschoben werden, die Fe-B-Wechselwirkung wird geschwächt und der Fe-B-Abstand wird vergrößert. Zusammenfassend konnte gezeigt werden, dass die Eigenschaften des Substituenten großen Einfluss auf die elektronische Struktur eines dreifach-substituierten Bor-Atoms hat, das in einer p_z-pi-Konjugation beteiligt ist. N2 - In the first part the dynamics of the first excited states of the three truxenone systems were investigated. After excitation in the visible regime an electron is transferred from the triarylamine donor to the truxenone acceptor. To elucidate the dependence of the rate for the back electron transfer on the electronic coupling, the latter was adjusted via the distance between the donor and the acceptor and the position of substitution. In a first study the truxenone 1, where the donor is directly coupled to the acceptor via the nitrogen atom, was compared to 2, where the two units are connected via a phenylene spacer. The back electron transfer was expected to be faster for the smaller system 1, since a short distance is correlated with a strong coupling and therefore a fast electron transfer. However, the fast electron transfer is observed for the system with the larger distance, 2. This result is explained with the geometry of the molecules and therefore more steric hinderance for 1 which reduces the electronic coupling. Another experiment was focussed on the strength of the electronic coupling when the two units are connected in different positions regarding the phenylene spacer. Therefore the systems 2 and 3 are compared. In 2 the units are connected in para-position to the spacer whereas in 3 the connection is realized in meta-position. The latter is less stabilized due to its resonance structures. This destabilization results in a weak coupling which is also displayed in the steady state spectrum of compound 3. Here, the lowest wavelength absorption is shifted to higher energies. Furthermore, the transient spectra indicate that the charge separated state is not excited but the truxenone unit itself. This assumption was confirmed by TD-DFT calculations. In the second part the resonance Raman spectra of four boroles were recorded. Here, two significant modes that emerge with enhanced intensity upon pi –pi∗ excitation were observed in the RR spectra of the boroles. A band at 1598 cm−1 is assigned to a symmetrical ring-breathing mode, which is caused by the expansion of the borole ring. Second, the vibration at 1298 cm−1 corresponds to a stretching of the B–R bond. For compound 5 it appears with high intensity, but for compounds 6–8, which yield an aryl substituent, this band appears with low intensity and can only be detected with a high-resolution setup. Because of this small resonant enhancement, only a weak interaction between the boron and the aryl substituent is expected. In borole 5, where a ferrocene unit is connected to the boron, the situation is different: exciting the pi –pi∗ transition causes a change of the population in the BC_4 ring. This prevents the iron from donating electron density to the p_z orbital of the boron. Therefore the Fe–B interaction becomes weak and the Fe–B distance increases. In conclusion, it was shown that the nature of the substituent affects the electronic structure of a tri-substituted boron participating in a p_z-pi conjugation. KW - Borole KW - Angeregter Zustand KW - Resonanz-Raman-Effekt KW - Truxenon KW - Transiente Absorption KW - borole KW - truxenone KW - excited states KW - resonance Raman KW - transient absorption Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-65942 ER - TY - THES A1 - Mann, Christoph T1 - Exzitonengröße und -dynamik in (6,5)-Kohlenstoffnanoröhren : Transiente Absorptions- und Photolumineszenzmessungen T1 - Exciton size and -dynamics in (6,5) carbon nanotubes N2 - Zahlreiche theoretische und experimentelle Untersuchungen haben erwiesen, dass in halbleitenden Kohlenstoffnanoröhren durch Absorption von Licht hauptsächlich Exzitonen erzeugt werden. Die photophysikalischen Eigenschaften und insbesondere die Prozesse nach der optischen Anregung sind aber gegenwärtig noch nicht vollständig verstanden. Zeitaufgelöste Spektroskopie bietet die Möglichkeit, diese Prozesse zu verfolgen und somit detaillierten Einblick in das photophysikalische Verhalten von Kohlenstoffnanoröhren zu nehmen. Hierbei scheinen auch extrinsische Faktoren - zu nennen sind die Herstellungsmethode, die Art der Probenpräparation, der Aggregationsgrad sowie der durch das Lösungs- bzw. Dispersionsmittel bedingte Einfluss - eine entscheidende Rolle zu spielen. In dieser Dissertation wurden die Exzitonengröße sowie die exzitonische Dynamik in einwandigen Kohlenstoffnanoröhren mittels transienter Absorptionsspektroskopie sowie stationärer und zeitaufgelöster Photolumineszenzmessungen untersucht. Alle Experimente fanden dabei an halbleitenden (6,5)-Kohlenstoffnanoröhren statt, deren chirale Anreicherung durch Dichtegradientenultrazentrifugation gelang. Für die temperaturabhängigen Messungen wurde ein Verfahren zur Herstellung von tensidstabilisierten Gelatinefilmen entwickelt. Diese zeichnen sich durch eine hohe Temperaturstabilität bei gleichzeitiger Minimierung von Streulichteffekten aus. Die Bestimmung der Exzitonengröße erfolgte mit Hilfe des Phasenraumfüllmodells, das die intensitätsabhängige Änderung der Oszillatorstärke eines Übergangs mit der Exzitonengröße verknüpft. Hierfür wurden leistungsabhängige Messungen der transienten Absorption durchgeführt und die Signalintensität des Photobleichens gegen die absorbierte Photonenflussdichte aufgetragen. Da diese beiden Größen nur bei geringer Exzitonendichte in einer linearen Beziehung stehen, aus der sich die Exzitonengröße berechnen lässt, wurde im Experiment besonderer Wert auf niedrige Anregungsfluenzen und deren exakte Bestimmung gelegt. Um den Einfluss der Aggregation quantifizieren zu können und den Vergleich mit der Literatur zu erleichtern, fanden die Untersuchungen sowohl an individualisierten als auch an aggregierten Röhrenproben statt. Die Datenanalyse, bei der erstmalig die stimulierte Emission sowie der spektrale Überlapp von Photoabsorptions- und Photobleichbande Berücksichtigung fanden, ergab für individualisierte (6,5)-Nanoröhren einen Wert von 12.0 nm für die Größe des S1-Exzitons, während diese bei der aggregierten Röhrenprobe nur 5.6 nm beträgt. Die Probenabhängigkeit der Exzitonengröße macht den Vergleich mit anderen experimentell ermittelten Werten schwierig. Diese liegen fast ausschließlich zwischen 1 nm und 4.5 nm, ihre Bestimmung fand aber teilweise an stark aggregierten bzw. polydispersen Proben statt. Theoretische Berechnungen liefern für die Exzitonengröße Werte zwischen 1 nm und 4 nm. Zwar gelten einige der Berechnungen für Vakuum, was verglichen zu einer experimentell in Lösung bzw. im Film bestimmten Exzitonengröße einen kleineren Wert mit sich bringt, jedoch kann allein hierdurch die Diskrepanz zu der in dieser Arbeit ermittelten Exzitonengröße von 12.0 nm nicht erklärt werden. Setzt man experimentell und theoretisch für Vakuum bestimmte Werte für die Exzitonengröße und die Bindungsenergie in einen einfachen Zusammenhang, entspricht eine Exzitonengröße von 12.0 nm einer Bindungsenergie zwischen 0.21 eV und 0.27 eV. Die mittels Zweiphotonenexperimenten ermittelten Werte für die Bindungsenergie von (6,5)-Kohlenstoffnanoröhren befinden sich zwischen 0.37 eV und 0.42 eV; diese wurden allerdings unter Zuhilfenahme eines vereinfachten zylindrischen Modells abgeschätzt. Weitere experimentelle und theoretische Untersuchungen könnten klären, inwieweit eine exzitonische Bindungsenergie zwischen 0.21 eV und 0.27 eV für (6,5)-SWNTs in Betracht kommt. Strahlender und nichtstrahlender Zerfall in den Grundzustand scheinen in (6,5)-Kohlenstoffnanoröhren durch eine Dynamik zwischen verschiedenen Zuständen sowie durch die Diffusion der Exzitonen beeinflusst zu werden. Um diese für die Rekombination maßgeblichen Prozesse besser zu verstehen, wurden temperaturabhängige Messungen der stationären und zeitaufgelösten Photolumineszenz sowie der transienten Absorption durchgeführt. Die Ergebnisse der stationären PL-Experimente deuten darauf hin, dass die Exzitonen zwischen dem optisch aktiven Singulettzustand mit A2-Symmetrie - im Folgenden mit [B] bezeichnet - und einem energetisch tiefer liegenden dunklen Zustand [D] gestreut werden. Mit einem Wert von 5 meV für die energetische Aufspaltung zwischen [B] und [D] gelingt eine gute Anpassung an die Daten, was mit Blick auf die Bandstruktur von (6,5)-SWNTs vermuten lässt, dass es sich bei [D] um den A1-Singulettzustand handelt. Außerdem scheint eine nichtthermische Verteilung der Exzitonen auf [B] und [D] vorzuliegen, wobei strahlende Rekombination nur vom Zustand [B] aus möglich ist. Mit diesen Annahmen kann das temperaturabhängige Verhalten der stationären Photolumineszenz modelliert werden, die Ergebnisse der zeitaufgelösten PL-Messungen jedoch nicht. Mit einem rein diffusionsdominierten Modell gelingt dies ebenso wenig, so dass zur Interpretation des PL-Zerfalls vermutlich ein Modell entwickelt werden muss, in dem sowohl die Streuung der Exzitonen zwischen [B] und [D] als auch das durch Diffusion bedingte Löschen an Defektstellen oder Röhrenenden Berücksichtigung findet. Die Bedeutung der Diffusion von Exzitonen zu Defektstellen oder Röhrenenden, an denen bevorzugt nichtstrahlender Zerfall stattfindet, kann durch spektral- und zeitaufgelöste PL-Messungen belegt werden. Abhängig von der zur Verfügung stehenden thermischen Energie und der Höhe der Potenzialbarrieren des untersuchten Systems kann die Diffusion niederenergetischer Exzitonen, die sich in Potenzialminima befinden, soweit eingeschränkt werden, dass diese eine fast bis um den Faktor zwei längere PL-Lebensdauer aufweisen als höherenergetische Exzitonen. Das unterschiedliche Verhalten von transienter Absorption und zeitaufgelöster Photolumineszenz bei Temperaturen zwischen 14 K und 35 K zeigt, dass die Repopulation des Grundzustands hauptsächlich von einem anderen Zustand aus erfolgt als die strahlende Rekombination. Ob es sich hierbei aber um den mit [D] bezeichneten A1-Singulettzustand oder einen anderen dunklen Zustand handelt, kann nicht abschließend geklärt werden. Aufgrund inhomogener Verbreiterung stellt die Halbwertsbreite der Banden im Absorptionsspektrum ein Maß für die Höhe der Potenzialbarrieren bzw. für die energetische Verteilung der Exzitonen im angeregten Zustand dar. In dieser Arbeit wurde anhand vier verschiedener Nanorohrsuspensionen gezeigt, dass Sättigungsverhalten der transienten Absorption von (6,5)-Kohlenstoffnanoröhren und Bandenbreite im Absorptionsspektrum demselben Trend folgen. Begründen kann man dies damit, dass das Sättigungsverhalten der transienten Absorption durch Exziton-Exziton-Annihilation bestimmt wird. Aufgrund ihrer eindimensionalen Struktur unterliegen Kohlenstoffnanoröhren einer starken Beeinflussung durch die Umgebung. Abhängig vom Lösungs- bzw. Dispersionsmittel resultiert eine unterschiedliche inhomogene Verbreiterung der Absorptionsbanden und damit unterschiedlich hohe Potenzialbarrieren im angeregten Zustand. Niedrige Potenzialbarrieren erlauben eine weitreichende Diffusion der Exzitonen, sodass effiziente Exziton-Exziton-Annihilation schon bei einer vergleichsweise geringen Exzitonendichte stattfindet und das Signal der transienten Absorption bei einer niedrigen Impulsfluenz sättigt. N2 - Numerous theoretical and experimental studies have proved that in semiconducting carbon nanotubes, mainly excitons are created by light absorption. The photophysical properties and in particular the processes after optical excitation are to date not fully understood. Thanks to time-resolved spectroscopy, these processes can be pursued gaining detailed insight into the photophysical behavior of carbon nanotubes. Extrinsic factors like synthesis and preparation method, degree of aggregation as well as environmental effects appear to play a major role in this content. In this work, exciton size and dynamics in single-wall carbon nanotubes were studied by transient absorption spectroscopy as well as steady-state and time-resolved photoluminescence experiments. All measurements were done with semiconducting nanotubes of the (6,5)-chirality, which were obtained by density gradient ultracentrifugation. For temperature dependent measurements, an optimised surfactant stabilised gelatine film was developed which has a high temperature stability while minimising scattered light effects. The exciton size was determined by phase space filling analysis, which relates the intensity dependent reduction in oscillator strength of a transition with the size of the corresponding exciton. Therefore, the transient absorption was measured as a function of the power, and the intensity of the photobleach signal was plotted against the number of absorbed photons. The exciton size was calculated from the linear relationship between these two quantities at low exciton densities. Hence, great emphasis was put on working with high precision at low excitation fluences. In order to quantify the influence of the aggregation and in order to facilitate the comparison with literature, both individualised and aggregated nanotube samples were used in the experiments. From the data, the first subband exciton size was determined to be 12.0 nm and 5.6 nm for the individualised and the aggregated (6,5)-sample, respectively. Here, for the first time, both the stimulated emission and the spectral overlap of the photoabsorption and photobleach signal were taken into account. Thus, the exciton size strongly depends on the sample. This makes it difficult to compare the results with experimental values as shown in literature which almost exclusively lie between 1.0 nm and 4.5 nm but were partially determined using aggregated and polydisperse samples. Theory predicts an exciton size between 1 nm and 4 nm. In fact, some of these theoretical values were obtained for vacuum conditions leading to a smaller exciton size compared to experimental determination. However, the discrepance from the exciton size determined in this work can not be explained purely by this effect itself. Relating experimental and theoretical values of the exciton size and binding energy, an exciton size of 12.0 nm corresponds to a binding energy between 0.21 eV and 0.27 eV. Two-photon absorption experiments yield an exciton binding energy between 0.37 eV and 0.42 eV using a simplified cylindrical model. Further experimental and theoretical studies might clarify if an exciton binding energy between 0.21 eV and 0.27 eV is a realistic approach. In (6,5) carbon nanotubes, both radiative and nonradiative decay to the ground state appear to be influenced by multiple excitonic states as well as exciton diffusion. To better understand the relevant recombination processes, the stationary and time-resolved photoluminescence as well as the transient absorption was measured as a function of temperature. The stationary PL experiments suggest an exciton scattering between the optically active singlet state with A2 symmetry (hereinafter referred to as [B]) and a lower lying dark state [D]. Neglecting radiative recombination from [D], the data is well-explained by a dark-bright excitonic splitting of 5 meV and a nonthermal exciton distribution. With regard to the band structure of (6,5) carbon nanotubes, this gives rise to the presumption that [D] is the dipole forbidden A1 singlet state. This assumption explains the temperature dependent behaviour of the stationary photoluminescence quite well, but not the behaviour of the time-resolved photoluminescence. A model that is dominated solely by diffusion does not work either. Therefore, to interpret the PL decay, both exciton scattering between [B] and [D] and diffusion limited quenching at defects or tube ends have to be taken into account. The importance of exciton diffusion to defects or tube ends where non-radiative decay preferentially takes place can be proved by spectral- and time-resolved PL measurements. Depending on the available thermal energy and the height of the potential barriers in the considered system, diffusion can be restricted in that way that low energy excitons which are located in minimums of the potential energy landscape exhibit an almost twice longer PL lifetime than high energy excitons. The differences in transient absorption and time-resolved PL between 14 K and 35 K demonstrate that recovery to the ground state occurs from another state, different from the state [B] in radiative recombination. The nature of this dark state remains unclear. Due to inhomogeneous broadening, the FWHM of the absorption bands is a measurement of the height of the potential barriers and of the energetic exciton distribution in the excited state. In this work, the fact that transient absorption saturation behaviour of (6,5) carbon nanotubes and absorption band width follow the same trend could be shown by four different nanotube suspensions. The reason for this is that transient absorption saturation behaviour is governed by exciton-exciton annihilation. Due to their one-dimensional structure, carbon nanotubes are strongly influenced by environmental effects, resulting in a varying inhomogeneous broadening of the absorption bands and thus in different excited state potential barriers for various solvents and dispersion agents. Low potential barriers permit a long ranged exciton diffusion. Hence, efficient exciton-exciton annihilation takes place at comparatively low exciton densities and the transient absorption signal saturates at low pulse fluences. KW - Exziton KW - (6,5)-Kohlenstoffnanoröhren KW - Exzitonengröße KW - Transiente Absorption KW - Exzitonendynamik KW - Zeitaufgelöste Photolumineszenz KW - (6,5) carbon nanotubes KW - exciton size KW - transient absorption KW - exciton dynamics KW - time-resolved photoluminescence KW - Kohlenstoff-Nanoröhre KW - Spektroskopie KW - Zeitauflösung KW - Zeitaufgelöste Spektroskopie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116712 ER -