TY - THES A1 - Cohrs, Carsten T1 - Synthese und Reaktionen von 1,2,3,5-Tetrahydro-1,2,3-methenopentalen und Untersuchungen zur Bindungslängenalternanz in mit gespannten Ringen 1,2-überbrückten Aromaten T1 - Synthesis and Reactions of 1,2,3,5-Tetrahydro-1,2,3-methenopentalene and Investigation of Bond Length Alternation in Aromatics 1,2-bridged with Strained Rings N2 - Im Rahmen der vorliegenden Arbeit wurden mit gespannten Ringen überbrückte p-Elektronensysteme untersucht. Im ersten Teil wurde die Synthese von 1,2,3,5-Tetrahydro-1,2,3-methenopentalen (I) verbessert und die Reaktivität dieses gespannten Cyclopentadiens untersucht. Die Diels-Alder-Addukte von I (Benzvalenderivate) waren bei Raumtemperatur nicht beständig, da sie einer Umlagerung entweder in das aromatische Valenzisomer oder in die formalen [2+2]-Addukte (bei PTAD, Tetracyanoethen) unterliegen. Die Addukte von TCNE und PTAD waren bei 233 K im NMR-Spektrum beobachtbar. Das aus der Reaktion von I mit Singulett-Sauerstoff (1O2) hervorgehende Endoperoxid nahm in für diese Substanzklasse präzedenzloser Weise ein weiteres Molekül 1O2 auf. Die dabei gebildete Verbindung konnte nicht beobachtet werden und fragmentiert auf zwei verschiedenen Wegen unter Bildung stabiler Folgeprodukte. Quantenchemische Rechnungen an den unsubstituierten Stammkörpern der Diels-Alder-Addukte ergaben eine starke Pyramidalisierung dieser Alkene (21.2° bzw. 20.3°). Die ungewöhnlichen 13C-NMR-chemischen Verschiebungen dieser Verbindungen sind vermutlich auf diesen Effekt zurückzuführen. Im zweiten Teil wurden die Bindungslängenalternanz in mit gespannten Ringen 1,2-überbrückten Benzolen und Pyridazinen untersucht. Alle durch Röntgenstrukturanalyse bestimmten Strukturen weisen gering, aber sigifikant alternierende Bindungslängen im Aromaten auf. In den Pyridazinen wurde eine Zunahme der Alternanz in der Reihenfolge Cyclopentan- 95 Prozent Ausbeute episulfidiert werden. Beim Schwefeltransfer vom Sulten auf 1-Methoxycycloocten entsteht das Produkt einer Insertion des Enolethers in die O-S-Bindung des Sultens in 69 Prozent Ausbeute. Wird das Sulten mit Cyclooctin und einem Äquivalent Trifluoressigsäure oder einer anderen starken Säure umgesetzt, wird ein Thiireniumion erhalten, das in stark saurer Lösung bis zu 24 h persistent ist und unter neutralen Bedingungen zu einem Dien umlagert. Die Bildung des Thiireniumions ist unter Einwirkung von Base reversibel. Mit Dithiacyclononin wird ein analoges Thiireniumion postuliert, das jedoch nicht direkt beobachtet werden kann. Persistentes Endprodukt dieser Reaktion ist ein Thioacetal. Das Thiophenendoperoxid wurde durch Tieftemperatur-Photooxygenierung des entsprechenden Thiophens in situ generiert. Bei der Thermolyse in Gegenwart von Cyclooctin bildet sich diastereoselektiv in 70 Prozent Ausbeute ein Episulfid. Bei der Reaktion des nucleophilen Schwefeldonors Thiotosylat mit Ninhydrin oder Indantrion in Gegenwart von trans-Cycloocten entsteht ein Cycloaddukt in bis zu 63 Prozent Ausbeute, während das Episulfid des trans-Cyclooctens nur in maximal 18 Prozent Ausbeute erhalten wird. Mit dem Schwefelnucleophil Diethylphosphorothioat und Indantrion wird neben dem Cycloaddukt das Diethylphosphat generiert. Wird Alloxanhydrat als Substrat verwendet, entsteht ein analoges Cycloaddukt in 33 Prozent Ausbeute. Indantrion geht mit 1 Methoxycycloocten eine Carbonyl-En-Reaktion ein, bei der ausschließlich ein Regioisomer in 51 Prozent Ausbeute entsteht. N2 - In this dissertation, the reactions of electrophilic and nucleophilic sulfur donors with cyclic alkenes and alkynes were investigated, whereby unusual and novel sulfur chemistry was revealed. A sultene and a thiophene endoperoxide have been employed as electrophilic sulfur donors. Cyclic alkenes, enol ethers and alkynes have been made available through standard synthesis procedures. The sultene transfers its sulfur atom to various strained cyclic alkenes with Lewis-acid catalysis, through which the corresponding episulfides are formed diastereoselectively. An oxetane and/or an aldehyde are the desulfurized products. Various Lewis acids, e.g. metal halogenides (BF3•Et2O, ZnCl2 und SnCl4), metal complexes [Mn(salen*)PF6] and porphyrins, have been employed. The tin porphyrin Sn(tpp)(ClO4)2 proves to be the best Lewis acid, with which the olefins are episulfurized at room temperature (ca. 20 °C) in 30 per cent to > 95 per cent yields. The sulfur transfer from the sultene to 1-methoxycyclooctene gives an insertion product of the enol ether into the S-O-bond of the sultene in 69 per cent yield. When a mixture of the sultene and cyclooctyne is treated with one equivalent of trifluoroacetic acid or other strong acids, a thiirenium ion is generated. In strongly acidic medium, it persists for up to 24 h, whereas under neutral conditions it rearranges to a diene. The formation of the thiirenium ion is reversible under the action of a base (K2CO3). With dithiacyclononyne, an analogous thiirenium ion is postulated, but which cannot be observed directly. A spirocyclic compound is the final end product of this reaction sequence. The thiophene endoperoxide was generated in situ by low-temperature photooxygenation of the corresponding thiophene. On thermolysis in the presence of cyclooctyne, an episulfide is formed in 70 per cent yield. In the reaction of the nucleophilic sulfur donor thiotosylate with ninhydrin or indantrione in the presence of trans-cyclooctene, a cycloadduct is formed in up to 63 per cent yield, whereas the episulfide of trans-cyclooctene is formed maximally in only 18 per cent yield. With the sulfur nucleophile diethyl phosphorothioate and indantrione, cycloadduct and diethyl phosphate are generated. When alloxane hydrate is employed as substrate, the analogous cycloadduct is formed in 33 per cent yield. Indantrione undergoes a carbonyl ene reaction with 1-methoxycyclooctene, which produces exclusively one regioisomer in 51 per cent yield. KW - Schwefelorganische Verbindungen KW - Schwefelatom KW - Donator KW - Chemische Reaktion KW - Alkene KW - Alkine KW - Cyclische Verbindungen KW - Cycloalkene KW - Sulfurierung KW - Schwefeltransfer KW - Schwefeldonor KW - Thiiran KW - Episulfid KW - Thiireniumion KW - Alkene KW - Alkine KW - Enolether KW - Sulfur transfer KW - sulfur donor KW - thiirane KW - episulfide KW - thiirenium ion KW - alkene KW - alkyne KW - enol ether Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1182609 ER - TY - THES A1 - Herberth, Edith T1 - Hydro- und Carboborierungs-/Oxidationsreaktionen von Tricyclo[4.1.0.02,7]heptan-Derivaten sowie Synthese und Solvolyse-Reaktionen von exo,exo-Bicyclo[1.1.0]butan-2,4-dimethanoldimethansulfonat T1 - Hydro- and Carboboration/Oxidation Reactions of Tricyclo[4.1.0.02,7]heptane Derivatives as well as Synthesis and Solvolyses Reactions of exo,exo-Bicyclo[1.1.0]butane-2,4-dimethanol Dimethanesulfonate N2 - Die bekannte Umwandlung des Bromtricycloheptans 4 in den Homoallylalkohol 76 durch Hydroborierung/Oxidation wurde anders als früher mit einer in situ aus Natriumborhydrid und elementarem Iod erzeugten Boran-THF-Lösung bewirkt. Darüber hinaus konnten unter den gleichen Bedingungen das Chlortricycloheptan 26 und das Methyltricycloheptan 62 in den Homoallylalkohol 108 bzw. 109 überführt werden. Über 4, 26, 62 und das Phenyltricycloheptan 15 hinaus, dessen Hydroborierung/ Oxidation zum Homoallylalkohol 45a schon früher gelungen war, wurde eine Reihe von Bicyclo[1.1.0]butan-Derivaten mit Boran behandelt und das Gemisch dann oxidiert. Allerdings ergab sich in keinem Fall ein zu den Homoallylalkoholen 45a, 76, 108 und 109 analoges Produkt. Über die Ursachen dieser Misserfolge kann gegenwärtig nur spekuliert werden. Immerhin fand sich bei 3,4-Benzotricyclo[4.1.0.02,7]heptan (83) ein Hinweis auf eine Oligomerenbildung des Substrats. Als Grund für die Anlagerung von Boran an 4, 15, 26 und 62 wird die Fähigkeit der Substituenten am Tricycloheptan-System, eine positive Ladung zu stabilisieren, gesehen. Durch die Umsetzung von Trideuteroboran mit 4 wurden bestimmte Reaktions-mechanismen ausgeschlossen, etwa der via das Umlagerungsprodukt 119 von 4 und Hydroborierung von 119, und der mit dem Zwitterion 120 gestützt, das durch 1,2-Deuteridverschiebung in das Cyclohexenylmethylboran 121 umlagern sollte, das als die Vorstufe des nach der Oxidation isolierten Produkts 87 angesprochen wird. Die Reaktionen von 4 und 15 mit 9-Borabicyclo[3.3.1]nonan (9-BBN), gefolgt von der Oxidation des Gemisches, lieferten je nach der Geschwindigkeit der Zugabe von 9-BBN entweder die Dialkohole 122 bzw. 123, jeweils als Diastereomerengemische, oder/und die Homoallylalkohole 76 bzw. 45a. Als Vorstufen der Verbindungen 122 und 123 werden Zwitterionen des Typs 124, Trialkylborane 125, Zwitterionen 127 und Trialkylborane 128 und 129 gesehen. Die Zwitterionen 124 sollten durch Addition von 9-BBN an die Substrate 4 und 15 entstehen und durch Hydridwanderung in 125 übergehen, deren Anlagerung von 4/15 die Zwitterionen 126 und dann 127 hervorbringen sollte. Die 1,2-Wanderung eines Achtring-Kohlenstoffatoms müsste zu 128 und 129 führen, die durch Oxidation in 122/123 umgewandelt werden dürften. Das Dimesylat exo,exo-142 wurde in einer mehrstufigen Synthese über den bekannten Dibromdialkohol 148 ausgehend von Benzvalen (82) synthetisiert. Die Alkoholfunktionen von 148 wurden mit Trimethylsilylchlorid geschützt unter Bildung des Bis(silylethers) 151. Aus 151 wurde durch Umsetzung mit tert-Butyllithium das Bicyclobutan exo,exo-152 dargestellt. Nach Abspaltung der Schutzgruppen mit Kaliumcarbonat in Methanol wurde der Dialkohol exo,exo-150 erhalten, welcher mit Methansulfonsäurechlorid zum Zielmolekül exo,exo-142 reagierte. Die Reaktion einer 2:1-Mischung aus exo,exo-150 und 157 mit Natriumhydrid und Iodethan lieferte die Bis(ethylether) 160 und 161 in 38% bzw. 19% Ausbeute. In den Solvolyse-Reaktionen wurde ein 36:1:16-Gemisch aus exo,exo-142, endo,-endo-142 und 159 eingesetzt. Bei der Reaktion des Gemischs in 60% wässrigem Aceton in Gegenwart von Triethylamin bei 40 °C über fünf Tage zeigten die NMR-Spektren die Abnahme von exo,exo-142 um 75% (bezogen auf 159 als internen Standard), es konnte aber kein Produkt identifiziert werden. Die Ethanolyse bei 40 °C in Gegenwart von Triethylamin lieferte nach drei Tagen ein 3.5:2.8:1.0-Gemisch aus exo,exo-142, 159 und 162. Die Verbindung 162 wurde mit 70% Ausbeute (bezogen auf umgesetztes exo,exo-142) gebildet. Die NMR-Spektren zeigten einen Umsatz von exo,exo-142 von 30% (bezogen auf 159 als internen Standard). Wurde die Reaktion unter den gleichen Bedingungen sieben Tage durchgeführt, verringerte sich der Anteil an exo,exo-142 um 50% und man erhielt eine 1:1:1-Mischung aus exo,exo-142, 159 und 162. Die Ausbeute von 162 lag bei 50% (bezogen auf umgesetztes exo,exo-142). Bei der Solvolyse in 2,2,2-Trifluorethanol über drei Tage bei 40 °C in Gegenwart von Triethylamin erhielt man ein 3.2:2.0:1.0-Gemisch aus exo,exo-142, 159 und 163. Anhand der NMR-Spektren wurde ein Umsatz von exo,exo-142 von 20% beobachtet (bezogen auf 159 als internen Standard). Die Solvolyse-Reaktionen des Dimesylats exo,exo-142 verlaufen, anders als die seines Diastereomers endo,endo-142, unter ausschließlicher Bildung von Produkten mit nicht umgelagertem Gerüst und liefern damit erstmals einen deutlichen Hinweis für die Existenz eines Bicyclo[1.1.0]but-2-exo-ylcarbinyl-Kations (166) als Intermediat. Es ist zu erwarten, dass 162 und 163 ihrerseits solvolysieren unter Bildung des Bis(ethylethers) 160 bzw. dessen Hexafluor-Derivates, aber diese Verbindungen sind unter den Solvolysebedingungen nicht stabil. Dies konnte in einem Kontrollexperiment bestätigt werden. N2 - The known transformation of bromotricycloheptane 4 into the homoallylalcohol 76 by hydroboration/oxidation was performed different to the earlier procedure by using in the first step a THF solution of borane generated in situ from sodiumborohydride and elemental iodine. Furthermore chlorotricycloheptane 26 and methyltricycloheptane 62 could be transformed into the homoallylalcohol 108 and 109, respectively, by using the same reaction conditions. Beside 4, 26, 62 and phenyltricycloheptane 15, which hydroboration/oxidation to homoallylalcohol 45a succeeded earlier, a variety of bicyclo[1.1.0]butane derivatives was treated with borane and then the mixture was oxidized. But no reaction resulted in a product analogous to the homoallylalcohols 45a, 76, 108 and 109. About the reason for the failure of these reactions at this time only can be speculated. However, in the case of 3,4-benzotricyclo[4.1.0.02,7]heptane (83) evidence was given for formation of oligomers from the substrate. The ability to stabilize a positive charge of the substituents at the tricycloheptane system is to be considered as a reason for the addition of borane to 4, 15, 26 and 62. Based on the transformation of 4 with trideuteroborane certain reaction mechanisms, for example that via the rearrangement product 119 of 4 and hydroboration of 119, were excluded and that with the zwitterion 120 was supported. 120 should rearrange through a 1,2-shift of deuteride into cyclohexenylmethylborane 121 which is seen as a precursor in the oxidation reaction to the isolated product 87. The reactions of 4 and 15 with 9-borabicyclo[3.3.1]nonane (9-BBN) followed by oxidation of the mixture generated depending on the addition rate of 9-BBN to the substrate the dialcohols 122 and 123, respectively, in both cases as a diastereomeric mixture and/or the homoallylalcohol 76 and 45a, respectively. Zwitterions 124, trialkylboranes 125, zwitterions 127 and trialkylboranes 128 and 129 are considered as precursors for the compounds 122 and 123. The zwitterions 124 should be formed by addition of 9-BBN to the substrates 4 and 15 and should be transformed by hydride shift into 125 which should give rise to zwitterions 126 and then 127 after addition of 4/15. 1,2-Shift of a carbon atom of the eight-membered ring should lead to 128 and 129 which should be transformed into 122/123 by oxidation. Dimesylate exo,exo-142 was obtained in a more step reaction via the known dibromodialcohol 148 starting from benzvalene (82). The alcohol groups of 148 were protected with trimethylsilyl chloride by formation of the bis(silyl ether) 151. Bicyclo-butane exo,exo-152 was obtained from 151 by reaction with tert-butyllithium. After removing the protecting groups with potassium carbonate in methanol the dialcohol exo,exo-150 was formed. This alcohol reacted with methanesulfonyl chloride to the target molecule exo,exo-142. The reaction of a 2:1 mixture of exo,exo-150 and 157 with sodium hydride and iodoethane generated the bis(silyl ethers) 160 and 161 in 38% and 19% yield, respectively. For the solvolyses reactions a 36:1:16 mixture of exo,exo-142, endo,endo-142 and 159 was used. After reacting the mixture in 60% acetone/water in the presence of triethylamine at 40 °C during five days the NMR spectra showed a decrease of exo,exo-142 by 75% (determined by using 159 as internal standard) while no product could be identified. The ethanolysis at 40 °C during three days in the presence of triethylamine produced a 3.5:2.8:1.0 mixture of exo,exo-142, 159 and 162. The compound 162 was formed with 70% yield (based on exo,exo-142 consumed). The NMR spectra showed that the proportion of exo,exo-142 had decreased by 30% (determined by using 159 as internal standard). After seven days using the same reaction conditions the proportion of exo,exo-142 decreased by 50% (determined by using 159 as internal standard) and a 1:1:1 mixture of exo,exo-142, 159 and 162 was obtained. 162 was formed with 50% yield (based on exo,exo-142 consumed). Solvolysis in 2,2,2-trifluoroethanol at 40 °C during three days in the presence of triethylamine produced a 3.2:2.0:1.0 mixture of exo,exo-142, 159 und 163. In the NMR spectra a decrease of exo,exo-142 by 20% was observed (determined by using 159 as internal standard). The solvolyses reactions of the dimesylate exo,exo-142 proceed, in contrast to those of its diastereomer endo,endo-142, solely with formation of unrearranged products and therefore they offer for the first time strong evidence for the intermediacy of a bicyclo[1.1.0]-but-2-exo-ylcarbinyl cation (166). It should be expected that the compounds 162 and 163 solvolyses on their part to give the bis(ethyl ether) 160 and its hexafluoro-derivative, respectively, but these compounds are not stable under the solvolyses conditions. This was proved by a control experiment. KW - Tricycloheptanderivate KW - Hydroborierung KW - Oxidation KW - Bicyclobutanderivate KW - Chemische Synthese KW - Bicyclobutanderivate KW - Solvolyse KW - Bicyclobutane KW - Hydroborierung KW - Solvolysen KW - Bicyclobutanes KW - Hydroboration KW - Solvolyses Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4952 ER - TY - THES A1 - Krebs, Oliver T1 - En-Reaktion von Nitrosoaren, Triazolindion und Singulettsauerstoff T1 - Ene Reaction of Nitrosoarene, Triazolinedione, and Singlet Oxygen N2 - Im Rahmen der vorliegenden Arbeit wurde der Mechanismus der En-Reaktion von Nitrosoaren (ArNO), Triazolindion (TAD) und Singulettsauerstoff (1O2) durch Bestimmung von kinetischen Isotopeneffekten, Regioselektivitäten und Diastereoselektivitäten mit ausgewählten, deuteriummarkierten Olefinsubstraten untersucht, wobei das Hauptaugenmerk auf dem Nitrosoaren-Enophil 4-Nitronitrosobenzol lag. Ferner wurden diese En-Reaktionen mit chiralen Tiglinsäureamiden des Oppolzer-Bornansultams untersucht und dabei hervorragende Stereoselektivitäten erzielt. Für ArNO wurde hiermit eine effiziente Methode zur enantioselektiven Synthese von alpha-Methylen-beta-aminosäurederivaten entwickelt. Es wurden folgende Ergebnisse erhalten: Die Nitrosoaren-En-Reaktion verläuft über ein reversibel gebildetes Aziridin-N-oxid. Die Reversibilität wurde durch die primären H/D-Isotopeneffekte aus dem zweiten Reaktionsschritt nachgewiesen. Die hohe twix-Regioselektivität (skew-Effekt) in der Nitrosoaren-En-Reaktion mit trisubstituierten Alkenen wird durch sterische Effekte vom lone-Substituenten kaum beeinflusst (twix/twin bleibt konstant ca. 85:15), außer durch die tert-Butylgruppe (twix/twin > 95:5). Für lone-arylsubstituierte Styrole wird durch eine Donor/Akzeptor-Koordination des Enophils mit der lone-Arylgruppe ausschließliche twix-Regioselektivität erreicht. Die En-Reaktion von 1O2, TAD und ArNO mit dem deuteriummarkierten Allylalkohol Z-II-d3 liefert eine hohe threo-Diastereoselektivität für das twix- und twin-Regioisomer. Verantwortlich hierfür ist eine Koordination des Enophils durch Wasserstoffbrückenbindung in einem frühen Stadium der Reaktion, noch vor der Intermediatbildung. Für PTAD und ArNO wird auch die Regioselektivität durch den hydroxydirigierenden Effekt beeinflusst, aber nicht für 1O2. Mit dem optisch aktiven Oppholzer-Sultam als chirales Auxiliar lässt sich in der En-Reaktion von 1O2, TAD und ArNO mit Tiglinsäurederivaten eine hohe asymmetrische Induktion erzielen. Für ArNO können die En-Produkte effizient zu enantiomerenreinen alpha-Methylen-beta-aminosäurederivaten umgewandelt werden. N2 - The mechanism of the ene reaction of nitrosoarene (ArNO), triazolinedione (TAD) und singlet oxygen (1O2) was studied by determining the kinetic isotope effects (KIE), regioselectivities and diastereoselectivities in the reactions with deuterium-labelled olefins as substrates, whereby the attention was concentrated on the nitrosoarene enophile 4-nitronitrosobenzene. Furthermore, the ene reactions with tiglic-acid amides of the chiral bornane-derived sultam were examined and excellent stereoselectivities were obtained. For ArNO, a method for the enantioselective synthesis of alpha-methylene beta-amino acid derivatives was developed. The following results were received: The nitrosoarene ene reaction proceeds through a reversibly formed aziridine N-oxide. The reversibility was disclosed from the H/D kinetic isotope effects, which operate in the second reaction step. The high twix regioselectivity (skew effect) in the nitrosoarene ene reaction with trisubstituted alkenes is not affected by steric effects of the lone substituent (twix:twin is constant at about 85:15), except by the lone tert-butyl group (twix:twin >95:5). For lone aryl-substituted styrenes absolute twix regioselectivity is obtained through the donor/acceptor coordination of the enophile with the lone aryl group. The ene reaction of 1O2, TAD, and ArNO with the deuterium-labelled allylic alcohol Z-II-d3 results in a high threo diastereoselectivity for the twix and twin regioisomer. This is rationalized in terms of coordination of the enophile by hydrogen bonding in an early stage of the reaction before the formation of the intermediate. For ArNO and TAD, also the regioselectivity is dictated by the hydroxy-group directive effect, but not for 1O2. With Oppolzer´s optically active bornane-derived sultam as chiral auxiliary, high asymmetric induction was achieved in the ene reaction of 1O2, TAD, and ArNO with tiglic-acid derivatives. For ArNO, the ene products were converted efficiently into enantiomerically pure alpha-methylene beta-amino acid derivatives. KW - En-Synthese KW - Stereoselektive Synthese KW - En-Reaktion KW - Allylische Aminierung KW - stereoselektive Synthese KW - Nitrosoaren KW - Singulettsauerstoff KW - Ene Reaction KW - Allylic Amination KW - Stereoselective Synthesis KW - Nitrosoarene KW - Singlet Oxygen Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3315 ER - TY - THES A1 - Librera, Christian T1 - Konformationelle und sterische Effekte in der 1,2-Umlagerung von 1,3-Cyclopentandiyl-Radikalkationen T1 - Conformational and Steric Effects in the 1,2 Rearrangement of 1,3-Cyclopentanediyl Radical Cations: Stereochemical Memory versus Curtin / Hammett Behavior N2 - Im Rahmen dieser Arbeit wird die Regio- und Stereoselektivität der 1,2-Umlagerung von 1,3-Cylopentandiyl-Radikalkationen und den entsprechenden Carbokationen untersucht. Die 1,3-Radikalkationen werden dabei durch Elektronentransfer (ET) mit Tris(p-bromphenyl)-ammoniumhexachlorantimonat (TBA•+SbCl6-) aus den Tricyclo[3.3.0.02,4]octanen (Hausanen) I generiert, die Carbokationen können durch Protonierung mit TFA und HClO4 erhalten werden. Ein mechanistisches Bild wird gezeichnet wie durch das Wechselspiel aus konformationellen, sterischen und elektronischen Faktoren ein stereochemischer Erinnerungseffekt die Produktselektivität der 1,2-Umlagerung bestimmt. Das Produktverhältnis der Umlagerungsprodukte II und III spiegelt nicht die unterschiedlichen Wanderungstendenzen der Substituenten R wider. Es wird gezeigt, wie durch strukturelle Variation der Ringanellierung in den 1,3-Radikalkationen das Umlagerungsverhalten derart manipuliert werden kann, dass entweder sterereochemische Kontrolle (stereochemischer Erinnerungseffekt) oder Curtin / Hammett-Verhalten zutrifft. In der Elektrontransfer-induzierten 1,2-Umlagerung der usane I entstehen regioselektiv die beiden Cyclopentene II (Wanderung der CH3-Gruppe) und III (Wanderung der R-Gruppe) durch eine 1,2-Verschiebung der beiden Methylenbrückensubstituenten zum Methylterminus (Schema A). Für alle Hausanderivate I ist das Verhältnis der beiden Umlagerungsprodukte II und III annähernd gleich und reflektiert nicht die zu erwartende Wanderungstendenz Methyl < Ethyl < Benzyl, Allyl (Tabelle A). Der Grund für diesen stereochemischen Erinnerungseffekt liegt darin, dass die Wanderung der CH3-Gruppe schneller erfolgt als die konformationelle Äquilibrierung der beiden Radikalkationkonformere anti-I•+ syn-I•+. Die säurekatalysierte Umsetzung mit TFA ergibt eine ähnliche Regio- und Stereoselektivität wie in der ET-induzierten Umlagerung, es entstehen ausschließlich die Cyclopentene II und III. Die Umsetzung mit HClO4 führt zu einer kompletten Umkehr der zuvor beobachteten Produktselektivitäten (Tabelle A). Die Unterschiede in den Produktselektivitäten werden mit dem Auftreten der drei unterschiedlichen Intermediate I•+, I(edge-H)+ und I(corner-H)+ in der Umlagerung erklärt. Bei der ET-induzierten Umlagerung und der Säurekatalyse mit TFA werden die gewinkelten Intermediate I•+ und I(edge-H)+ durchlaufen, wohingegen bei der Protonierung mit HClO4 direkt das offene Carbokation I(corner-H)+ gebildet wird. Für alle Umlagerungsmodi findet jedoch bevorzugt Wanderung der CH3-Gruppe statt, so dass die Produktselektivität durch einen stereochemischen Erinnerungseffekt bestimmt wird. Um den Einfluss einer zusätzlichen Ringanellierung auf das Umlagerungsverhalten zu untersuchen, wird ebenfalls die ET-induzierte Umlagerung für das tetracyclischen Hausan IV untersucht (Tabelle B). Die Umsetzung des Phenyl-substituierten Hausans IV mit TBA•+SbCl6- resultiert regioselektiv die beiden diquinanverwandten Umlagerungsprodukte V (55%) und VI (45%) durch Wanderung der CH3-Gruppe und des CH2-Fragments des anellierten Ringes. Die Umlagerung des Methyl-substituierten Derivats IV verläuft hingegen weder regio- noch stereoselektiv zu den drei Isomeren V (37%), VI (25%) und VII (43%). Für die Umsetzung mit HClO4 wird im Fall von Hausan IVeine komplette Umkehr der Regioselektivität beobachtet und es entsteht hauptsächlich das Produkt VII (67%), sowohl die beiden Regioisomeren V (24%) und VI (9%). Das Methyl-substituierte Derivat IV ergibt bei der Umsetzung mit HClO4 regio- und stereoselektiv ausschließlich das Cyclopenten V (> 95%). Die Produktselektivität der 1,2-Umlagerung des Hausans IV lässt sich durch die Viskosität ( des verwendeten Lösungsmittels steuern. Mit zunehmender Viskosität nimmt der Anteil an Methylwanderungsprodukt V zu, so dass sich das V/VI Verhältnis beim Übergang von Dichlormethan ( = 0.36 cP) zu 1,4-Butandiol ( = 89.2 cP) fast verdoppelt. Im Gegensatz dazu zeigt das Produktverhältnis II / III der Umlagerung von den diastereomeren Hausanen anti-I und syn-I keine Viskositätsabhängigkeit. Anhand der für die Umlagerung beobachteten Produktverhältnissen wird, ausgehend vom Hausanisomer anti-I einerseits und Hausanisomer syn-I andererseits, das Ausmaß an Stereoselektivität der 1,2-Umlagerung durch eine detaillierte Kinetikanalyse quantifiziert Die CD3-Wanderung (k2), ausgehend vom vom anti-I•+(verdrillt) Konformer, erfolgt ca. sieben Mal schneller als die konformationelle anti-zu-syn (k1) Transformation zum Radikalkationkonformer syn-I•+(verdrillt). Wohingegen die CD3-Wanderung (k3), ausgehend vom syn-I•+(verdrillt) Konformer, nur ca. drei Mal schneller ist als die syn-zu-anti Transformation (k-1) zum Radikalkation anti-I•+(verdrillt). Für die Umlagerung der aus den Hausanen I generierten Radikalkationen und Carbokationen wird ein stereochemischer Erinnerungseffekt beobachtet. Die Wanderungsselektivität wird durch konformationelle und sterische Effekte bestimmt und ist unabhängig von der Wanderungstendenz des Substituenten R. Die konformationellen Effekte der 1,2-Umlagerung von 1,3-Cyclopentandiyl-Radikalkationen können durch eine geeignete Variation der Ringanellierung so gesteuert werden, dass entweder ein stereochemischer Erinnerungseffekt (tricyclische Hausane I) oder ein Curtin/Hammett-Verhalten (tetracyclische Hausane IV) beobachtet wird. Die zusätzliche Cyclohexananellierung im Hausan IV löscht den stereochemischen Erinnerungseffekt und bewirkt eine für radikalkationische Intermediate erstmalig beobachtete Viskositätsabhängigkeit der Produktselektivität in der Umlagerung. N2 - The present study provides valuable mechanistic insight into the intricacies and complexities in the rearrangement of the 1,3 radical cations [generated by electron transfer with tris(p-bromo)phenylaminium hexachloroantimonate (TBA•+SbCl6-)] and the corresponding carbocations [formed by protonation with trifluoroacetic (TFA) and perchloric acid (HClO4)]. This elaborate comparative study provides a mechanistic assessment of the interplay of conformational, electronic and steric effects on the product selectivity in the rearrangement of radical cations and the corresponding carbocation intermediates as required by stereoelectronic control. For all activation modes in the rearrangement of the housanes I stereochemical memory operates, which is imposed by the conformational requirements that are dictated by the stereoelectronics of the 1,2 migration. As a consequence, the ratio of the rearrangement products II/III is insensitive to the migratory aptitude of the R substituent in the housanes I. Additionally, it has been demonstrated that structural changes allow to manipulate the conformational effects in the rearrangement of 1,3-cyclopentandiyl radical cations that either stereochemical memory or Curtin / Hammett behavior is observerd. The electron-transfer-catalyzed rearrangement of the housanes I affords regioselectively exclusively the two cyclopentenes II (CH3 migration) and III (R migration) by 1,2 shift of the two groups at the methano bridge to the methyl terminus For all derivatives, the 1,2 shift of the CH3 group prevails and the rearrangement ratio is relatively insensitive to the migratory aptitude of the R substituent. The TFA-catalyzed rearrangement leads to a similar regio- and stereoselectivity as in the case of electron transfer. Thus, only the cyclopentenes II and III are produced with predominant CH3 migration.The rearrangement catalyzed by HClO4 leads to complete reversal in product distribution compared to the above-desribed rearrangements. The bridged structures I•+, I(edge-H)+ and I(corner-H)+ are suggested as key intermediates. In the electron-transfer and TFA-catalyzed rearrangements, the two puckered intermediates I•+and I(edge-H)+ intervene, whereas the open structure I(corner-H)+, formed by direct cornerwise protonation of the housane I, is suggested. In all cases, the CH3 group migrates in preference, the stereochemical memory effect accounts for the observed product selectivity. To probe the influence of ring annelation on the product selectivity, also the tetracyclic housanes IV were subjected to the electron-transfer oxidation by TBA•+SbCl6- (Table B). The electron-transfer rearrangement of the housanes IV on treatment with TBA•+SbCl6- affords regioselectively the two isomeric products V (55%) and VI (45%) by migration of the two groups at the methano bridge. In contrast, the methyl derivative IV is neither regio- nor stereoselective and leads to the three isomeric cyclopentenes V (37%), VI (25%), and VII (43%). Acid-catalyzed rearrangement of the housane IV gives in addition to V (24%) and VI (9%), the regiosiomer VII (67%) as major product. Acid-catalyzed rearrangement of the methyl-substituted housane IV yields regio- and stereoselectively the quinane V(> 95%). For the housane IV a mechanistically pertinent viscosity dependence is disclosed on the product selectivity. Whereas at low viscosity the two cyclopentenes V and VI are formed in nearly equal amounts, the methyl migration product V dominates more than twofold at higher viscosity. In contrast, the electron-transfer-induced rearrangement of the isomeric housanes anti-I and syn-I does not depend on the solvent viscosity (Scheme B). To evaluate quantitatively the extent of stereochemical memory, the ratios k2/k1 and k3/k-1 serve as a quantitative measure of the stereoselectivity, that is, for the case k2 >> k1 and k3 >> k-1 perfect stereochemical memory applies, whereas for the case k2 << k1 and k3 << k-1 complete Curtin-Hammett behavior operates. Thus, the CD3 migration in the anti-I•+(twisted) conformer (k2) proceeds ca. seven times faster than the conformational anti-to-syn change (k1) to the conformer syn-I•+(twisted), whereas the CD3 transfer in the syn-I•+(twisted) conformer (k3) is only ca. three times faster than the syn-to-anti conformational change (k-1) to the anti-I•+(twisted) species. The present study reveals that the product selectivity of the 1,2 migration in the electron-transfer as well as in the acid-catalyzed rearrangement of the housanes I is decisively determined by conformational and steric factors. For all activation modes, the stereochemical memory effect operates. As a consequence, the ratio of rearrangement products is essentially insensitive to the migratory aptitude of the R substituent in the housanes I. This stereochemical memory effect derives from the conformational imposition on the stereoelectronic requirements during the 1,2 migration of the 1,3-radical-cation intermediates. Appropriate ring annelation in the intermediary 1,3-cyclopentandiyl radical cation allows to change the stereochemical course of the rearrangement from stereochemical memory (tricycylic housanes I) to complete loss of sterecontrol through Curtin/Hammett behavior (tetracyclic housanes IV); thus, cyclohexane annelation erases the stereochemical memory effect. Such structural manipulation of the conformational control in radical-cation rearrangements has hitherto not been documented. The observed Curtin/Hammett behavior of the housane IV represents the first case for which conformational equilibration precedes competing product formation through 1,2 migration, which could have hardly been anticipated. KW - Cyclopentadienderivate KW - Radikal KW - Stereochemie KW - 1 KW - 3-Cyclopenrtandiyl Radikalkationen KW - Stereochemischer Erinnerungseffekt KW - Curtin / Hammett Verhalten KW - 1 KW - 3-Cyclopentanediyl Radical Cations KW - Stereochemical Memory Effect KW - Curtin / Hammett-Behavior Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4134 ER - TY - THES A1 - Marquardt, Stefan T1 - DNA-Schädigung durch photochemische Alkoxylradikalquellen T1 - DNA damage by photochemical alkoxyl-radical sources N2 - Reaktive Sauerstoffspezies induzieren oxidative DNA-Schäden (Oxidativer Stress) und spielen daher eine entscheidende Rolle bei Mutagenese, Kanzerogenese und Alterung. Durch die zunehmende terrestrische UV-Strahlung, die die Generierung solcher Spezies fördert, ist dieses Thema von besonderer Aktualität. Während die Reaktivität von Hydroxylradikalen gegenüber DNA bereits intensiv erforscht worden ist, sind die photobiologischen Wirkungen von Alkoxylradikalen bisher kaum untersucht. Vor diesem Hintergrund sollten neue photochemische Alkoxylradikalquellen entwickelt und deren Reaktivität gegenüber Nukleinsäuren mit dem bereits etablierten System Perester I verglichen werden. Auf diese Weise sollte ein allgemeines DNA-Schadensprofil von Alkoxylradikalen aufgestellt und deren Wirkungsgrad ermittelt werden. 1. Das wasserlösliche Pyridon IIb ist aus dem entsprechenden Hydroxyderivat IIa durch Alkylierung mit tert-Butylbromid unter SN1-Bedingungen synthetisiert worden (Schema I). Seine photolytische Zersetzung führt zu den Produkten 2-Pyridon IIIa (30 Prozent) und 3-tert-Butoxy-2-pyridon IIIb (27 Prozent). Bei Bestrahlung sowohl in organischen Lösungsmitteln (Benzol) als auch in wässrigem Medium erfolgt Freisetzung von tert-Butoxylradikalen, die EPR-spektroskopisch durch Spinabfang mit DMPO als DMPO-OtBu-Addukt nachgewiesen werden. In wässrigem Medium, unter Ausschluss von molekularem Sauerstoff werden zusätzlich DMPO-Addukte von Methylradikalen (DMPO-Me) detektiert. Mit abnehmender Konzentration an eingesetztem DMPO entsprechen diese den Hauptradikaladdukten. Auch bei Photolyse der bereits etablierten tert-Butoxylradikalquelle Perester I werden unter diesen Bedingungen hauptsächlich Methylradikale abgefangen. Letztere werden aus den tert-Butoxylradikalen durch β-Fragmentierung generiert. In Gegenwart von superhelikaler pBR 322 DNA induzieren die von tert-Butoxypyridon IIb photolytisch freigesetzten Radikale Einzelstrangbrüche. 2'-Desoxyguanosin (dG) wird durch Pyridon IIb bei Bestrahlung unter aeroben Bedingungen vorwiegend zu Guanidin-freisetzenden Produkten (z.B. Oxazolon) oxidiert, während 8-oxodG in nur vernachlässigbaren Mengen gebildet wird. Der Perester I zeigt ein analoges Schadensprofil. Die Reduktion der DNA- und dG-Schädigung durch den Zusatz von Radikalfängern manifestiert, dass die von Pyridon IIb freigesetzten Radikale die Oxidantien sind. Photosensibilisierte oxidative Schädigung durch die Photoprodukte der Radikalquelle werden durch zeitabhängige Studien ausgeschlossen. Diese ergeben, dass nach vollständiger photo-lytischer Zersetzung des Pyridons IIb keine Schadensbildung sowohl an dG als auch an pBR 322 DNA mehr erfolgt. Unter Ausschluss von molekularem Sauerstoff induziert die Photolyse von Pyridon IIb und Perester I die Bildung von 8-MedG (2.3 Prozent für Pyridon IIb, 2.0 Prozent für Perester I) in beachtlichen Ausbeuten. Auch N7-MedG (0.3 Prozent) konnte detektiert werden. Daraus wird auf eine erhebliche Schadensbildung durch Methylradikale geschlossen. Unter Berücksichtigung der jeweiligen Geschwindigkeitskonstanten und der verwendeten dG-Konzentration wird ermittelt, dass weniger als 0.3 Prozent der aus Perester I oder Pyridon IIb freigesetzten tert-Butoxylradikale direkt mit dG reagieren, während mehr als 99 Prozent zu Methylradikale fragmentieren. Fazit 1: Das Pyridon IIb ist eine photochemische Quelle für tert-Butoxylradikale und zeigt das gleiche Schadensprofil gegenüber dG und DNA wie der Perester I. Die tert-Butoxylradikale können jedoch als schädigende Spezies ausgeschlossen werden, da sie viel effizienter zu Methylradikalen fragmentieren als mit dG reagieren. Die aus den Methylradikalen in Gegenwart von Sauerstoff gebildeten Methylperoxyl-radikale und deren Folgeradikale sind für die beobachteten Schäden verantwortlich. 2. Neben dem tert-Butoxypyridon IIb werden auch die Isopropoxylradikalquellen Pyridon IIc und Thiazolthion IV untersucht. Laserblitz-Studien ergeben, dass für beide Systeme die NO-Bindungsspaltung der dominierende erste photochemische Prozess ist [ФN-O = (75 ± 8)Prozent für Pyridon IIc und ФN-O = (65 ± 7)Prozent für Thiazolthion IV]. Im Falle des Thiazolthions IV zeigen sowohl Laserblitz-Experimente als auch Produktstudien auf, dass bei der Photolyse zunächst das Disulfid V gebildet wird, aus dem dann durch CS-Bindungsspaltung die Produkte VI-VIII hervorgehen. Das Isopropoxypyridon IIc liefert in Analogie zu dem tert-Butoxyderivat IIb die Photoprodukte 2-Pyridon IIIa und 3-Isopropoxy-2-pyridon IIIc. Die photolytische NO-Bindungsspaltung wird für beide Photo-Fenton-Reagenzien dadurch weiter bestätigt, dass in Gegenwart von DMPO in Benzol die Bildung von Isopropoxylradikal-Addukten EPR-spektroskopisch nachgewiesen wird. In wässrigem Medium (H2O : MeCN = 60 : 40) wird bei Bestrahlung von Pyridon IIc eine Mischung von Isopropoxyl- (DMPO-OiPr) und 2-Hydroxyprop-2-ylradikalen (DMPO-CMe2OH) mit DMPO abgefangen. Letztere Radikale gehen aus dem Isopropoxylradikal durch H-Shift hervor und werden bei Einsatz geringer Konzentrationen an DMPO EPR-spektroskopisch hauptsächlich detektiert (Schema II). Bei Bestrahlung in reinem Wasser sind diese die einzig abgefangenen Radikalspezies. Im Gegensatz dazu liefert das Thiazolthion IV unter jeglichen Bedingungen ausschließlich die DMPO-Addukte der Isopropoxylradikale. Kontrollexperimente ergeben, dass im Falle des Thiazolthions IV die 2-Hydroxyprop-2-ylradikale schneller von dem Photoprodukt Disulfid V als von DMPO abgefangen werden. Deshalb werden diese Kohlenstoffradikale nicht als DMPO-Addukte bei der Photolyse des Thiazolthions IV im EPR-Spektrum nachgewiesen, sondern ausschließlich die Isopropoxylradikaladdukte DMPO-OiPr. Fazit 2: Sowohl das Pyridon IIc als auch das Thiazolthion IV zerfallen durch photolytischen NO-Bindungsbruch unter Freisetzung von Isopropoxylradikalen, die in wässrigem Medium zu 2-Hydroxyprop-2-ylradikalen umlagern. Im Falle des Thiazolthions IV verhindert das Disulfid V, dass diese Spezies mit DMPO abgefangen werden, im Falle des Pyridons IIc sind sie die dominiernden DMPO-Radikalspezies im EPR-Spektrum. 3. Sowohl das Pyridon IIc (17 Prozent) als auch das Thiazolthion IV (12 Prozent) induzieren unter Bestrahlung in superhelikaler pBR 322 DNA in einem Lösungsmittelgemisch von H2O : MeCN = 60 : 40 nur geringe Mengen an offen-circularer DNA. In reinem Wasser hingegen, zeigt das Pyridon IIc eine viel höhere Reaktiviät zur Strangbruchbildung (32 Prozent offen-circulare DNA). Da in diesem Medium die 2-Hydroxyprop-2-ylradikale als einzige Spezies detektiert worden sind, sollten unter diesen Bedingungen Oxylradikale für die Strangbruchbildung verantwortlich sein, die aus den 2-Hydroxyprop-2-ylradikalen nach Addition von Luftsauerstoff hervorgehen. Die schwache Induktion von Strangbrüchen durch das Thiazolthion IV wird auf die Isopropoxylradikale zurückzuführen sein, da diese die einzigen Intermediate sind, die bei Bestrahlung dieses Photo-Fenton-Reagenzes detektiert werden. Fazit 3: Die von Pyridon IIc generierten 2-Hydroxyprop-2-ylradikale zeigen nach Addition von molekularem Sauerstoff eine höhere Aktivität zur Strangbruchbildung als die von Thiazolthion IV freigesetzten und ausschließlich detektierten Isopropoxylradikale. N2 - Reactive oxygen species induce oxidative DNA damage (oxidative stress), and consequently, they play a key role in mutagenesis, cancerogenesis and aging. Due to the increasing terrestial UV radiation, which is generating such agressive species, this topic is of particular timeliness. The reactivity of hydroxyl radicals towards DNA has been intensively investigated, whereas relatively little is known on the photobiological effects of alkoxyl radicals. In this respect, the incentive of the present dissertation has been the development of new and effective photochemical alkoxyl-radical sources. Their reactivity towards DNA was to be assessed and compared with that of the perester I, which has previously been established as photochemical alkoxyl-radical source in our group. Such a photobiological model study should provide a general DNA-damaging profile for alkoxyl radicals. 1. The water-soluble pyridone IIb has been prepared from the corresponding hydroxy derivative IIa through alkylation with tert-butyl bromide under SN1 reaction conditions (Scheme I). Its photochemical decompositon affords 2-pyridone IIIa (30 per cent) and 3-tertbutoxy-2-pyridone (IIIb, 27 per cent). Upon irradiation in organic solvents (benzene) and aqueous medium, tert-butoxyl radicals are released which are trapped by DMPO and subsequently characterized as DMPO-OtBu adducts by means of EPR spectroscopy. In aqueous medium and under the exclusion of molecular oxygen, the DMPO adduct of the methyl radical is also detected and represents the dominant DMPO-radical adduct at low DMPO concentrations. The methyl radicals result from the β cleavage of the tert-butoxyl radicals, which is facilitated in aqueous media. The photochemically released radicals of the pyridone IIb induce strand breaks in supercoiled pBR 322 DNA and oxidize dG predominantly to guanidine-releasing products (e. g. oxazolone), whereas 8-oxodG is formed in negligible amounts. The perester I displays an analogous damaging profile. The addition of radical scavengers reduces strand-break formation and dG oxidation in the photolysis of the pyridone IIb, which manifests that the resulting radicals are the oxidizing agents. The oxidative damage by the photoproducts through photosensitization is excluded, since time-dependent photooxidations reveal that strand-break formation and dG oxidation level off once all of the pyridone IIb has been consumed. Under the exclusion of molecular oxygen, the photolysis of the pyridone IIb or the perester I afford appreciable amounts of 8-MedG (2.3 per cent for pyridone IIb, 2.0 per cent for perester I) and also N7-MedG is detected, which substantiates the involvement of methyl radicals. From the known rate constants for the reaction of tert-butoxyl radicals with the guanine base and for the  fragmentation of the tert-butoxyl radical into methyl radical, it may be estimated that not more than 0.3 per cent of the generated tert-butoxyl radicals react with dG(0.10 mM) and, consequently, more than 99 per cent undergo  cleavage to methyl radicals. Conclusion 1: Pyridone IIb represents a photochemical source of tert-butoxyl radicals and displays the same damaging profile towards DNA and dG like perester I. The tert-butoxyl radicals are ruled out as damaging species, since their  fragmentation into methyl radicals overwhelmingly dominates their reaction with dG. The methylperoxyl radicals formed through oxygen trapping by the methyl radicals are responsible for the observed damage. 2. In addition to the pyridone IIb, also the photochemical isopropoxyl-radical sources pyridone IIc and thiazolethione IV have been investigated. Transient spectroscopy establishes NO-bond scission (ΦN-O = 75 ± 8 per cent for IIc and 65 ± 7 per cent IV) as the dominating primary photochemical process for both reagents. Product studies and laser-flash experiments reveal that the thiazolethione IV leads primarily to the disulfide V, from which the products VI-VIII are derived through CS-bond breakage. The isopropoxypyridone IIc affords 2-pyridone IIIa and 3-isopropoxy-2-pyridone IIIc as photoproducts, analogous to the photochemistry of the tert-butoxy derivative. Further evidence for the NO-bond cleavage is provided by the fact that upon irradiation of both reagents in benzene in the presence of DMPO, the adducts of the isopropoxyl radicals have been EPR-spectrally detected. Upon photolysis of the pyridone IIc in aqueous media (H2O : MeCN = 60 : 40), a mixture of isopropoxyl and 2-hydroxyprop-2-yl radicals are trapped by DMPO. The latter radicals result from the isopropoxyl radicals through H shift and are predominantly detected when low concentrations of DMPO are used (Scheme II). Moreover, in pure water, exlusively the carbon-centered 2-hydroxyprop-2-ylradicals are trapped by DMPO. In contrast, the thiazolethione IV affords only the adducts of the isopropoxyl radicals, independent of what DMPO concentration is applied. Control experiments reveal that the disulfide V photoproduct of the thiazolethione IV scavenges the carbon-centered radicals in competition with trapping by DMPO. Conclusion 2: Both the pyridone IIc and the thiazolethione IV decompose through NO-bond cleavage under release of isopropoxyl radicals, which rearrange in aqueous media to the carbon-centered 2-hydroxyprop-2-yl radicals. In the case of the thiazolthione IV its disulfide photoproduct V prevents efficient DMPO trapping of the 2-hydroxyprop-2-yl radicals, whereas for the pyridone IIc, the DMPO adducts of the carbon-centered radicals dominate in the EPR spectrum. 3. In supercoiled pBR 322 DNA, pyridone IIc (17 per cent) and thiazolethione IV (12 per cent) induce only moderate amounts of open-circular DNA upon irradiation in a 60 : 40 mixture of H2O-MeCN. In pure water, however, the pyridone IIc photoinduces substantially more DNA cleavage (32 per cent open-circular DNA), which is attributed to the oxyl radicals generated from the 2-hydroxyprop-2-yl radicals by oxygen trapping. The lower strand-break activity of the thiazolethione IV derives presumably from isopropoxyl radicals, because only these are detected in the photolysis of this photo-Fenton reagent. Conclusion 3: The carbon-centered 2-hydroxyprop-2-yl radicals generated from pyridone IIc in aqueous media and in absence of molecular oxygen display a higher DNA photocleaving reactivity than the isopropoxyl radicals derived from the thiazolethione IV. KW - DNS-Schädigung KW - Alkoxylierung KW - Sauerstoffradikal KW - DNA KW - organische Chemie KW - Radikale KW - Oxidativer Stress KW - DNA KW - organic chemistry KW - radicals KW - oxidative stress Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1182591 ER - TY - THES A1 - Menche, Dirk T1 - Knipholon und verwandte Phenylanthrachinone T1 - Knipholone and related Phenylanthrachinones N2 - Im Rahmen dieser Arbeit wurde unter Verwendung des 'Lacton-Konzeptes' ein stereoselektiver Zugang zu einem konfigurativ stabilen AB-Biarylfragment von Vancomycin geebnet, wobei verschiedene Schutzgruppenstrategien verfolgt wurden. Weiterhin gelang eine erste, zudem atropselektive Totalsynthese von Knipholon und verwandten Phenylanthrachinonen, die den ersten stereoselektive Zugang zu Biarylanthrachinonen im allgemeinen darstellt. Schließlich wurden neuartige natürlich vorkommende Phenylanthrachinone entdeckt und deren Strukturen aufgeklärt. N2 - During this thesis using the 'lacton concept' a stereoselective approach to the AB biaryl fragment of vancomycin was established requiring the study of different protective group strategies. In addition, a first, moreover atroposelective total synthesis of knipholone and related phenylanthraquinones was achieved, which presents the first stereoselective approach to biarylanthraquinones in general. Finally new types of natural phenylanthraquinones were discovered and their structures elucidated. KW - Knipholon KW - Anthrachinonfarbstoff KW - Stereoselektive Synthese KW - Strukturaufklärung KW - Totalsynthese KW - Lacton-Konzept KW - Strukturaufklärung KW - Vancomycin KW - Knipholon KW - Phenylanthrachinone KW - Gaborochinone A und B KW - Total synthesis KW - Lacton concept KW - structure elucidation KW - Vancomycin KW - Knipholone KW - Phenylanthrachinones KW - Gaboroquinone A und B Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3029 ER -