TY - THES A1 - Schmidt, Uwe T1 - Sandwich- und Halbsandwich-substituierte Diborene – Synthese, Eigenschaften und Reaktivität T1 - Sandwich- and half sandwich-substituted diborenes – synthesis, properties and reactivity N2 - Innerhalb der vorliegenden Arbeit ist es gelungen, durch das Einführen von Cymantrenylresten neue Diborene darzustellen, welche Halbsandwich-Substituenten tragen und somit das Substitutionsmuster von basenstabilisierten Diborenen um eine weitere Verbindungsklasse zu erweitern. Neben Cymantrenylresten gelang es auch, Ferrocenylreste als weitere Substituenten in entsprechende Diborensysteme einzuführen. Über die Darstellung neuer Diborensysteme hinaus, waren Reaktivitätsstudien am Diboraferrocenophan 29 ebenso ein wesentlicher Bestandteil der vorliegenden Arbeit. Es konnte gezeigt werden, dass 29 mit kleinen Lewis-Basen, Element-Wasserstoff-Verbindungen und Hydrierungsreagenzien zur Reaktion gebracht werden kann. N2 - The work in this project resulted in the synthesis of new diborenes with cymantrenyl substituents. With these half-sandwich substituents it was possible to expand the substitution pattern of base-stabilized diborenes by further examples. In addition to cymantrenyl substituents, ferrocenyl substituents were introduced into the corresponding diborene systems. In addition to the synthesis of new diborene systems, reactivity studies on the diboraferrocenophane 29 constituted another major component of the present work. It was shown that 29 reacts with small Lewis-bases, element-hydrogen compounds, and hydrogenation reagents. KW - Diborene KW - Mehrfachbindung KW - Cymantren KW - Ferrocen Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234601 ER - TY - THES A1 - Okorn, Alexander T1 - Synthese und Reaktivität von PAH-substituierten Diborenen und Dihydroanthracendiyl-verbrückten Diborverbindungen T1 - Synthesis and Reactivity of PAH-substituted Diborenes and Dihydroanthracendiyl-bridged Diboroncompounds N2 - Die vorliegende Arbeit beschäftig sich mit der Synthese und Reaktivität von Phosphan-stabilisierten Diborenen, die auf Grund ihres Substitutionsmusters über ein erhöhtes Reaktivitätsvermögen verfügen. Der erste Teil dieser Arbeit beschreibt die Synthese von polycyclischen aromatischen Kohlenwasserstoff (PAH)-substituierten, Trimethylphosphan-stabilisierten Diborenen. Im zweiten Abschnitt dieser Arbeit wird die Synthese von Diborenen beschrieben, welche in einer Dihydroanthracendiyl-verbrückten Ringstruktur eingebunden sind. N2 - The work deals with the synthesis and reactivity of phosphine-stabilised diborenes with increased reactivity due to their substitution pattern. The first part describes the synthesis of polycyclic aromatic hydrocarbon (PAH)-substituted, trimethylphosphine-stabilised diborenes.The second part of this work describes the synthesis of strained diborenes, which are incorporated into a dihydroanthracenediyl-bridged ring structure. KW - Diborene Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-348368 ER - TY - THES A1 - Hermann, Alexander T1 - Untersuchung von B-B-Doppelbindungen als Bestandteil konjugierter p-Systeme T1 - Integration of B-B Double Bonds in conjugated p-Systems N2 - Der erste Teil dieser Arbeit beschäftigt sich mit der "Synthese und Reaktivität sterisch anspruchsvoller Iminoborane". Dabei war es möglich, ausgehend von einem Terphenylamin geeignete Aminoborane zu synthetisieren, welche anschließend mit starken, nicht-nukleophilen Basen umgesetzt wurden. Mittels formaler HCl-Eliminierung mit LiTmp gelang auf diese Weise die Darstellung sterisch anspruchsvoller Iminoborane. Der zweite Teil dieser Arbeit befasst sich mit der "Untersuchung von B-B-Doppelbindungen als Bestandteil konjugierter p-Systeme". Durch die Verwendung von sterisch wenig anspruchsvollen Liganden oder Boryl-Substituenten war es möglich planare Diboren-Systeme zu generieren und darüberhinaus Divinyldiborene darzustellen. N2 - The first part of this work deals with the "Synthesis and Reactivity of Sterically Demanding Iminoboranes". Starting with a terphenylamine, it was possible to synthesize aminoboranes, which were then reacted with strong, non-nucleophilic bases. Formal HCl elimination mit LiTmp thus enabled the preparation of sterically demanding iminoboranes. The second part of this thesis focuses on the "Integration of B-B Double Bonds in conjugated p-Systems". By using sterically low damanding ligands or boryl-substituents it was possible to generate planar diborene structures and to synthesize divinyldiborenes. KW - Konjugation KW - Hauptgruppenelementverbindungen KW - Diborene KW - Hauptgruppenelementchemie KW - Conjugation KW - Diborene KW - Main Group Chemistry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204592 ER - TY - THES A1 - Englert, Lukas T1 - Synthese und Reaktivität Phosphan-stabilisierter Diborene T1 - Synthesis and Reactivity of Phosphine-stabilised Diborenes N2 - Die vorliegende Arbeit beschäftigt sich mit der Synthese und Reaktivität von Phosphan-stabilisierten Diborenen. Der erste Teil beschreibt die Darstellung von Tetrabromdiboran(4)-Addukten mit zweizähnigen (84a–87c) und einzähnigen Phosphanen (43a–c; 88a–89b), welche ausgehend von B2Br4(SMe2)2 (83) in einer Substitutionsreaktion in sehr guten Ausbeuten erhalten wurden. In fast allen Fällen gelang es mithilfe der Molekülstrukturen im Festkörper die Verbindungen näher zu untersuchen. Dabei konnten erstmalig Phosphan-verbrückte Diboran(6)-Verbindungen 86a–87a strukturell charakterisiert werden. Eine Besonderheit stellt in diesem Zusammenhang der PBBP-Torsionswinkel α dar, der die Abwinklung zwischen den Phosphanliganden angibt und welcher mit steigender Sterik zunimmt, was auf attraktive Dispersionswechselwirkungen zwischen den organischen Resten zurückzuführen ist. Einige Addukte wurden experimentell auf ihr Redoxverhalten hin untersucht. Obwohl bei vielen Reduktionsversuchen Diboren-typische NMR-Signale beobachtet wurden, sind die meisten Produkte so instabil, dass keine weiteren Beweise für die erfolgreiche Darstellung der jeweiligen Diborene erbracht werden konnten. Nur für 88c gelang die zielgerichtete Reduktion zum Diboren 93c zu reduzieren. Die analysenreine Isolierung von 93c gelang jedoch nicht, sodass es in situ zum Diboren-Übergangsmetall-side-on Komplex 94 umgesetzt wurde. Quantenchemische Untersuchungen der Grenzorbitale zeigten, dass sehr wahrscheinlich die energetische Lage der MOs mit Anteilen auf den σ*-Orbitalen der B‒Br-Bindungen ausschlaggebend für eine erfolgreiche Reduktion von Bisphosphanaddukten zum Diboren ist. Allerdings stellt auch der räumliche Anspruch der Phosphane einen entscheidenden Stabilitätsfaktor für das entstehende Phosphan-stabilisierte Diboren dar. Weiterhin wurde das Portfolio an Phosphan-stabilisierten 1,2-Diaryldiborenen mit den Ver-bindungen 97a–98b erweitert und die Synthese derartiger Diborene in einer Eintopfsynthese optimiert. Außerdem gelang die erstmalige Darstellung Phosphan-stabilisierter Diborene mit Durylsubstituenten (98a/b), die sich aber, mitsamt ihren Brom-verbrückten Monoadduktvorstufen 96a/b, als unerwartet labil erwiesen. Die Diborene zeigen für diese Verbindungsklasse typische NMR-spektroskopische und röntgenkristallographische Messdaten. Zusätzlich wurden 97a/b mittels UV/Vis-Spektroskopie und quantenchemischen Methoden näher analysiert. Das Hauptaugenmerk der durchgeführten Forschungsarbeiten lag auf der Untersuchung der Reaktivität des Diborens 48a. Dessen B=B-Bindungsordnung konnte in zwei Reaktionen mit unterschiedlichen Oxidationsmitteln unter Bildung des Radikalkations [100]∙+ herabgesetzt werden. Eine Oxidation der B=B-Bindung gelang auch mit der Umsetzung von 48a mit Chalkogenen und chalkogenhaltigen Reagenzien. Unter anderem gelang mit der Darstellung des 1,2-Dimesityl-1,2-di(phenylseleno)diborans(4) (104) die Synthese eines seltenen Beispiels für ein strukturell aufgeklärtes, selenhaltiges Diboran(4). Dabei konnte außerdem erstmals die vollständige Freisetzung beider Lewis-Basen aus einem Diboren unter gleichzeitiger Reduktion der Bindungsordnung beobachtet werden. Weiterhin wurde 48a mit stickstoffhaltigen Heteroaromaten umgesetzt. Dabei lassen die spektroskopischen und quantenchemischen Daten ein Pyridin-stabilisiertes Diboren 105 vermuten. In weiteren Versuchen wurde 48a mit 2,2'-Bipyridin untersucht und ein Monoboran und das 1,4-Diaza-2,3- diborinin 106 erhalten. 106 wurde im Festkörper und quantenchemisch näher untersucht. Eine NICS-Analyse bescheinigt dem zentralen B2N2C2-Ring des Diborans(4) ein außer-ordentliches Maß an Aromatizität. Ferner war 48a in der Lage, Element-Wasserstoffbindungen zu aktivieren (E = B, Si, N, S). Während für die Umsetzungen mit diversen Silanen nur über die Reaktionszusammensetzung spekuliert werden konnte, gelang die Strukturaufklärung zweier Produkte der Reaktion mit HBCat (110 und 111) mittels Einkristallröntgenstrukturanalyse. In diesem Zusammenhang gelang die Darstellung der sp2-sp3-Diborane(5) 112–113b in Umsetzungen von 48a mit einem Thiol bzw. mit Anilinderivaten in guten Ausbeuten. Die NMR-spektroskopischen und kristallographischen Daten der Produkte sind miteinander vergleichbar und liegen im erwarteten Bereich derartiger Verbindungen. Zusätzlich konnte in den stickstoffhaltigen Produkten 113a/b die trans-Konfiguration der B=N-Doppelbindung mittels 1H–1H-NOESY-NMR-Experimenten bestätigt werden. Das Diboren 48a zeigt auch ein reichhaltiges Reaktivitätsverhalten gegenüber kleinen Molekülen. Nach dem Austausch der Schutzgasatmosphäre gegen N2O oder CO2 konnte die oxidative Zersetzung von 48a zum literaturbekannten Boroxinderivat 114 festgestellt werden. Gänzlich anders verlief die Reaktion von 48a mit CO, wobei ein interessanter, achtgliedriger Heterocyclus 115 gebildet wurde, der formal aus zwei gespaltenen CO-Molekülen und zwei Diborenen besteht. Die genaue Beschreibung der Bindungssituation innerhalb der BC(P)B-Einheit kann, anhand der Festkörperstruktur von 115 und DFT-Berechnungen, mit literaturbekannten α-borylierten Phosphoryliden verglichen werden. Mit hoher Wahrscheinlichkeit liegt eine Mischform der mesomeren Grenzstrukturen 115-A, 115-B und 115-C vor, da für alle drei Strukturvorschläge experimentelle Hinweise gefunden werden können. Das Diboren 48a reagierte mit H2 ohne Katalysator, unter thermischer Belastung, erhöhtem Druck und langer Reaktionszeit zu unterschiedlichen Produkten. Erste Umsetzungen führten hierbei zum Produkt 118a, das in folgenden Hydrierungen aber nicht mehr reproduziert werden konnte. Stattdessen wurde die selektive Bildung der Monoborane 119a/b beobachtet. Für beide Reaktivitäten wurde je ein Reaktionsmechanismus quantenchemisch untersucht. Das Schlüsselintermediat ist dabei jeweils ein hochreaktives Intermediat Int3, welches vermutlich für eine Vielzahl an Reaktivitäten von 48a verantwortlich ist. Das letzte Kapitel widmete sich unterschiedlichen Cycloadditionen von 48a mit verschiedenen ungesättigten Substraten. Die Reaktivität gegenüber Aziden konnte hierbei nicht vollständig aufgeklärt werden. Allerdings gelang es ein PMe3-stabilisiertes Phosphazen 122 als Nebenprodukt nachzuweisen und gezielt in einer Staudinger-Reaktion darzustellen. Mit Carbodiimiden reagierte das Diboren 48a unter photolytischen Bedingungen zu den 1,2,3-Azadiboretidinen 123a–c, wobei die Reaktionsgeschwindigkeit stark vom sterischen Anspruch des Carbodiimids abhängig war. Das Azadiboretidin 123a konnte im Festkörper näher untersucht werden und stellt ein seltenes Beispiel für einen solchen Heterocyclus dar. Die thermische Umsetzung von 48a mit den Carbodiimiden lieferte hingegen ein noch nicht vollständig aufgeklärtes Produkt. Anhand der spektroskopischen Daten wird die Darstellung eines NHCs mit Diboran(4)-Rückgrat der Art B2Mes2(NiPr)2C: (124a) vermutet. Quantenchemische Untersuchungen sagen für 124a ähnliche Bindungsparameter wie für ein literaturbekanntes π-acides NHC voraus. Die Reaktion von 48a mit terminalen Alkinen führte zielgerichtet zu PMe3-stabilisierten 1,3-Dihydro-1,3-diboreten 126a–d. In Lösung konnten für 126c/d zusätzlich die jeweiligen Konstitutionsisomere 127c/d mit Anteilen von unter 10% NMR-spektroskopisch beobachtet werden. Im Festkörper wird hingegen nicht das Diboret 126d, sondern ausschließlich das Konstitutionsisomer 127d beobachtet. Die Lewis-Formel der Diborete legt nahe, dass ein elektronenarmes, dreifach koordiniertes Kohlenstoffatom in der BCB-Einheit vorliegt, was im 13C{1H}-NMR-Spektrum mit den entsprechenden Signalen bestätigt wird. Eine elektronische Delokalisation wird mit den ermittelten B‒C-Atomabständen innerhalb der BCsp2B-Einheiten von 126a–c und 127d unterstützt. Die P‒Csp2-Bindung in 127d weist zudem einen kurzen P=C-Bindungsabstand auf, was einen sehr hohen π-Anteil vermuten lässt. Die einmalige Beschreibung des C‒H-Aktivierungsprodukts 131 im Festkörper gibt einen Hinweis auf eine anfängliche [2+2]-Cycloaddition zwischen der B=B-Doppelbindung und dem terminalen Alkin, die über eine 1,3-Umlagerung zur Bildung der 1,3-Diborete führt. Ferner gelang unter den identischen Reaktionsbedingungen aus 48a und 1,4‐Diethinylbenzol die Darstellung der Mono‐ und Bis(1,3‐dihydro‐1,3‐diborete) 128 und 129, wobei 129 nur im Festkörper genauer untersucht werden konnte. Die Umsetzung von 48a mit 1,3,5‐Triethinylbenzol ergab ein Produktgemisch der Form (B2Mes2(PMe3)HCC)n(C6H3)(CCH)3−n (130-n; n = 1, 2, 3), welches Hinweise auf die zweifache bzw. dreifache Diboretbildung lieferte. DFT-Berechnungen sagen für das Bisdiboret 129 eine Kommunikation zwischen beiden Heterocyclen über den zentralen Benzolring voraus, was die Ursache für die beobachtete Fluoreszenz sein könnte. Das Diboren 48a reagierte zudem mit Diazabutadienen unter thermischen Bedingungen in inversen Diels-Alder-Reaktionen zu 1,2,3,4-Tetraaryl-1,4-diaza-2,3-diborininen 132a–e. Dies stellt einen neuen Zugang zu dieser Substanzklasse dar. Dabei zeigte sich eine direkte Korrelation zwischen der Reaktionszeit und dem räumlichen Anspruch der Diazabutadiene. Die erfolgreiche Aufarbeitung der 1,4-Diaza-2,3-diborinine ist aufgrund ihrer hohen Löslichkeit in gängigen Lösungsmitteln wesentlich vom Kristallisationsverhalten der Produkte abhängig. Die analoge Umsetzung unter photochemischen Bedingungen gab Hinweise darauf, dass diese Reaktion dem Mechanismus einer inversen [4+2]-Cycloaddition folgt. Bemerkenswert ist die hohe Stabilität der Diborane(4) 132b/c gegenüber Luft und Wasser, die vermutlich auf der kinetischen Stabilisierung durch die ortho- Methylgruppen der Stickstoff-gebundenen Aromaten beruht. Im Gegensatz dazu wurde bei der Reaktion zwischen 48a und dem Diazabutadien (MesN)2C2Mes2 das 1,2,3,4-Tetramesityl-5,6-dimethyl-1,4-diaza-2,3-diborinin 132e nur in Spuren nachgewiesen. Unter den gewählten Bedingungen wurde stattdessen Verbindung 133 gebildet. Die systematische, experimentelle Untersuchung dieser Reaktivität wurde jedoch im Rahmen dieser Arbeit nicht durchgeführt. Die Schlüsselschritte des Reaktionsmechanismus zur Bildung von 133 führen höchstwahrscheinlich wieder über das Intermediat Int3. Nach einer 1,2-Wanderung eines Mesitylsubstituenten wird das Monophosphan-stabilisierte Zwitterion Int13a gebildet, welches in seiner Grenzstruktur Int13b als Borylen beschrieben werden kann. Eine anschließende intramolekulare C‒H-Aktivierung resultiert im Diboran(5) 133. Mit dieser Arbeit ist es gelungen, neue Erkenntnisse über die Chemie Phosphan-stabilisierter Diborene zu erhalten. Die labil gebundenen Phosphane eröffnen diesen Diborenen eine einzigartige Reaktivität, die bei den NHC-Vertretern nicht gefunden wird. In der Zukunft könnten neue Konzepte entwickelt werden dieses Reaktionsverhalten weiter zu nutzen. Wünschenswert wäre es die Diboren-Monomere miteinander zu Ketten zu verknüpfen. N2 - The present work deals with the synthesis and reactivity of phosphine-stabilised diborenes. The first section describes the preparation of tetrabromodiborane(4) adducts with bidentate (84a–87c) and monodentate phosphines (43a–c; 88a–89b). These were obtained from B2Br4(SMe2)2 (83) in a substitution reaction in very good yields. In almost all cases, it was possible to investigate the compounds more closely based on their solid-state molecular structures. For the first time, the structures of phosphine-bridged di¬bo¬rane(6) compounds 86a–87a were determined. A special feature in this context is the PBBP torsion angle α, which indicates the angular deflection between the phosphine ligands. Contrary to expectations, the angle α decreases with increasing steric demand, which is probably due to attractive dispersion interactions between the organic residues. The adducts 84a/b, 135a/c, 87a, 88a/c/d and 136a were experimentally investigated for their redox behaviour. Although diborene-type NMR signals were observed in some reduction experiments, most of the products are so unstable that no further evidence for the successful preparation of the respective diborenes was obtained. Therefore, only 88c was successfully reduced to the diborene 93c. However, the isolation of 93c was not successful, thus it was instead reacted in situ with ZnBr2 to form the side-on transition metal diborene complex 94. Quantum-chemical investigations of the frontier orbitals showed that the energy level of the MOs with lobs corresponding to the σ* orbitals of the B‒Br bonds is most likely decisive for the successful reduction of bisphosphine adducts to diborenes. However, the steric demand of the phosphines is also a crucial stabilising factor for the resulting phosphine-stabilised diborene. Furthermore, the portfolio of phosphine-stabilised 1,2-diaryldiborenes was expanded with compounds 97a–98b and the synthesis of these diborenes was optimised in a one-pot synthesis. In addition, phosphine-stabilised diborenes with duryl substituents (98a/b) were synthesised for the first time, which, together with their bromine bridged monoadduct precursors 96a/b, proved to be unexpectedly labile. The prepared diborenes provided NMR spectroscopic and X-ray crystallographic data which are typical for this class of compounds. Moreover, 97a/b was analysed in more detail using UV/vis spectroscopy and quantum-chemical methods. The main focus of this research lies in the investigation of the reactivity of the diborene 48a. Its B=B bond order was reduced in two reactions with different oxidizing agents forming the radical cation [100]∙+. An oxidation of the B=B bond was also achieved with the reaction of 48a with chalcogens and chalcogen-containing reagents. Furthermore, with the preparation of 1,2-dimesityl-1,2-di(phenylseleno)diborane(4) (104), the synthesis of a rare example of a structurally elucidated selenium containing diborane(4) was achieved. In addition, the complete release of both Lewis bases from a diborene with simultaneous reduction of the B=B bond order was observed for the first time. Furthermore, 48a was reacted with nitrogen containing heteroaromatics. The spectroscopic and quantitative chemical data indicate a pyridine-stabilised diborene 105. Further experiments were aimed at exploring the reactivity of 48a towards 2,2'-bipyridine and the monoborane 107d and the 1,4-diaza-2,3-diborinine 106 were obtained. The solid-state structure of 106 and quantum-chemical investigations suggested a bonding situation comparable to that of carbon analogues. In addition, a NICS analysis confirmed that the central B2N2C2 ring of diborane(4) 106 has an extraordinary degree of aromaticity. Compound 48a was also able to activate element-hydrogen bonds (E = B, Si, N, S). While for the reactions with various silanes the reaction composition could only be speculated upon, the structure of two products of the reaction with HBCat (110 and 111) were elucidated by means of single crystal X-ray structure analysis. In this context, the sp2-sp3 diboranes(5) 112–113b were obtained in good yields in reactions of 48a with a thiol and with aniline derivatives, respectively. The NMR spectroscopic and crystallographic data of the products are comparable and lie within the expected range of such compounds. In addition, the trans configuration of the B=N double bond in the nitrogenous products 113a/b was confirmed by 1H‒1H-NOESY NMR experiments. The diborene 48a also shows a rich reactivity towards small molecules. After replacing the inert gas atmosphere with N2O or CO2, the oxidative decomposition of 48a to the literature-known boroxine derivative 114 was detected. The reaction of 48a with CO was completely different, whereby an interesting, eight-membered heterocycle 115 was formed, which formally consists of two cleaved CO molecules and two diborenes. Based on the solid-state structure of 115 and DFT calculations, the exact description of the bonding situation within the BC(P)B unit can be compared with literature-known α-borylated phosphorus ylides. It is highly probable that a mixed form of the mesomeric structures 115-A, 115-B and 115-C is present since experimental evidence can be found for all three proposed structures. The diborene 48a reacted with H2 without the need for a catalyst, with heating, high pressure and long reaction times leading to different products. Initial reactions led to the product 118a, which could not be reproduced in subsequent hydrogenations. Instead, the selective formation of the monoboranes 119a/b was observed. One reaction mechanism was computationally determined for each of the reactivities. The key intermediate in each case is the highly reactive intermediate Int3, which is presumably responsible for a large number of the reactivity patterns of 48a. The last chapter is devoted to different cycloadditions of 48a with different unsaturated substrates. The reactivity towards azides could not be fully elucidated. However, it was possible to detect a PMe3 stabilised phosphazene 122 as a byproduct, which could be independently synthesised via a Staudinger reaction. The diborene 48a reacted with carbodiimides under photolytic conditions to give the 1,2,3 azadiboretidines 123a–c, whereby the reaction rate was strongly dependent on the steric demand of the carbodiimide. The solid-state structure of azadiboretidine 123a was determined and represents a rare example of such a heterocycle. The thermal reaction of 48a with carbodiimides, on the other hand, yielded a product that has not yet been fully elucidated. Based on the spectroscopic data, the preparation of a NHC with a diborane(4) backbone of the type B2Mes2(NiPr)2C: (124a) is suspected. Quantum-chemical investigations predicted similar bonding parameters for 124a as for a literature known π-acidic NHC. The reaction of 48a with terminal alkynes led to PMe3-stabilised 1,3-dihydro-1,3-diboretes 126a–d. For 126c/d the respective constitutional isomers 127c/d with proportions of less than 10% could additionally be observed via solution NMR spectroscopy. In the solid state, on the other hand, not the diborete 126d but exclusively the constitutional isomer 127d was observed. The Lewis formulas of the diboretes suggest that an electron-deficient, tricoordinate carbon atom is present in the BCB unit, which is confirmed by its 13C{1H} NMR spectrum, which contains corresponding signals. The electronic delocalisation is supported by the experimentally derived B‒C atomic distances within the BCsp2B units of 126a–c and 127d. The P‒Csp2 bond in 127d is short, suggesting a high degree of π-character. The unique description of the C‒H activation product 131 in the solid state suggests an initial [2+2] cycloaddition between the B=B double bond and the terminal alkyne, which leads to the formation of the 1,3-diboretes via a 1,3 rearrangement. Using the identical reaction conditions as the reaction between 48a and 1,4-diethylbenzene, the preparation of the mono- and bis(1,3-dihydro-1,3-diboretes) 128 and 129 was achieved, whereby 129 could only be structurally authenticated. The reaction of 48a with 1,3,5-triethynylbenzene gave a mixture of products of the type (B2Mes2(PMe3)HCC)n(C6H3)(CCH)3-n (130-n; n = 1, 2, 3), which provided evidence for the two- and threefold diborete formation, respectively. DFT calculations predict some degree of communication between the two heterocycles via the central benzene ring in the bisdiborete 129, which could be the cause of the observed fluorescence. The diborene 48a also reacted with diazabutadienes under thermal conditions in inverse Diels-Alder reactions to give 1,2,3,4-tetraaryl-1,4-diaza-2,3-diborinines 132a–e. This represents a new approach to this substance class. Thereby, a direct correlation between the reaction time and the steric demand of the diazabutadienes was observed. The successful work-up of the 1,4-diaza-2,3-diborinines is essentially dependent on the crystallisation behaviour of the products due to their high solubility in common solvents. The analogous conversion under photochemical conditions indicated that this reaction follows the mechanism of an inverse electron demand [4+2] cycloaddition. The high stability of the diborane(4) 132b/c against air and water is remarkable, which is probably due to the kinetic stabilisation by the ortho-methyl groups of the nitrogen-bound aryl groups. In contrast, the reaction between 48a and the diazabutadiene (MesN)2C2Mes2 gave the 1,2,3,4-tetramesityl-5,6-dimethyl-1,4-diaza-2,3-diborinine 132e, but only in small amounts. Instead, compound 133 was formed under the chosen conditions. However, the systematic, experimental investigation of this reactivity was not carried out within the scope of this work. The key intermadiate of the reaction mechanism for the formation of 133 is most probably again the intermediate Int3. After a 1,2-migration of a mesityl substituent, the monophosphine-stabilised zwitterion Int13a is formed, which can be described as a borylene in its mesomeric structure Int13b. A subsequent intramolecular C‒H activation results in the diborane(5) 133. This work provides new insights into the chemistry of phosphine-stabilised diborenes. The labile phosphine groups provide a unique reactivity to the diborenes that is not found in the NHC-bound derivatives. In the future, new concepts could be developed to further exploit this reaction behaviour. Along these lines, it would be desirable to link diborenes with each other to create chains. KW - Bor KW - Synthese KW - Doppelbindung KW - Phosphin KW - Reaktivität KW - Diboren KW - Phosphan-stabilisiert KW - Diborene KW - Phosphine-stabilised Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241365 ER - TY - THES A1 - Claes, Christina T1 - Reduktive Synthese zu neuartigen cyclischen und acyclischen Borverbindungen T1 - Reductive synthesis of novel cyclic and acyclic boron compounds N2 - Ein Teil der hier vorliegenden Arbeit beschäftigte sich mit der Synthese und Charakterisierung neuer Boran-Addukte. Dabei wurden neben den NHCs IMe und IMeMe die Phosphane PEt3 und PMe3 als stabilisierende Lewisbasen eingesetzt. Neben dem Liganden wurde auch der borgebundene organische Rest variiert (Phenyl und n-Butyl), um deren Einfluss auf die Eigenschaften der Addukte zu untersuchen. Die NHC-stabilisierten Monoborane IMe∙B(nBu)Cl2 (99) und IMeMe∙B(Ph)Cl2 (100) konnten in guten Ausbeuten isoliert und vollständig charakterisiert werden. Zusammen mit dem bereits bekannten Addukt IMe∙B(Ph)Cl2 (98) wurden die analytischen Daten dieser drei Spezies miteinander verglichen, wobei sich die strukturellen Parameter im Festkörper stark ähneln. Die vergleichsweise lange B–CCarben-Bindungen (98: 1.621(3) Å; 99: 1.619(5) Å; 100: 1.631(3) Å) konnten hierbei als Beleg für den dativen Charakter dieser Wechselwirkungen herangezogen werden. Auch bei den Phosphan-Boran-Addukten Et3P∙B(Ph)Cl2 (112), Et3P∙B(nBu)Cl2 (113) und Me3P∙B(Ph)Cl2 (114) wurden relativ lange dative B–P-Bindungen (112: 1.987(2) Å; 113: 1.980(2) Å; 114: 1.960(3) Å) gefunden, wobei diese in Me3P∙B(Ph)Cl2 (114) deutlich kürzer ist als bei den PEt3-Addukten 112 und 113. Da die Lewisbasizität von PMe3 geringer ist als von PEt3 konnte dieser Befund auf den geringeren sterischen Anspruch von PMe3 zurückgeführt werden. Die reduktive Umsetzung der Phosphan-Boran-Addukte 112, 113 und 114 mit 1,2-Diphenyl-1,2-dinatriumethan (Na2[C14H12]) verlief in allen Fällen unselektiv und führte nicht zur Bildung eines Phosphan-stabilisierten Borirans. Das gleiche Ergebnis lieferte das NHC-stabilisierte Boran IMe∙B(Dur)Cl2. Im Gegensatz dazu konnten die Addukte 98, 99 und 100 mit NHC-Liganden und kleineren organischen Resten selektiv in die Borirane IMe∙B(Ph)(C14H12) (101), IMe∙B(nBu)(C14H12) (102) und IMeMe∙B(Ph)(C14H12) (103) durch Umsetzung mit Na2[C14H12] überführt werden. Hierbei wurden jene als racemische Gemische erhalten, wobei die Phenylgruppen am C2B-Dreiring ausschließlich trans zueinander orientiert sind. Die sterisch gehinderte Rotation um die B–CCarben-Bindung resultiert in einer Verbreiterung bzw. Aufspaltung der Signale des NHCs im 1H NMR-Spektrum. Die Strukturparameter der Molekülstrukturen im Festkörper von 101, 102 und 103 unterscheiden sich nur geringfügig. Die NHC-stabilisierten Borirane 101, 102 und 103 weisen trotz der enormen Ringspannung eine erstaunlich hohe Stabilität sogar gegenüber Luft und Wasser auf. Während gegenüber [Pt(PCy3)2] keine Reaktivität beobachtet wurde, erfolgte bei Umsetzung von IMe∙B(Ph)(C14H12) (101) mit [Pt(PEt3)3] eine langsame und unvollständige C–H-Bindungsaktivierung am NHC-Rückgrat unter Bildung des Platin(II)-Komplexes 105. Aufgrund der gehinderten Rotation um die B–CCarben-Bindung wurde hierbei ein racemisches Gemisch von jeweils zwei Rotameren erhalten, welche in den NMR-Spektren in Form zweier Signalsätze zu beobachten waren. Die chemische Verschiebung des platingebundenen Hydrid-Signals bestätigt zudem eine vinylartige Natur des Boriran-Liganden mit starkem trans-Effekt. Die Konstitution von 105 im Festkörper konnte durch eine Einkristallröntgenstrukturanalyse belegt werden, wobei die geringe Qualität des Datensatzes keine Strukturdiskussion zulässt. Erwartungsgemäß ging das Boriran IMeMe∙B(Ph)(C14H12) (103) mit [Pt(PEt3)3] keine Reaktion ein, da der IMeMe-Ligand keine C–H-Einheiten im NHC-Rückgrat aufweist. Basenfreie Borirane konnten hingegen weder durch Basenabstraktion aus dem NHC-stabilisierten Boriran 101 mit Hilfe starker Lewissäuren (PPB, B(C6F5)3, AlCl3 oder [Lu∙BCl2][AlCl4]), noch durch Reduktion einfacher Dihalogenborane mit Na2[C14H12] realisiert werden. Während die Umsetzungen mit Lewissäuren entweder mit keiner Reaktion oder mit Zersetzung verbunden waren, bestand eine Schwierigkeit des reduktiven Ansatzes in der Wahl des Lösungsmittels, in welchem das Reduktionsmittel generiert wurde. Die meisten polaren Lösungsmittel führten hierbei direkt zur Zersetzung des Borans und lediglich DME erwies sich als geeignet. Jedoch wurde bei der Umsetzung von DurBCl2 mit Na2[C14H12] in DME kein Boriran, sondern das Borolan 109 mit syndiotaktisch angeordneten Phenylgruppen gebildet. Die Molekülstruktur im Festkörper offenbarte hierbei ein planar-koordiniertes Boratom. Ein weiterer Fokus dieser Arbeit lag auf der Synthese und Reaktivität neuer Phosphan-stabilisierter Diborene. Hierbei konnte zunächst gezeigt werden, dass das sterisch anspruchsvolle Bisphosphan dppe mit ( B(Mes)Br)2 (115) bei Raumtemperatur kein Addukt ausbildet. Bei –40 °C konnten neben freiem dppe auch ein Mono- und ein Bisaddukt im 31P NMR-Spektrum nachgewiesen werden. Im Gegensatz dazu lieferte die Umsetzung von 115 mit dmpe einen nahezu unlöslichen Feststoff, welcher sich in nachfolgenden Reduktionsversuchen als ungeeignet erwiesen hat. Deshalb wurde eine Eintopfsynthese entwickelt, mit der 115 mit KC8 in Gegenwart der jeweiligen Bisphosphane zu den cis-konfigurierten Diborenen (=BMes)2∙dmpe (123), (=BMes)2∙dmpm (126) und (=BMes)2∙dppm (127) umgesetzt werden konnte. Ebenfalls konnte ( B(Mes)Cl)2 (124) selektiv zum Diboren 123 reduziert werden, wobei kein signifikanter Unterschied in Selektivität oder Reaktionszeit beobachtet wurde. Das trans-konfigurierte Diboren (=B(Mes)∙PMe3)2 (122) wurde hingegen durch Reduktion des einfach-stabilisierten Diborans ( B(Mes)Br)2∙PMe3 (119) dargestellt. Anhand der Molekülstrukturen von 122, 123, 126 und 127 im Festkörper konnten die Abstände der B=B-Doppelbindungen (1.55(2)-1.593(2) Å) ermittelt werden. Dabei sind die Boratome nahezu planar von ihren Substituenten umgeben. Durch Analyse der P1–B1–B2-Winkel konnte zudem gezeigt werden, dass das trans-konfigurierte Diboren (=B(Mes)∙PMe3)2 (122) (116.6(3)°) und das cis-konfigurierte Diboren (=BMes)2∙dmpe (123) (118.7(1)°) nahezu ungespannte Spezies darstellen, wohingegen die Fünfring-Systeme (=BMes)2∙dmpm (126) (110.6(2)°) und (=BMes)2∙dppm (127) (110.4(1)°) eine signifikante Ringspannung aufweisen. Mit Hilfe von NMR-Spektroskopie, Cyclovoltammetrie, DFT-Rechnungen und UV-Vis-Spektroskopie konnte der Einfluss der Konfiguration, der Ringgröße und der Lewisbase auf die elektronischen Eigenschaften des Diborensystems untersucht werden. Hierbei wurde bei nahezu allen Parametern eine Tendenz in der Reihenfolge 122, 123, 126 zu 127 beobachtet. 127 nimmt aufgrund der phosphorgebundenen Phenyl-Substituenten eine gesonderte Rolle im Hinblick auf den HOMO-LUMO-Abstand ein, und es wurde für dieses Diboren erstmals eine Reduktionswelle im Cyclovoltammogramm beobachtet. Einige NMR-Signale der Diborene 122, 123, 126 und 127 wurden aufgrund des Spinsystems höherer Ordnung als virtuelle Signale detektiert, bei denen bei geeigneter Auflösung bzw. Signalüberlappung nur die Summe an Kopplungskonstanten ausgewertet werden konnte. Das HOMO ist bei allen Diborenen auf die B–B-Bindung lokalisiert und weist -Charakter auf. Versuche, analoge Diborene mit den Lewisbasen dppe, dppbe, dmpbe, (-PR2)2 (R = p MeOC6H4) oder HP(o-Tol)2 zu realisieren und vollständig zu charakterisieren, schlugen fehl. Lediglich die Diborene (=BMes)2∙dppe (132) und (=BMes)2∙dppbe (133) konnten spektroskopisch nachgewiesen werden. Auch durch reduktive Kupplung von Monoboranen mit chelatisierenden Phosphanen wurde versucht, Diborene darzustellen. Hierzu wurde zunächst die Adduktbildung von Monoboranen und Bisphosphanen untersucht. Während mit dppm kein Addukt nachgewiesen werden konnte, lieferte die Umsetzung von dmpe mit MesBBr2 das Bisaddukt 148. Als Nebenprodukt dieser Reaktion wurde jedoch auch das Boreniumkation 149 beobachtet, welches sich nicht zur reduktiven Kupplung zum Diboren 123 eignet. Auch bei der Umsetzung von MesBCl2 mit dmpe wurde neben dem Bisaddukt 151 eine zu 149 analoge Spezies gebildet. Die nachfolgende Reduktion von 148 mit KC8 in Benzol war mit der Bildung des Diborens (=BMes)2∙dmpe (123) verbunden, welches allerdings nicht isoliert werden konnte. Auch die Variation des Lösungsmittels, des Reduktionsmittels, der Zugabe, des organischen Restes und der Lewisbase ermöglichte keine selektivere Umsetzung bzw. eine Isolierung des Diborens. Im Gegensatz dazu konnte das Diboren 123 durch reduktive Kupplung des Bisadduktes 151 mit KC8 in Benzol dargestellt und isoliert werden. Im Vergleich zur Synthese von 123 durch Reduktion von ( B(Mes)Br)2 (115) benötigt dieser Ansatz jedoch deutlich längere Reaktionszeiten (zwanzig Tage statt einen Tag) und lieferte schlechtere Ausbeuten (31 % statt 54 %). Durch Umsetzung mit Wasser konnte (=B(Mes)∙PMe3)2 (122) selektiv in das Hydrolyseprodukt 154 überführt werden. Dieses Produkt konnte, aufgrund geringer Spuren Wasser im Reaktionsgemisch, ebenfalls durch freeze-pump-thaw Zyklen einer Lösung von 122 erhalten werden. Die Identität von 154 als gemischtes sp2-sp3-Diboran konnte mit Hilfe von NMR-Spektroskopie eindeutig erklärt werden. Zusätzlich konnten zwei weitere mögliche Zersetzungsprodukte durch Einkristallröntgen-strukturanalysen als ( B(Mes)(H)∙PMe3)2 (156) und MesB(OH)2 (155) identifiziert werden. Die Versuche die Liganden der Diborene (=B(Mes)∙PMe3)2 (122) und (=BMes)∙dppm (127) durch Mono- oder Bisphosphane bzw. IMe auszutauschen verlief nur für 122 mit IMe erfolgreich zum Diboren (=B(Mes)∙IMe)2 (49). Auch Cycloadditionsreaktionen unter Beteiligung der B=B-Doppelbindung wurden im Detail untersucht. Es hat sich jedoch gezeigt, dass weder eine [4+2]-Cycloaddition von Isopren (mit 122) oder Cyclopentadien (mit 122 oder 123), noch eine [2+2]-Cycloaddition von Acetylen (mit 127), 2-Butin (mit 123 oder 127), Bis(trimethylsilyl)acetylen (mit 122), Di-tert-butyliminoboran (mit 122), Acetonitril (mit 122), Cyclohexen (mit 122), Aceton (mit 127) oder Methacrolein (mit 123 oder 127), sowie eine [2+1]-Cycloaddition von Kohlenstoffmonoxid (mit 123 oder 127) oder Ethylisonitril (mit 127), noch eine [3+2]-Cycloaddition von Trimethylsilylazid (mit 123 oder 127) möglich ist. Lediglich mit 2-Butin konnte eine selektive Reaktion von (=B(Mes)PMe3)2 (122) zum Phosphan-stabilisierten 1,3-Diboreten 157 herbei geführt werden. Diese ungewöhnliche Reaktion beinhaltet formal die Spaltung der C≡C-Dreifachbindung, wobei als möglicher Reaktionsmechanismus eine [2+2]-Cycloaddition zum 1,2-Diboreten mit nachfolgender Isomerisierung zum 1,3-Derivat 157 postuliert werden konnte. DFT-Rechnungen an 157 zufolge besitzt das HOMO  artigen Charakter und ist über die beiden Boratome und die CMe-Einheit delokalisiert. Demnach konnte 157 als homoaromatisches System mit zwei  Elektronen identifiziert werden, was durch die negativen NICS-Werte (NICS(0) = –20.62; NICS(1) = –6.27; NICS(1)` = –14.59) und den unterschiedlich langen B–C-Bindungen des Vierrings in der Molekülstruktur im Festkörper (B–C1: 1.465(4) bzw. 1.486(4) Å; B–C3: 1.666(4) bzw. 1.630(4) Å) weiter bestätigt wurde. Eine Einkristallröntgen-strukturanalyse belegte zudem eine Butterfly-Struktur des 1,3-Diboretens 157 mit einem Kippwinkel  = 34.4°. Die Bindung zwischen Phosphoratom und dem Kohlenstoffatom im Vierring liegt mit 1.759(2) Å im Bereich einer dativen Bindung. Durch Basenabstraktion mit PPB konnte das stabilisierte Diboreten 157 in das basenfreie 1,3-Diboreten 164 überführt werden, welches jedoch nicht isoliert werden konnte. Die NMR-spektroskopischen Parameter von 164 belegen hingegen eindeutig dessen Natur. Neben Cycloadditionsreaktionen wurde auch das Redoxverhalten des Diborens (=BMes)2∙dppm (127) untersucht. So verlief die Umsetzung von 127 mit Iod hochselektiv zu einer in Lösung vermutlich diamagnetischen Spezies (NMR-aktiv/ESR-inaktiv). Durch Bestimmung der Molekülstruktur im Festkörper stellte sich jedoch heraus, dass diese Umsetzung zu einer Oxidation der elektronenreichen B=B-Doppelbindung unter Bildung des Radikalkations 166 führte (B–B: 1.633(3) Å). Somit wurde eine signifikante Diskrepanz zwischen kristallographischen und spektroskopischen Befunden beobachtet, weshalb die Natur des Reaktionsproduktes in Lösung nicht eindeutig ermittelt werden konnte. Aus diesem Grund wurde (=BMes)2∙dppm (127) auch mit dem Einelektronenoxidationsmittel [Cp2Fe][PF6] umgesetzt und ESR-spektroskopisch analysiert. Hierbei konnte im ESR-Spektrum das typische 1:2:1-Triplett bei giso = 2.0023 mit A(31P) = 21 G (58 MHz) für ein derartiges Radikalkation detektiert werden. Die Reduktion von 127 mit Lithium und Natriumnaphthalid lieferte entweder keinen Umsatz (Lithium) oder eine unselektive Zersetzung des Diborens (Natriumnaphthalid). Die Umsetzung mit KC8 verlief jedoch äußerst selektiv zu einer neuen borhaltigen Spezies (11B:  = 22.4 ppm; 31P:  = 18.6 ppm), welche sich in Anwesenheit des Reduktionsmittels jedoch als nicht stabil erwies und somit nicht isoliert werden konnte. Auch der Versuch durch einen Kationenaustausch mit Li[BArCl4] ein stabileres Produkt zu erhalten schlug fehl. Im Gegensatz dazu führte die Umsetzung der Diborene (=B(Mes)∙PMe3)2 (122) und (=BMes)2∙dppm (127) mit Cu(I)Cl zur Bildung der Kupferkomplexe 167 und 168, deren Molekülstrukturen im Festkörper vergleichbar zu dem analogen NHC-stabilisierten Kupferkomplex 63 sind (B–B: 1.626(3) Å (167); 1.628(3) Å (168); 1.633(4) Å (63)). Beide Spezies zeigen hierbei erwartungsgemäß ein interessantes photophysikalisches Verhalten, wobei dieses lösungsmittelunabhängig ist und Fluoreszenzprozesse für die Emission verantwortlich sind. Durch analoge Umsetzung von 127 mit Ag(I)Cl konnte der entsprechende Silberkomplex 169 generiert und NMR-spektroskopisch nachgewiesen werden (11B:  = 26.7 ppm; 31P:  = 5.4 ppm). 169 erwies sich jedoch als nicht stabil und zersetzte sich im Verlauf der Aufarbeitung zu der bekannten tetranukleare Silberverbindung 170. Im Rahmen der Reaktivitätsstudien wurden die Diborene 122, 123 und 127 auch noch mit einer Reihe weiterer Reagenzien wie Catecholboran (mit 122 oder 127), THF∙BH3 (mit 127), Brom (mit 127), Iodchlorid (mit 123), ZnCl2 (mit 127), GaCl3 (mit 127), Na[BArF4] (mit 122), ( SPh)2 (mit 127), HCl (127), Wasserstoff (mit 122), Natriumhydrid (mit 127) und Methanol (mit 127) versetzt. Hierbei konnte entweder keine Reaktion oder Zersetzung beobachtet werden. Lediglich bei der Umsetzung von 127 mit Methanol konnte das Zersetzungsprodukt Mesityldimethoxyboran (171) eindeutig charakterisiert werden. N2 - One part of the present thesis focused on the synthesis and characterization of novel Lewis base borane adducts. In addition to NHCs (IMe, IMeMe), the monophosphines PEt3 and PMe3 were used as the stabilizing Lewis base. However, not only the Lewis base was varied, but also the boron-bound organic substituent (phenyl, n-butyl) in order to evaluate its influence on the electronic structure of the adducts. Thus, the NHC-stabilized boranes IMe∙B(nBu)Cl2 (99) und IMeMe∙B(Ph)Cl2 (100) were isolated in good yields and could be fully characterized. Including the known adduct IMe∙B(Ph)Cl2 (98), a reasonable comparison of the analytical data of the three adducts became feasible. While the structural parameters of 98, 99 and 100 in the solid state strongly resemble each other, rather long B Ccarbene bonds (98: 1.621(3) Å; 99: 1.619(5) Å; 100: 1.631(3) Å) illustrated the dative character of these interactions. Similarly, the phosphine borane adducts Et3P∙B(Ph)Cl2 (112), Et3P∙B(nBu)Cl2 (113), and Me3P∙B(Ph)Cl2 (114) showed quite long dative B–P bonds (112: 1.987(2) Å; 113: 1.980(2) Å; 114: 1.960(3) Å), which is however significantly shorter in Me3P∙B(Ph)Cl2 (114) as those of the PEt3 adducts 112 and 113. Since the lewis basicity of PMe3 is lower than that of PEt3, this finding is presumably associated with the smaller sterical demand of the PMe3 ligand. Attempts to reduce the phosphine borane adducts 112, 113 and 114 by Na2[C14H12] consistently proceeded with low selectivities and did not result in the generation of borirane species. The same result was obtained for the reduction of the NHC-stabilized borane IMe∙B(Dur)Cl2. By contrast, the adducts 98, 99 and 100 featuring NHC ligands in combination with smaller organic moieties were successfully converted selectively into the boriranes IMe∙B(Ph)(C14H12) (101), IMe∙B(nBu)(C14H12) (102) and IMeMe∙B(Ph)(C14H12) (103) by reaction with Na2[C14H12]. Here, the boriranes were isolated as racemic mixtures with trans-configured phenyl groups at the C2B rings. Due to hindered rotation at the B Ccarbene-bond, the signals of the NHC in the 1H NMR-spectrum broadened and split, respectively. The molecular structures of 101, 102 and 103 in the solid state were also determined by X-ray diffraction, and were shown to differ only marginally. Despite the presence of significant molecular ring strain, the NHC-stabilized boriranes 101, 102 and 103 are surprisingly stable towards air and moisture. While no reaction was observed with [Pt(PCy3)2], treatment of IMe∙B(Ph)(C14H12) (101) with [Pt(PEt3)3] resulted in a slow and incomplete C–H bond activation process at the NHC backbone to afford the platinum(II) complex 105. Due to hindered rotation towards the B–Ccarbene bond, a racemic mixture of two rotameres was observed, which showed two sets of signals in the NMR spectra. In the 1H NMR spectrum the chemical shift of the platinum-bound hydride of 105 further confirmed the vinyl-like nature of the borirane ligand featuring a trans-effect. The identity of 105 was also substantiated in the solid state X-ray diffraction, while the poor quality of the crystallographic data prevented any discussion of the structural parameters. As expected, IMeMe∙B(Ph)(C14H12) (103) did not react with [Pt(PEt3)3], because of the lack of C–H-moieties within the NHC backbone. By contrast, the realization of base-free boriranes either by Lewis base abstraction reactions from the NHC-stabilized borirane 101 using strong Lewis acids (PPB, B(C6F5)3, AlCl3, [Lu∙BCl2][AlCl4]) or by direct reduction of free dihaloboranes with Na2[C14H12] was not successful. While the reactions with Lewis acids either suffered any visible conversion or showed complete decomposition of the borirane precursors, the reductive approach was hampered by the choice of an adequate reaction medium in which the reductant can be generated. Thus, most of the suitable polar solvents reacted with the free boranes themselves, and only DME appeared to be practical. However, reaction of DurBCl2 with Na2[C14H12] in DME did not afford a borirane species. Instead, borolane 109 with syndiotactically-arranged phenyl groups was formed, which was fully characterized in solution, and in the solid state. Thereby a trigonal-planar boron atom was observed. Another main part of the present thesis dealt with the synthesis and reactivity of phosphine-stabilized diborenes. Initially, it was demonstrated that the sterically demanding diphosphine dppe does not form an adduct with ( B(Mes)Br)2 (115) at room temperature, while at –40 °C dppe, a mono- and a bisadduct were evident in the 31P NMR spectrum. By contrast, reaction of 115 with dmpe provided an almost insoluble solid, which however, proved unsuitable in subsequent reduction experiments. Consequently, a simple one-pot protocol was developed, which enabled the isolation of the cis-configured diborenes (=BMes)2∙dmpe (123), (=BMes)2∙dmpm (126) and (=BMes)2∙dppm (127) by reduction of 115 with KC8 in the presence of the respective diphosphines. Also ( B(Mes)Cl)2 (124) could be reduced selectively to diborene 123, whereat no significant difference was observed in the selectivity or the reaction time. The related trans-configured diborene (=B(Mes)∙PMe3)2 (122) was realized by reduction of the mono-stabilized diborane ( B(Mes)Br)2∙PMe3 (119) with KC8 in the presence of an excess PMe3. Analysis of the structural parameters of 122, 123, 126 and 127 in the solid state revealed typical B–B distances (1.55(2)-1.593(2) Å) for B=B double bond systems. Thereby all boron atoms are effectively planar. In addition, large P1–B1–B2 bond angles for the trans-configured diborene 122 (116.6(3)°) and the cis-configured diborene 123 (118.7(1)°) suggested rather unstrained species, while the five membered ring systems 126 (110.6(2)°) and 127 (110.4(1)°) feature significant ring strain. The influence of the configuration, the ring size, and the Lewis base on the electronic properties of the diborene systems was further evaluated in detail by NMR spectroscopy, cyclic voltammetry, DFT calculations, and UV-visible spectroscopy. Here, a tendency was observed in the sequence 122, 123, 126 to 127 for all parameters. Thereby 127 is an exceptional compound, due to the phosphorous-bound phenyl moieties, in regard to the HOMO-LUMO gap and the first reduction wave was observed for this diborene in a cyclic voltammogram. Some NMR signals of the diborenes 122, 123, 126 and 127 were detected as virtual signals as a result of the spin systems. Here, only the sum of the coupling constant can be determined by a suitable resolution of the signals. The HOMO of all diborenes is located on the B–B-bond and possesses  character. All attempts to prepare and fully characterize analogous diborenes featuring the Lewis bases dppe, dppbe, dmpbe, ( PR2)2 (R = p-MeOC6H4), and HP(o-Tol)2 failed so far, and only the diborenes (=BMes)2∙dppe (132) and (=BMes)2∙dppbe (133) could be generated and identified spectroscopically in solution. Subsequently, we studied an alternative approach to realize diborenes by reductive coupling of monoboranes with chelating phosphine ligands. Initially, we focused on the adduct formation process between monoboranes and diphosphines. While no adduct was formed with dppm, reaction of MesBBr2 with dmpe afforded the bisadduct 148. However, the borenium cation 149 was observed as a side product of this transformation, which itself has proven unsuitable for the reductive coupling to yield diborene 123. Similarly, reaction of MesBCl2 with dmpe afforded a related cationic species in addition to the bisadduct 151. Subsequent reduction of 148 with KC8 in benzene led to the formation of (=BMes)2∙dmpe (123), which however, could not be isolated by this route. Variation of the solvent, the reductant, the order of addition, the organic moiety, and the Lewis base exerted no influence on the selectivity of the reduction process or the possibility of isolation of the diborene. Only reduction of 151 with KC8 in benzene facilitated the isolation of pure (=BMes)2∙dmpe (123). However, the reductive coupling approach required significantly longer reaction times (twenty days) and provided significantly lower yields (31 %) than the synthesis of 123 by reduction of ( B(Mes)Br)2 (one day; 54%). Reaction of (=B(Mes)∙PMe3)2 (122) with water selectively afforded the hydrolysis product 154, which had already been observed after a few freeze-pump-thaw cycles, due to the presence of trace amounts of water in the reaction mixture. The nature of 154 as mixed sp2-sp3 diborane was clearly verified by NMR spectroscopy. Two other possible decomposition products were also identified by X-ray diffraction as ( B(Mes)(H)∙PMe3)2 (156) and MesB(OH)2 (155). Experiments of ligand exchange of (=B(Mes)∙PMe3)2 (122) and (=BMes)∙dppm (127) with mono-, diphosphines or IMe are only successful for 122 with IMe to the diborene (=B(Mes)∙IMe)2 (49). Subsequently, cycloaddition reactions involving the B=B double bond system were studied in detail. Here, we could show that neither [4+2]-cycloaddition with isoprene (122) or cyclopentadiene (122/123), [2+2]-cycloaddition with acetylene (127), 2-butyne (123/127), bis(trimethylsilyl)acetylene (122), di-tert-butyliminoborane (122), acetonitrile (122), cyclohexene (122), acetone (127), or methacrolein (123/127), [2+1]-cycloaddition with CO (123/127) or ethylisonitrile (127), nor [3+2]-cycloaddition reactions with trimethylsilylazide (123/127) are feasible. Only 2-butyne showed a selective reaction when treated with (=B(Mes)∙PMe3)2 (122) to afford the phosphine-stabilized 1,3-diboretene 157. This uncommon transformation formally involves cleavage of the C≡C-triple bond. A plausible mechanism combines the initial formation of the 1,2 diboretene and subsequent isomerisation to the more stable 1,3 diboretene derivative 157. According to DFT calculations, 157 possesses a -type HOMO, which is delocalized over the two boron atoms and the CMe moiety. Consequently, 157 features a homoaromatic system with two -electrons, which was verified by its negative NICS values (NICS(0) = –20.62; NICS(1) = –6.27; NICS(1)` = –14.59) and the differences in the B–C-bond lengths in the molecular structure in the solid state (B–C1: 1.465(4), 1.486(4) Å; B–C3: 1.666(4), 1.630(4) Å). Furthermore, an X-ray diffraction study on 157 revealed a butterfly structure with a tilt angle  of 34.4°. The bond between the phosphorous and the carbon atom in the ring possesses dative character (1.759(2) Å). Subsequent reaction of 157 with PPB enabled the generation of the base-free 1,3-diboretene 164, which could not be isolated. However, the NMR spectroscopic parameters of 164 clearly verified its base-free nature. In addition to cycloaddition reactions, we also studied the redox properties of (=BMes)2∙dppm (127). Thus, reaction of 127 with iodine proceeded highly selective to presumably afford a diamagnetic species in solution (NMR-active/EPR-inactive). However, determination of the molecular structure showed the presence of the radical cation 166 (B–B: 1.633(3) Å), which has been formed by one-electron oxidation of the B=B double bond of 127. Thus, we observed a significant discrepancy between the spectroscopic and the crystallographic results, for which reason the nature of the primary reaction product in solution remains unknown so far. Accordingly, 127 was also oxidized selectively by reaction with the one-electron oxidant [Cp2Fe][PF6], while the reaction mixture was characterized by EPR spectroscopy. Here, a typical 1:2:1 triplet at giso = 2.0023 with A(31P) = 21 G (58 MHz) was found in the EPR spectrum, which strongly suggested the generation of a radical cationic species (172). Reduction of 127 by lithium or sodium naphthalenide did not afford either a reaction (lithium) or an unselective decomposition of the diborene (sodium naphthalenide). Thus, reduction with KC8 initially indicated a selective transformation to afford a new boron-containing species (11B:  = 22.4 ppm; 31P:  = 18.6 ppm), which however, readily decomposed during work-up in the absence of the reductant. Also the attempt to stabilize the reduction product by exchange of the cation with Li[BArCl4] was not successful. By contrast, reaction of (=B(Mes)∙PMe3)2 (122) and (=BMes)2∙dppm (127) with Cu(I)Cl led to the formation of the copper complexes 167 and 168, respectively, which feature solid state structures comparable to that of the analogous NHC-stabilized copper diborene complex 63 (B–B: 1.626(3) Å (167); 1.628(3) Å (168); 1.633(4) Å (63)). As expected, both species exhibit interesting photophysical properties, which caused by fluorescence processes. The photophysical data of both complexes are independent from the solvent and the emission is a result of fluorescent processes. The analogous silver complex 169 could also be generated by reaction of 127 with Ag(I)Cl and identified spectroscopically in solution (11B:  = 26.7 ppm; 31P:  = 5.4 ppm). However, all attempts to isolate this species failed, and 169 consistently decomposed during work-up to afford the known tetranuclear silver complex 170. As part of the reactivity studies, diborenes 122, 123 and 127 were also reacted with numerous other reagents such as catecholborane (122/127), THF∙BH3 (127), bromine (127), iodine monochloride (123), ZnCl2 (127), GaCl3 (127), Na[BArF4] (122), ( SPh)2 (127), hydrogen (122), HCl (127), NaH (127) and MeOH (127). However, either no reaction or decomposition of the diborenes was noticed. Only for the reaction of 127 with MeOH the decomposition product MesB(OMe)2 (171) could be assigned. KW - Bor KW - Lewis-Addukt KW - Reduktion KW - Phosphane KW - NHCs KW - Homoaromatisches System KW - Diborene KW - Borirane Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135558 ER - TY - THES A1 - Brückner, Tobias Walter T1 - Lewisbasenstabilisierte Bor-Bor-Mehrfachbindungssysteme - Darstellung und Reaktivitätsstudien T1 - Lewis base stabilized boron-boron multiple binding systems - Synthesis and reactivity N2 - Diese Dissertation befasst sich mit der Darstellung und Reaktivität von Lewisbasenstabilisierten Bor-Bor-Mehrfachbindungssystemen. Besonderes Augenmerk lag hierbei auf der Aktivierung von Element-Wasserstoff-Bindungen von Boranen, Aminen, Silanen und Phosphanen durch NHC-stabilisierte Diborine. Des Weiteren wurde die Aktivierung von Bor-Bor-, sowie Phosphor-Phosphor-Einfachbindungen untersucht. Zusätzlich wurde die Reaktivität gegenüber Carbenen und aromatischen Stickstoffbasen näher beleuchtet. N2 - This dissertation deals with the representation and reactivity of Lewis base-stabilized boron-boron multiple bond systems. Special attention was paid to the activation of element-hydrogen bonds of boranes, amines, silanes and phosphanes by NHC-stabilized diborins. Furthermore, the activation of boron-boron and phosphorus-phosphorus single bonds was investigated. In addition, the reactivity towards carbenes and aromatic nitrogen bases was investigated. KW - Diborine KW - Bor KW - boron KW - Diborine KW - Diborene KW - Lewisbasen KW - diborynes KW - diborenes KW - lewis bases KW - Bor KW - Mehrfachbindung KW - Lewis-Base Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213479 ER - TY - THES A1 - Auerhammer, Dominic T1 - Synthese und Reaktivität von niedervalenten Bor(I)-Verbindungen T1 - Synthesis and Reactivity of Low-valent Boron(I) Compounds N2 - Kapitel 1 Darstellung und Reaktivität des Cyanoborylens (3) Im Rahmen dieser Arbeit ist es gelungen, in einer dreistufigen Synthese das erste basenstabilisierte Cyanoborylen [(cAAC)B(CN)]4 (3) in hohen Ausbeuten darzustellen (Schema 64). Hervorzuheben ist hierbei, dass dieser Ansatz keine „klassische“ Metallborylen- Vorstufe benötigt, weshalb wenig Synthesestufen und bessere Ausbeuten erreicht werden konnten. Schema 64. Darstellung von [(cAAC)B(CN)]4 (3). Eine erste Besonderheit von [(cAAC)B(CN)]4 (3) ist, dass dieses das einzige bislang bekannte Borylen darstellt, welches eine Stabilisierung durch Oligomerisierung erfährt und somit in Folgereaktionen nicht erst in situ generiert werden muss. Die elektronische Untersuchung von 3 durch Cyclovoltammetrie hat zudem gezeigt, dass 3 ein Redoxpotential von E1/2 = −0.83 V besitzt und somit eine chemische Oxidation zu neuen Verbindungen führen könnte, was durch Umsetzung mit AgCN demonstriert wurde (Schema 65). Hierdurch konnte [(cAAC)B(CN)3] (4) erfolgreich dargestellt und vollständig charakterisiert werden. [(cAAC)B(CN)3] (4) ist erst das zweite strukturell untersuchte basenstabilisierte Tricyanoboran. Zudem wurde die Reaktivität von [(cAAC)B(CN)]4 (3) gegenüber verschiedenen Lewis-Basen untersucht. Ziel hierbei war es, das oligomere Strukturmotiv aufzubrechen und gemischte zweifach basenstabilisierte Borylene zu realisieren. Hierbei konnte eine deutliche Abhängigkeit von der Basenstärke und dem sterischen Anspruch der Lewis-Base aufgedeckt werden. So hat sich gezeigt, dass Lewis-Basen wie THF, MeCN, Pyridin und PEt3 zu schwach sind, um die oligomere Struktur aufzubrechen. Im Gegensatz dazu führten die Umsetzungen von [(cAAC)B(CN)]4 (3) mit den starken Lewis-Basen cAAC bzw. IPr zu keinerlei Umsatz, was vermutlich auf einen zu großen sterischen Anspruch zurückzuführen ist. Dementsprechend verlief die Umsetzung von [(cAAC)B(CN)]4 (3) mit der starken und sterisch nicht anspruchsvollen Base IMeMe erfolgreich und lieferte [(cAAC)B(CN)(IMeMe)] (5) in guten Ausbeuten (Schema 65). Schema 65. Umsetzung von [(cAAC)B(CN)]4 (3) mit AgCN und IMeMe. Während [(cAAC)B(CN)(PEt3)] (6) nicht durch Umsetzung von [(cAAC)B(CN)]4 (3) mit PEt3 zugänglich ist, konnte dieses jedoch auch durch Reduktion von [(cAAC)BBr2(CN)] (2) in Gegenwart von PEt3 erhalten werden (Schema 66). [(cAAC)B(CN)(PEt3)] (6) stellt hierbei das das bislang erste bekannte Phosphan-stabilisierte Borylen dar. Schema 66. Kristallstruktur und Synthese von [(cAAC)B(CN)(PEt3)] 6. Kapitel 2 Reaktivität von 3 gegenüber Chalcogenen und Chalcogeniden In weiterführenden Studien wurde zudem die Reaktivität von 3 gegenüber Chalcogenen und Chalcogeniden im Detail untersucht. Durch Verwendung der entsprechenden Stöchiometrie konnte 3 hierbei selektiv zu den Bor-Chalcogen-Heterocyclen 9, 10, 13-15 umgesetzt werden (Schema 67). Schema 67. Darstellung von 9, 10, 13-15. Diese Ergebnisse wurden anschließend mit der Reaktivität des Konstitutionsisomers LII verglichen. In diesem Zusammenhang konnten 11 und 12 durch stöchiometrische Reaktionsführung dargestellt werden (Schema 68), welche nachfolgend in die bereits erwähnten Verbindungen 9 und 10 überführt werden konnten (Schema 69). Schema 68. Darstellung von 11 und 12. Schema 69. Darstellung von 9 und 10 aus 11 bzw. 12. Des Weiteren konnte 3 erfolgreich mit Ph2Se2, Me2Se2 und Ph2S2 zu 16-18 umgesetzt werden (Schema 70), wobei 16 und 18 auch durch Umsetzung von LII mit Ph2Se2 bzw. Ph2S2 zugänglich sind (Schema 70). Schema 70. Synthese von 16-18. Das tetramere Borylen 3 und das Diboren LII zeigen ähnliche Reaktivitäten gegenüber elementaren Chalcogenen sowie Dichalcogeniden. Lediglich die Darstellung der dreigliedrigen B2E-Heterocyclen 11 und 12 gelingt selektiv nur ausgehend von LII. Kapitel 3 Darstellung und Reaktivität des Borylanions (19) Ein weiterer Aspekt dieser Arbeit beschäftigte sich mit der Synthese und Reaktivität des Borylanions 19, eines der wenigen bekannten nukleophilen Borspezies. Der Zugang zu 19 durch Deprotonierung von 1 (Schema 71) ist hierbei besonders bemerkenswert, da es eine bis dato kaum bekannte bzw. verwendete Methode ist, da borgebundene Wasserstoffatome in der Regel hydridischer Natur sind, weshalb eine Deprotonierung normalerweise nicht möglich ist und nur für zwei weitere Systeme beschrieben ist. Hierzu zählen die Synthese des Dianions XLVII[6a, 6b] und die Synthese des Borylanions XLVIII[45]. Eine Gemeinsamkeit dieser drei Spezies ist die Gegenwart elektronenziehender Cyanidsubstituenten welche eine Umpolung der B‒H-Bindung bedingen, wodurch eine Deprotonierung erst ermöglicht wird. Schema 71. Synthese von 19. Um diesen Sachverhalt genauer zu untersuchen, wurden Rechnungen durchgeführt und die partiellen Ladungen (NBO) des borgebunden Wasserstoff an BH3, [(cAAC)BH3] und 1 auf dem BP86/def2-SVP-Niveau berechnet (Abbildung 53). Abbildung 53. Teilladungen (NBO) von BH3, [(cAAC)BH3] und 1 (BP86/def2-SVP). Durch Austausch eines der Hydride in [(cAAC)BH3] durch eine Cyanogruppe werden die borgebunden Wasserstoffe in 1 deutlich protischer (+0.038, +0.080), wobei schon durch Koordination des cAAC-Liganden an BH3 zwei der vorher hydridischen Wasserstoffe (BH3: partielle Ladung: –0.101) erheblich positiver geladen wird (+0.050). Der nukleophile Charakter von 19 wurde anschließend durch Reaktivitätsstudien untersucht. So führte die Umsetzung von 19 mit [(PPh3)AuCl] zur Bildung von [(cAAC)BH(CN)(AuPPh3)] (20) (Schema 72). Während die Umsetzung von 19 mit Tritylderivaten keine isolierbare Verbindung lieferte, konnte durch Umsetzung mit den schweren, weichen Homologen R3ECl (R = Ph, E = Ge, Sn und Pb; R = Me, E = Sn) eine ganze Reihe von Boranen dargestellt werden (Schema 72). Schema 72. Synthese von 20-24. Die Umsetzung der entsprechenden Silylderivate R3SiCl war hingegen mit einem anderen Reaktionsverlauf verbunden (Schema 73). Schema 73. Synthese von 25-28. Demnach erfolgt die Reaktion von 19, im Gegensatz zu den höheren Homologen, mit den Silylderivaten nicht am weichen, nukleophilen Borzentrum sondern am härteren Cyanostickstoffatom. Demzufolge wurden hierbei zunächst die Silylisonitrilverbindungen 25 und 26 gebildet, wobei 25 labil ist und innerhalb kürzester Zeit in 27 übergeht. Im Gegensatz dazu konnte 28 nur durch Bestrahlung von 26 dargestellt werden. Die Bindungsverhältnisse in 26 wurden zudem auch durch DFT-Rechnungen auf dem BP86/def2-SVP-Niveau untersucht. Die Analyse der Kohn–Sham MOs offenbarte hierbei ein HOMO mit π-Bindungscharakter über die gesamte CcAAC‒B‒CCN-Einheit mit angrenzendem π-Antibindungscharakter über die C‒NEinheiten beider Donorliganden (Abbildung 54). Abbildung 54. Gemessene (links) und berechnete (mitte) Struktur und HOMO (rechts) von 26. Während die Umsetzung von 26 mit Cu(I)Cl dessen hohes Reduktionsvermögen verdeutlichte, führte die Umsetzung mit Lithium in THF zur Bildung des Borylanions 19 und LiSiPh3. Die Reaktion von 26 mit BH3∙SMe2 lieferte hingegen quantitativ [(cAAC)BH3] (29), während bei Umsetzung mit Ph3SnCl quantitativ 22 gebildet wurde (Schema 74). Dieses sehr unterschiedliche Reaktionsverhalten rechtfertigt eine Beschreibung von 26 sowohl als ein Silylisonitrilborylen, als auch eine zwitterionische Silyliumboryl-Spezies. Schema 74. Ambiphile Reaktivität von 26 als neutrales Silylisonitrilborylen (A) oder als zwitterionische Silyliumboryl-Spezies (B). Kapitel 4 Darstellung und Reaktivität von [(cAAC)BH3] (29) Da 1 selektiv deprotoniert werden kann und [(cAAC)BH3] (29) Rechnungen zufolge ebenfalls borgebundene Wasserstoffe mit protischem Charakter besitzt, wurde versucht, diese Reaktivität auf 29 zu übertragen. Demzufolge wurde im Rahmen dieser Arbeit [(cAAC)BH3] (29) dargestellt und dessen Reaktivität gegenüber anionischen (Schema 75) und neutralen (Schema 76) Nukleophilen untersucht. Es hat sich jedoch gezeigt, dass die Umsetzung von [(cAAC)BH3] (29) mit Lithiumorganylen nicht zur Deprotonierung führt, sondern zur Bildung der Lithiumborate 30, 32 und 34, unabhängig von der Hybridisierung des Lithiumorganyls (sp3: LiNp, sp2: LiMes, sp: LiCCPh). Der Reaktionsmechanismus wurde durch DFT-Rechnungen untersucht (Abbildung 47). Diese zeigen eindeutig, das [(cAAC)BH3] (29) in einem Gleichgewicht mit dem entsprechenden Boran [(cAAC‒H)BH2] steht. Bei der stark exergonischen nukleophilen Addition der entsprechenden Basen wird [(cAAC‒H)BH2] aus dem Gleichgewicht entfernt (30: −29.6 kcal∙mol‒1; 32: ‒12.4 kcal∙mol‒1) und die Lithiumborate 30 und 32 gebildet. Diese Lithiumborate gehen dann durch Reaktion mit Me3SiCl in die entsprechenden cAACBoranaddukten 31, 33 und 35 über (Schema 75). Schema 75. Synthese von 30-35. Diese zweistufige Synthese ist deshalb bemerkenswert, da dies einer ungewöhnlichen Substitution an einem sp3-Boran gleichkommt. Des Weiteren wurde die Reaktivität von [(cAAC)BH3] (29) gegenüber neutralen Lewis-Basen untersucht. So konnte bei der Umsetzung mit cAAC Verbindung 36 und bei der Umsetzung mit Pyridin Verbindung 37 erhalten werden (Schema 76). Schema 76. Synthese von 36 und 37. Der Mechanismus der Bildung von 36 und 37 wurde ebenfalls durch DFT-Rechnungen untersucht, welche auf eine reversible Reaktion des Pyridin-Addukts 37 hindeutet. Dies konnte auch experimentell bestätigt werden. Im Gegensatz dazu ist die Bildung von 36 irreversibel. Kapitel 5 Darstellung und Vergleich neuer Diborene Im Rahmen dieser Arbeit ist es zudem gelungen, eine Reihe an NHC-Boranaddukten (42-50) darzustellen und diese zum Großteil in die entsprechenden Diborene (51-58) zu überführen (Schema 77). Schema 77. Synthese der NHC-Boranaddukte 42-50 sowie deren Umsetzung zu den Diborenen 51-58. Die meisten Verbindungen konnten hierbei vollständig charakterisiert und somit die NMR-spektroskopischen und strukturellen Daten miteinander verglichen werden. Die 11B-NMRSignale von 51-58 wurden in einem engen Bereich (20.2 bis 22.5 ppm) beobachtet, welcher sich mit dem von X und XI (21.3 und 22.4 ppm)[17] deckt. Im Festkörper weisen die Diborene einen B‒B-Abstand zwischen 1.576(4) Å (51) und 1.603(4) Å (54) auf, ohne dass ein Trend erkennbar ist. Dieser Bereich ist zudem nahezu identisch mit bereits bekannten IMe-stabilisierten 1,2-Diaryldiborenen (1.585(4) bis 1.593(5) Å).[16-17] Einige dieser Diborene sind durch die entsprechende Wahl des Substitutionsmusters sehr labil und konnten deshalb nicht isoliert werden. Es ist dennoch gelungen UV-vis-spektroskopische Daten von 51, 52, 57 und 58 zu erhalten (Abbildung 55). Abbildung 55. UV-vis-Absorptionsspektren von 51, 52, 57 und 58. Die genaue Analyse der UV-vis-Spektren von 51, 52, 57 und 58 offenbart eine gewisse Abhängigkeit der Maxima vom Substitutionsmuster. Der Vergleich der Diborene 51-58 hat gezeigt, dass das Substitutionsmuster einen entscheidenden Einfluss auf die Lage der Grenzorbitale hat, was die Eigenschaften der Diborene deutlich verändert. So führte die Einführung einer Diphenylaminogruppe am Thienylrest zur Aufhebung der Koplanarität der Th‒B=B‒Th-Ebene, weshalb die entsprechenden Spezies durch die fehlende π-Konjugation sehr labil sind. Diese Beeinflussung der Koplanarität konnte bereits in kleinem Ausmaß bei der Substitution durch eine Me3Si-Gruppe beobachtet werden. Auch der Einfluss unterschiedlicher NHCs wurde untersucht. Während die Einführung von IMeMe kaum einen Einfluss auf die Absorptionsmaxima zeigt, führt die Verwendung von IPr zu einer deutlichen Verschiebung. Als das stabilste Diboren erwies sich im Rahmen dieser Untersuchung das [(IMe)BTh)]2 (X). N2 - Chapter 1 Synthesis and reactivity of cyanoborylene 3 In the context of this work, a successful high-yielding three-step synthesis of the first basestabilised cyanoborylene [(cAAC)B(CN)]4 (3) was developed (Scheme 1). It should be emphasized that this approach does not involve a „classical“ metal borylene precursor, which is why fewer synthetic steps and better yields could be achieved. Scheme 1. Synthesis of the tetrameric borylene [(cAAC)B(CN)]4 (3). The first notable feature of borylene 3 is its unique self-stabilising nature via oligomerization, which means that it does not have to be generated in situ. The electronic properties of 3 were investigated by cyclic voltammetry, showing an oxidation wave at E1/2 = −0.83 V, implying that chemical oxidation could lead to new compounds. This was demonstrated by the reaction with AgCN (Scheme 2) which yielded [(cAAC)B(CN)3] (4). Compound 4 is only the second structurally characterized base-stabilized tricyanoborane. Additionally, the reactivity of 3 with different Lewis bases was investigated. The aim was to break up the tetrameric structural motif and obtain mixed base-stabilized borylenes. This study demonstrated dependence on the strength and steric demands of the Lewis base. Weak Lewis bases such as THF, MeCN, pyridine and PEt3 proved too weak to break up the tetrameric structure. Similarly, the reaction of 3 with strong Lewis bases such as cAAC or IPr remained unsuccessful, probably due to a too large steric hindrance. In contrast, the reaction of 3 with the strong and sterically non-demanding base IMeMe successfully yielded the mixed base borylene [(cAAC)B(CN)(IMeMe)] (5) in high yields (Scheme 2). Scheme 2. Reactions of [(cAAC)B(CN)]4 (3) with AgCN and IMeMe. While [(cAAC)B(CN)(PEt3)] (6) could not obtained by reaction of 3 with PEt3, this could be achieved by reducing [(cAAC)BBr2(CN)] (2) in the presence of excess PEt3 (Scheme 3). [(cAAC)B(CN)(PEt3)] (6) represents the first known phosphine-stabilized borylene. Scheme 3. Synthesis of [(cAAC)B(CN)(PEt3)] 6. Chapter 2 Reactivity of 3 toward chalcogens and chalcogenides In further studies, the reactivity of 3 towards elemental chalcogens was investigated in detail. By using the appropriate stoichiometry, 3 could be selectively converted to the four-, five- or six-membered diborachalcogen heterocycles 9, 10, 13-15 (Scheme 4). Scheme 4. Synthesis of 9, 10, 13-15 from 3. These results were then compared with the reactivity of the constitutional isomer of 3, diborene LII towards elemental chalcogens. In this context, the 3-membered B2E heterocycles 11 and 12 could be prepared by stoichiometric reaction (Scheme 5). These could subsequently be converted into the four-membered B2E2 heterocycles 9 and 10 already mentioned (Scheme 6). Scheme 5. Synthesis of 11 und 12 from diborene LII. Scheme 6. Synthesis of 9 and 10 by ring-expansion of 11 or 12. Furthermore, borylene 3 was successfully converted to the boron dichalcogenides 16-18 with Ph2Se2, Me2Se2, and Ph2S2 (Scheme 7). 16 and 18 were also accessible by reaction of diborene LII with Ph2Se2 and Ph2S2, respectively (Scheme 7). Scheme 7. Synthesis of dichalcogenides 16-18 from borylene 3 and diborene LII. The tetrameric borylene 3 and the diborene LII show similar reactivities towards elemental chalcogens and dichalcogenides. Only the synthesis of the 3-membered B2E heterocycles 11 and 12 succeeds exclusively from LII. Chapter 3 Synthesis and reactivity of the boryl anion (19) Another aspect of this work was the synthesis and reactivity of the (cyano)hydroboryl anion 19, a rare example of a nucleophilic boron species. The access to 19 by deprotonation of the (dihydro)cyanoborane 1 (Scheme 8) is particularly noteworthy, since boron-bonded hydrogen atoms are usually hydridic in nature and not amenable to deprotonation. Only two other systems allowing the deprotonation of a borane have been described. The tricyano-boryl dianion XLVII[6a, 6b] and the synthesis of the dicyanoboryl anion XLVIII[45]. A common feature of these three species is the presence of electron-withdrawing cyanide substituents, which cause an Umpolung of the B−H bond, thus enabling deprotonation. Scheme 8. Synthesis and solid state structure of the boryl anion 19. To investigate this peculiary more closely, calculations were carried out on the BP86/def2-SVPLevel and the partial charges (NBO) of boron-bound hydrogen at BH3, [(cAAC)BH3] and 1 calculated (Figure 1). Figure 1. Partial charges (NBO) of BH3, [(cAAC)BH3] and 1 (BP86/def2-SVP). By replacing one of the hydrides in [(cAAC)BH3] by a cyano group, the boron-bound hydrogens in 1 become significantly more protic (+0.038, +0.080). Even coordination of the cAAC ligand to BH3 results in two of the previously hydridic hydrogens (BH3: partial charge: –0.101) to became much more positive (+0.050). The nucleophilic character of 19 was then examined by reactivity studies. For example, the reaction of 19 with [(PPh3)AuCl] led to the formation of the gold boryl complex [(cAAC)BH(CN)(AuPPh3)] (20) (Scheme 9). While the reaction of 19 with trityl derivatives did not yield any isolable compound, reactions with the heavier group 14 homologues R3ECl (R = Ph, E = Ge, Sn und Pb; R = Me, E = Sn) yielded a series of triorganotetrel boranes, compounds 21-24 (Schema 9). Scheme 9. Synthesis of 20-24 from boryl anion 19. The reaction of the corresponding silyl derivatives R3SiCl with 19, however, provided a different course of reaction (Scheme 10). Scheme 10. Synthesis of 25-28 from boryl anion 19. In contrast to the higher homologues, the reaction of 19 with the silyl derivatives occurs not at the soft, nucleophilic boron center but at the harder cyano nitrogen atom. The silylisonitrile compounds 25 and 26 were initially formed as the kinetic products. However, 25 was labile and transformed rapidly into the silylborane 27. In contrast, the silylborane 28 could only be obtained by irradiation of 26. In addition, the bonding situation in 26 were examined by DFT calculations at the BP86/def2-SVP level. The Kohn–Sham MO analysis revealed a HOMO with π-character over the entire CcAAC‒B‒CCN unit with contiguous π-antibonding character across the C‒N units of both donor ligands (Figure 2). Figure 2. X-ray crystallographic (left) and calculated (center) structure and HOMO (right) of 26 (BP86/def2-SVP). The electronic nature of 26 was also investigated experimentally. While the reaction of 26 with Cu(I)Cl, which yielded Cu(0), demonstrated its high reducing power, the reaction with elemental lithium in THF led to the formation of the boryl anion 19 and LiSiPh3. In contrast, the reaction of 26 with BH3∙SMe2 quantitatively gave [(cAAC)BH3] (29), while the (triphenyltin)borane 22 was quantitatively formed upon reaction with Ph3SnCl (Scheme 11). This divergent reaction behavior justifies a description of 26 as both a silylisonitrile borylene and a zwitterionic silylium boryl species. Scheme 11. Ambiphilic reactivity of 26 as a neutral silylisonitrile borylene (A) or as a zwitterionic silylium boryl species (B). Chapter 4 Synthesis and reactivity of [(cAAC)BH3] (29) Since [(cAAC)BH2(CN)] 1 can be selectively deprotonated and [(cAAC)BH3] (29) also dispays slightly protic boron-bound hydrogens (see Figure 1), attempts were made to deprotonate 29. For this purpose [(cAAC)BH3] (29) was synthesized and its reactivity towards anionic (Scheme 12) and neutral (Scheme 13) nucleophiles was investigated. Instead of a deprotonation, the reaction of [(cAAC)BH3] (29) with organolithium compounds leads tot he formation of lithium borates 30, 32 and 34, in which a hydrogen has migrated from boron to cAAC and the organic residue is bound to the boroncenter. This reactivity is applicable to sp3-, sp2- and sp-hybridized organolithium compounds. The reaction mechanism was also examined by DFT-calculations. These clearly show that [(cAAC)BH3] (29) is in equilibrium with the tautomeric borane [(cAAC‒H)BH2] by migration of one hydrogen from boron to cAAC. The strongly exergonic nucleophilic addition of the LiR bases with [(cAAC‒H)BH2] (30: ‒29.6 kcal∙mol‒1; 32: ‒12.4 kcal∙mol‒1) directly leads to the formation of the lithium borates 30 and 32. The latter then react with Me3SiCl under elimination of LiCl and Me3SiH to form the cAAC-borane adducts 31, 33 and 35 (Scheme 12). Scheme 12. Synthesis of 30-35 by direct nucleophilic substitution at sp3-boron. This two-step synthesis is remarkable because it is effectively an unusual substitution at a sp3-borane. Furthermore, the reactivity of [(cAAC)BH3] (29) towards neutral Lewis bases was investigated. Thus, [(cAAC−H)BH2(cAAC)] 36 was obtained from the reaction with cAAC and [cAAC−H)BH2(pyr)] 37 from the reaction with pyridine (Scheme 13). Scheme 13. Synthesis of 36 and 37 from 29. The mechanism of formation of 36 and 37 was also investigated by DFT calculations, which suggest reversible formation of the pyridine adduct 37. This was also confirmed experimentally in solution by a Van´t Hoff equilibrium analysis and in the solid state by removal of pyridine from 37 to yield pure 29. In contrast, the formation of 36 is irreversible. Chapter 5 Synthesis and comparison of new diborenes In the context of this work, a series of new NHC thienylborane adducts (42-50) was also synthesized and successfully reduced to the corresponding diborenes (51-58) in the majority of cases (Scheme 14). Scheme 14. Synthesis of NHC thienylborane adducts 42-50 and the rediction to the corresponding diborenes 51-58. Most of the compounds were completely characterized, enabling comparison of NMR spectroscopic and structural data. The 11B NMR resonances of 51-58 were observed within a narrow range (20.2 to 22.5 ppm), which was consistent with that of previously reported analogues X and XI (21.3 and 22.4 ppm).[17] In the solid state, the diborenes displayed a B−B distance of 1.576(4) Å (51) to 1.603(4) Å (54), with no apparent trend, depending on their substitution. These bond lenghts are almost identical to already known IMe-stabilized 1,2-diaryldiborenes (1.585(4) to 1.593(5) Å).[16-17] Some of these diborenes were not stable in solution depending on the substitution pattern, and therefore could not be isolated. Nevertheless, UV-vis spectroscopic data of 51, 52, 57 and 58 were obtained (Figure 3). Figure 3. UV-vis-absorption spectra of 51, 52, 57 and 58. Careful analysis of the UV-vis spectra of 51, 52, 57 and 58 revealed some dependence of the absorption maxima upon the substitution patter of the thienyl substituents and the NHC ligands. The comparison of diborene 51-58 showed that the substitution pattern has a decisive influence on the position of the frontier orbitals, which significantly alters the properties of the diborene. Thus, the introduction of a diphenylamino group on the thienyl residue prevents the coplanarity of the thiophenes with the diborene plane, which is why these species are very unstable due to the lack of π-conjugation. This influence on coplanarity and stability was also observed, albeit to a lesser extent, in the Me3Si-substituted thiophene derivatives. The influence of different NHCs was also investigated. While the introduction of IMeMe has nearly no influence on the absorption maxima, the use of IPr leads to a significant shift. Within this study the most stable diborene proved to be [(IMe)BTh]2 (X). KW - Borylene KW - Borylene KW - Diboren KW - Borylanion KW - cAAC KW - niedervalent KW - Diborene KW - low-valent Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158866 ER -