TY - THES A1 - Schäfer, Nadine T1 - Eine vergleichende biophysikalische Analyse von Hitze- und Trockentoleranzstrategien der Wüstenpflanze Phoenix dactylifera und Nutzpflanzen der gemäßigten Klimazonen T1 - A comparative biophysical analysis of heat and drought tolerance strategies of the desert plant Phoenix dactylifera and crops of temperate climates N2 - Der Klimawandel geht einher mit einem Anstieg der globalen Durchschnittstemperatur und einem dadurch induzierten Wassermangel. Diese beiden abiotischen Stressfaktoren führen zu einer Reduzierung der landwirtschaftlichen Erträge und Biomassen von Kulturpflanzen. Daher ist eine Anpassung der betroffenen Pflanzenarten an das sich ändernde Klima erforderlich, um die landwirtschaftliche Produktivität in Zukunft aufrechtzuerhalten. Gegenwärtig ist unser Wissen über Strategien zur Toleranz gegenüber abiotischem Stress sowie über Genom- und Transkriptionsinformationen auf wenige Modellorganismen von Angiospermen beschränkt, so dass diese Informationen die Basis für die Forschung an Trockenheit und Hitzestress darstellen. Die Untersuchung der Stressadaption innerhalb und zwischen verschiedenen Pflanzengattungen ist von besonderer Relevanz. Vor diesem Hintergrund habe ich im Rahmen meiner Doktorarbeit die Überlebensstrategie der extremophilen Wüstenpflanze Phoenix dactylifera (Dattelpalme) im Vergleich zu zwei Mesophilen, der Kulturpflanze Hordeum vulgare (Gerste) und der Modellpflanze Arabidopsis thaliana, untersucht. Dattelpalmen sind nicht sukkulente Wüstenpflanzen, die auch unter extremen Trocken- und Hitzebedingungen in den Wüsten der Arabischen Halbinsel wachsen und ertragreich Früchte produzieren. In Phoenix dactylifera ist bislang weder die Molekularbiologie und –physiologie der Schließzellen, vor allem der Anionenkanäle, verstanden, noch wurde der Hitzeschutz ihrer Zuckertransportproteine untersucht. Um die stomatäre Reaktion auf das Trockenstresshormon ABA (Abscisinsäure) zu verstehen, klonierten wir die Hauptkomponenten des schnellen ABA-Signalwegs von Schließzellen und analysierten den Öffnungsmechanismus der Anionenkanäle aus der Dattelpalme und der Gerste vergleichend zu dem Anionenkanal aus Arabidopsis im heterologen Expressionssystem der Xenopus Oozyten. Beide monokotyledonen Pflanzenarten (Gerste und Dattelpalme) besitzen stomatäre Komplexe, die aus Schließzellen und Nebenzellen bestehen. Dies unterscheidet die Monokotyledonen von den Dikotyledonen, die normalerweise Stomakomplexe aufweisen, die nur aus einem Paar Schließzellen gebildet werden. Interessanterweise schlossen sich Dattelpalmen- und Gerstenstomata als Reaktion auf das Trockenstresshormon ABA nur in Gegenwart von extrazellulärem Nitrat. Der heterolog-exprimierte Anionenkanal PdSLAC1 wird durch die ABA-Kinase PdOST1 aktiviert und diese Aktivierung wird durch die Koexpression der PP2C-Phosphatase ABI1 gehemmt. Daher wird PdSLAC1 wie seine Orthologen aus Gerste und Arabidopsis durch ein ABA-abhängiges Phosphorylierungs-/Dephosphorylierungsnetzwerk gesteuert. PdOST1 aktivierte den Anionenkanal PdSLAC1 jedoch nur in Gegenwart von extrazellulärem Nitrat - eine elektrische Eigenschaft, die PdSLAC1 mit HvSLAC1 der Gerste gemein hat, sich jedoch von AtSLAC1 unterscheidet. Angesichts der Tatsache, dass in Gegenwart von Nitrat ABA den Stomaschluss verstärkt und beschleunigt, deuten unsere Ergebnisse darauf hin, dass bei Dattelpalmen und Gerste Nitrat als Ligand zum Öffnen von SLAC1 benötigt wird. Dies initiiert die Depolarisation der Schließzellen und leitet schließlich den Stomaschluss ein, um den Wasserverlust der Pflanzen unter Trockenstressbedingungen zu minimieren. Um die monokotyledone spezifische Nitratabhängigkeit von SLAC1 zu verstehen, führten wir ortsgerichtete Mutagenesestudien auf Basis eines 3D-Modells durch, welche zudem vergleichende Studien an Chimären von Monokotylen- und Dikotylen-SLAC1 Anionenkanälen umfassten. Unsere Struktur-Funktions-Forschung identifizierte zwei Aminosäurenreste auf der Transmembrandomäne 3 (TMD3), die eine wesentliche Rolle bei der Nitrat-abhängigen Regulierung von SLAC1 Anionenkanälen monokotyledoner Pflanzen spielen. Die phylogenetische Analyse ergab schließlich, dass während der Evolution die für Monokotlyedonen spezifische Nitrat-abhängige Regulierung erst nach der Trennung in Monokotyledonen und Dikotyledonen auftrat. Durch die Nitrat-sensitive Regulierung von SLAC1 Anionenkanälen beruht der schnelle Stomaschluss von Monokotyledonen auf dem Zusammenspiel des Trockenstresshormons ABA und dem Stickstoffhaushalt der Pflanze. Da der ABA-Signalweg von Arabidopsis umfassend untersucht wurde, könnte die Entdeckung des monokotyledonen spezifischen Nitrat-abhängigen Motivs in TMD3 nun als Stellschraube zur Verbesserung der Züchtungsprogramme dikotyledoner Nutzpflanzen dienen. Wüstenpflanzen leiden nicht nur unter Trockenheit, sondern auch unter extremem Hitzestress. Wir konnten zeigen, dass hitzebelastete Dattelpalmen große Mengen der flüchtigen Kohlenwasserstoffverbindung Isopren (2-Methyl-1,3-Butadien) produzieren und emittieren. Durch die vorübergehende Freisetzung von Isopren kann die Pflanze die Photosynthese auch bei extremen Temperaturen betreiben. Es ist jedoch nicht bekannt, ob und wie Isopren in Hitzeperioden auch Transportprozesse durch biologische Membranen schützt. Um den Einfluss von Isopren auf den Transmembrantransport zu untersuchen, identifizierten und klonierten wir den Protonen-gekoppelten Saccharosetransporter 1 (PdSUT1) der Dattelpalme und verglichen seine elektrischen Eigenschaften mit ZmSUT1 (Zea mays Sucrose Transporter 1) im heterologen Expressionssystem der Xenopus Oozyten. Interessanterweise waren das elektrische Verhalten, die kinetischen Eigenschaften und die Temperaturabhängigkeit beider Transporter ähnlich. Die Anwendung von Isopren veränderte jedoch massiv die Affinität von ZmSUT1 zu seinem Substrat Saccharose, während die Affinität des Transporters der Dattelpalme nur schwach beeinflusst wurde. Es wird angenommen, dass die Membranfluidität unter Hitzestress erniedrigt ist, welches durch Interkalierung von Isopren mit den Fettsäureketten biologischer Membrane einhergeht. Dies und die Unempfindlichkeit von PdSUT1 gegenüber Isopren deuten darauf hin, dass der Saccharosetransporter PdSUT1 aus der Wüstenpflanze auch bei hohen Temperaturen Saccharose mit hoher Affinität transportiert. Zukünftige Studien müssen nun klären, ob der flüchtige Kohlenwasserstoff Isopren einen direkten Einfluss auf den Transporter selbst hat oder Isopren in die Membran integriert und damit indirekt die Eigenschaften von Transportproteinen beeinflusst. Unabhängig von der Wirkungsweise von Isopren sollte nicht unerwähnt bleiben, dass PdSUT1 gegenüber Isopren weniger empfindlich ist als sein Ortholog ZmSUT1 aus Mais. Dies kann auf eine Anpassung des Saccharosetransporters an die extremen Hitzeperioden und die damit einhergehende Isoprenemission von Dattelpalmen zurückzuführen sein. N2 - Low water availability and heat stress present major barriers to achievíng high biomass and full yield potential in crops. Global climate change is accompanied by a subtle increase in the severity of these abiotic stresses. Thus, the adaptation of crop species to the changing climate is required in order to sustain agricultural productivity in the future. Currently, our knowledge of plant strategies for abiotic stress tolerance as well as genomic and transcriptional information is limited to a few model angiosperms, providing a starting point for the understanding of responses to drought and/or heat stress, within and across species. In the framework of my PhD thesis, we followed a different strategy to learn about abiotic stress tolerance: we studied the survival strategy of the extremophilic desert plant Phoenix dactylifera (date palm) in comparison to the crop Hordeum vulgare (barley) and the model plant Arabidopsis thaliana, both from temperate zones. Date palms grow and produce fruits even under extreme drought and heat conditions in the deserts of the Arabian Peninsula. Neither the molecular biology and physiology of guard cells nor the heat protection of transport protein mediated sugar and ion transport processes have been studied so far in this non-succulent desert plant, Phoenix dactylifera. To understand the stomatal response to the water stress phytohormone ABA (abscisic acid), we cloned the major components for guard cell fast abscisic acid signaling and analysed the anion channel opening mechanism of the date palm side by side with barley and Arabidopsis in Xenopus oocytes. Both monocot plant species (barley and date palm) possess stomatal complexes consisting of guard cells and subsidiary cells. This distinguishes monocot species from dicots, which usually exhibit stomatal complexes formed by a pair of guard cells only. Interestingly, date palm and barley stomata closed in response to the drought stress hormone ABA only in the presence of extracellular nitrate. Heterologously expressed Phoenix SLAC1-type anion channel PdSLAC1 is activated by the ABA kinase PdOST1 and this activation is inhibited by the coexpression of PP2C phosphatase ABI1 – thus like its counterparts from barley and Arabidopsis, PdSLAC1 is controlled by an ABA-dependent phosphorylation/dephosphorylation network. However, PdOST1 did activate the desert plant anion channel PdSLAC1 only in the presence of extracellular nitrate – an electrical property that PdSLAC1 shares with the barley SLAC1 but distinguishes both monocot SLAC1 channels from AtSLAC1. Given that, in the presence of nitrate, ABA enhanced and accelerated stomatal closure, our findings indicate that the guard cell osmotic motor driving stomatal closure in date palm and barley uses nitrate as the signal to open the major anion channel SLAC1. This initiates guard cell depolarization and finally stomatal closure to prevent plant wilting under drought stress conditions. To understand the monocot-specific SLAC1 nitrate dependency, we performed a 3D-model- based site-directed mutagenesis study including chimeric channels between monocot and dicot SLAC1 anion channels. Our structure-function research identified two residues on transmembrane domain 3 (TMD3) that play an essential role in nitrate-dependent gating of monocot SLAC1-type anion channels. Phylogenetic analysis finally revealed that during evolution the monocot specific nitrate-dependent gating was established after the split between monocots and dicots. Thus, the success of monocot species may in part rely on the integration of drought signals (ABA) and the nitrogen nutrition status of the plant via nitrate-sensitive gating of SLAC1 anion channels. Since the Arabidopsis ABA-signaling pathway has been extensively studied, the discovery of the monocot-specific nitrate dependent motif on TMD3 could now serve as a set screw to improve the breeding programs of dicot agricultural crops. Desert plants not only suffer from drought but also from extreme heat stress. We could show that heat-stressed date palms produce and emit high amounts of the volatile hydrocarbon compound isoprene (2-Methyl-1,3-Butadien). The temporary release of isoprene allows the plant to perform photosynthesis even under extreme temperatures. However, it is not known whether and how isoprene also protects transport processes across biological membranes in periods of heat. To study the influence of isoprene on transmembrane transport, we identified and cloned the date palm proton-coupled sucrose transporter 1 (PdSUT1) and compared its electrical properties with ZmSUT1 (Zea mays Sucrose Transporter 1) in the heterologous expression system of Xenopus oocytes. Interestingly, the electrical behavior, the kinetic properties and the temperature dependence of both carriers were similar. However, the response to isoprene application massively altered the affinity of ZmSUT1 to its substrate sucrose while the affinity of the date palm transporter was only weakly affected. The intercalation of isoprene with the fatty acid chains of biological membranes is believed to decrease the membrane fluidity under heat stress. This and the insensitivity of PdSUT1 towards isoprene may indicate that the desert plant sucrose transporter PdSUT1 transports sucrose with high affinity even at high temperatures. Future studies must now clarify whether the volatile hydrocarbon isoprene has a direct influence on the carrier itself or isoprene integrates into the membrane and thus indirectly influences the properties of transport proteins. Regardless of the mode of action of isoprene, it remains to be noted that PdSUT1 is less sensitive to isoprene than its orthologue from maize. This may be an adaptation of the sucrose carrier to the extreme heat periods and the accompanying isoprene emission from date palms. KW - Dattelpalme KW - Gerste KW - Elektrophysiologie KW - Hitzestress KW - Schließzelle KW - Anionenkanal KW - Zuckertransporter KW - SLAC1 KW - SUT1 KW - Signaltransduktion KW - ZmSUT1 KW - Phoenix dactylifera KW - Hordeum vulgare KW - Zea mays Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186491 ER - TY - THES A1 - Kolb, Christiane T1 - Untersuchungen zur Erfassung und Bewertung der UV-Abschirmung bei Kulturvarietäten verschiedener Nutzpflanzenarten T1 - Investigations on recording and evaluation of UV-screening in varieties of different crops N2 - In dieser Arbeit wurden unter naturnahen Bedingungen die Effekte von UV-Strahlung auf die Akkumulation löslicher phenolischer Komponenten und die epidermale UV-Transmission in vivo bei Kulturvarietäten di- und monokotyler Arten untersucht. Durch die Versuchsanordnungen konnten die Effekte der spektralen Bereiche der UV-A- und UV-B-Strahlung von denen des sichtbaren Bereichs getrennt betrachtet werden. Visuelle Schadensevaluierungen und die Erfassung der variablen Chlorophyllfluoreszenz dienten der Beurteilung einer durch Strahlungseinflüsse bedingten Schädigung der untersuchten Organe. In kurzfristigen Experimenten erfolgte bei unter Schwachlichtbedingungen angezogenen Pflanzen eine rasche Verringerung der epidermalen UV-Transmission, die durch UV-Strahlung induziert oder verstärkt wurde. Dies stimmte für alle untersuchten Arten (Vitis vinifera, Hordeum vulgare, Avena sativa und Triticum aestivum) überein. Hingegen war in keinem Fall eine durch UV verstärkte Inhibierung der Photosynthese, bestimmt über die variable Chlorophyllfluoreszenz (FV/FM), zu erkennen. Zwischen der epidermalen Transmission für UV-A- und UV-B-Strahlung wurde bei allen drei monokotylen Arten ein strikt linearer Zusammenhang festgestellt. Dieser Zusammenhang bestand jedoch nicht für die untersuchten Organe in V. vinifera. Bei Vitis vinifera und Hordeum vulgare wurde über HPLC- Analytik eine positive Wirkung besonders der UV-B-Strahlung auf die Akkumulation der Flavonoide sowohl kurz- als auch langfristig nachgewiesen. Bei V. vinifera wurden die für Blätter bereits festgestellten Zusammenhänge (Kolb et al., 2001) an Beeren untersucht. Es wurden einerseits allgemeine Reaktionsmuster auf kurz- und langfristige UV- Exposition erfasst, und andererseits zwei Kulturvarietäten (cv. Bacchus und Silvaner) verglichen, deren Anfälligkeit für ein strahlungsbedingtes Schadsymptom unterschiedlich war. In allen Experimenten konnten ohne UV-Strahlung keine nennenswerten Mengen an Flavonoiden gebildet werden. Die löslichen Hydroxyzimtsäurederivate (HZS) hingegen waren bei den Beeren von der Art der Exposition weitgehend unabhängig. Die Identität der phenolischen Komponenten wurde über HPLC, UV-Spektroskopie, sowie Massenspektrometrie abgeklärt. Ihre Lokalisation in mehreren Zelllagen der Beerenhaut wurde durch Epifluoreszenzmikroskopie gezeigt. Der Einfluss des physiologischen Stadiums der Beeren auf die Akkumulation einzelner phenolischer Komponenten wurde durch Verwendung verschiedener Reifeindikatoren belegt. Im Vergleich zu den Blättern wurden Unterschiede bezüglich der Akkumulation der HZS festgestellt, während für die Akkumulation der Flavonoide weitgehend Übereinstimmung herrschte. Anders als bei den Blättern konnte bei den Beeren die fluorometrisch bestimmte epidermale Transmission nur zum Teil auf die Absorption der phenolischen Extrakte zurückgeführt werden. Die qualitativen Substanzmuster stimmten zwischen den Beeren der beiden Sorten überein, es konnten aber signifikante Unterschiede bezüglich der Quantität einzelner Komponenten festgestellt werden. Zwei bisher unter "Sonnenbrand" zusammengefasste Schadbilder konnten voneinander getrennt dargestellt werden. Eines der beiden wurde eindeutig durch UV- Strahlung induziert, wobei UV-B die Intensität verstärkte. Das Ziel, einen praxisrelevanten Bezug zwischen dem Schadbild der nicht-parasitär bedingten Blattverbräunung (NBV) bei Gerste und der Akklimatisation an verschiedene Strahlungsbedingungen herzustellen, bedingte eine Festlegung auf ausdifferenzierte Blätter adulter Pflanzen anstelle von Primärblättern. Die Auswahl der Kulturvarietäten bei H. vulgare erfolgte im Hinblick auf unterschiedliche Anfälligkeit für NBV. Zwischen den Sorten konnte jedoch bezüglich der Anpassungsfähigkeit der epidermalen UV-Transmission an die unterschiedlichen Strahlungsbedingungen kein eindeutiger Unterschied ermittelt werden. Die epidermale UV-Transmission in vivo wurde bei H. vulgare ebenfalls mit der Absorption von Extrakten löslicher phenolischer Komponenten in Beziehung gesetzt und mit der für die Blätter von V. vinifera gefundenen Relation verglichen. Übereinstimmend konnten ca. 80% der Transmissionseigenschaften über die Absorption der Extrakte erklärt werden. Dennoch bestanden deutliche Unterschiede in der Art der Relationen. Über HPLC-Analytik und UV-Spektroskopie wurden bei H. vulgare die löslichen phenolischen Komponenten in Derivate einzelner Flavonoide unterteilt. Die löslichen HZS hatten im Gegensatz zu V. vinifera nur einen geringen Anteil an der Gesamtmenge der phenolischen Substanzen. Das Substanzmuster der beiden Varietäten stimmte überein; teilweise auftretende Konzentrationsunterschiede bezüglich der Flavonoide insgesamt bzw. einzelner Komponenten waren zwischen den verschiedenen Experimenten nicht konsistent. Ein Zusammenhang zwischen der UV-Exposition und dem Auftreten oder der Intensität des Schadbildes NBV konnte nicht festgestellt werden. N2 - In this study, the effects of UV radiation on accumulation of soluble phenolic compounds and on epidermal UV transmittance in vivo were investigated under close to nature conditions. Varieties of different crop species, of both dicots and monocots, were examined. The experimental design allowed to distinguish between effects of UV-B, UV-A and visible radiation. Inhibition of photosynthesis, measured by FV/FM, and observable damage caused by exposure to the different light regimes were determined. In plants grown under shaded conditions in the greenhouse, short time outdoor exposure resulted in fast reduction of epidermal UV transmittance. This effect was spe-cifically enhanced by UV radiation and was observed in all species investigated (V. vinifera, H. vulgare, A. sativa and T. aestivum). In contrast, inhibition of photosynthesis did not occur in all species. A good correlation was found between epidermal transmittance for UV-B and UV-A radiation in all of the monocot species investigated. This correlation, however, was not observed in V. vinifera. Flavonoid contents were determined in V. vinifera and H. vulgare by HPLC. Flavonoid synthesis was particularly enhanced by exposure to UV-B radiation. For V. vinifera, the study concentrated on long and short term effects of UV exposure on grapes and the data were related to recently reported UV effects on grape leaves (Kolb et al., 2001). Two white grapevine varieties (cv. Bacchus and cv. Silvaner) were compared. The two varieties differ in their sensitivity for "sunburn" a syndrome which typically occurs during periods of high light intensities. Phenolic compounds were examined by HPLC analysis, UV spectroscopy, and mass spectrometry. Phenolics of berries of the two varieties were similar and agreed with the phenolic substances determined in leaves. In all experiments, the amounts of flavonoids synthesised in absence of UV radiation were negligible. Under outdoor conditions, however, significant differences between the two berry types in the amount of phenolic compounds were determined. It was also shown that these variations are modulated by the prevailing developmental stage of grapes. Similar to leaves, UV-B radiation stimulated flavonoid synthesis in grapes. Different from leaves, synthesis of soluble hydroxycinnamic acids was not stimulated by high visible radiation. Furthermore, in leaves fluorescence microscopy demonstrated that phenolics are especially concentrated in the epidermal layer, whereas in grapes, phenolics appear to occur at elevated concentrations in several layers of the skin. The relationship between fluorometrically determined UV absorbance of grape skins and UV absorbance of extracted phenolics was statistically significant, but not all of the variations in absorbance by skin could be explained by phenolics. In leaves, damage during outdoor exposure was clearly enhanced by UV radiation. In grapes, sunburn, which was originally considered as a homogeneous syndrome after exposure to strong radiation, could be divided in two classes of stress reactions. One of these can be seen as strictly UV related, while the other is only enhanced by UV radiation, and occurred also under visible light conditions. Further studies investigated relations between the PLS (physiological leaf spot) syndrome occurring in fully developed leaves of barley and UV radiation. The crop varie-ties investigated showed a different sensitivity for PLS. However, acclimation to the different light conditions, determined as UV transmittance, revealed no clear difference between the cultivars. The relationship between fluorometrically determined UV absorbance of barley leaves and UV absorbance of extracted phenolics were examined. Similar as observed with V. vinifera leaves, about 80% of the variations of epidermal UV transmittance were explained by soluble phenolics. In H. vulgare, soluble phenolic compounds as identified by UV/VIS spectroscopy could be divided in two different groups of flavonoids while, in contrast to V. vinifera, soluble hydroxycinnamic acids are minor compounds in H. vulgare. HPLC profiles were similar for the two varieties of H. vulgare, and concentrations of flavonoids were almost comparable in both varieties in all experiments. These data together with UV exclusion experiments showed that PLS is not caused by UV-radiation. KW - Getreide KW - Weinrebe KW - Ultraviolett KW - Abschirmung KW - Flavonoide KW - Ultraviolett KW - Vitis KW - Gerste KW - Fluorimetrie KW - flavonoids KW - ultraviolet KW - Vitis KW - barley KW - fluorometry Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5365 ER - TY - THES A1 - Koers, Sandra T1 - Die Rolle der S-Typ Anionenkanäle in der Reaktion von Gerstenschließzellen auf Blumeria graminis f. sp. hordei T1 - Role of S-type anion channels in the reaction of barley guard cells towards Blumeria graminis f. sp. hordei N2 - In ihrer Evolution mussten Pflanzen Strategien entwickeln um sich sowohl gegen Pathogene aus der Luft als auch solche im Boden zu verteidigen. Diese Resistenzmechanismen der Pflanzen zu verstehen ist von höchster Wichtigkeit für die moderne Gesellschaft. Die Weltbevölkerung wächst schnell, was zu der Notwendigkeit führt, die landwirtschaftlichen Flächen möglichst optimal zu nutzen. Ohne die Weiterentwicklung der landwirtschaftlichen Methoden wird eine ausreichende Versorgung mit Grundnahrungsmitteln nicht möglich sein. Obwohl nicht viele Daten zu diesem Thema vorliegen, ist es sehr wahrscheinlich, dass ein hoher Prozentsatz der jährlichen Ernteverluste auf Pflanzenkrankheiten zurückzuführen ist (Orke et al. 1994, Pinstrup-Andersen; 2001). Der Ernteverlust ist nicht ausschließlich auf den Tod der infizierten Pflanze zurückzuführen, sondern vielmehr auf die sogenannten Resistenzkosten Walters und Heil; 2007). Um sich gegen das Pathogen zu schützen müssen Ressourcen genutzt werden, die sonst für die korrekte Entwicklung der Pflanze, sowie der Samen und Früchte verwendet würden. Die pflanzliche Cuticula, welche die Blattoberfläche bedeckt, ist die erste Verteidigungslinie gegen pathogene Microorganismen, die durch die Luft verbreitet werden. Um diese Barriere zu umgehen nutzen Bakterien und einige Pilze die Stomata als Eingang in den Apoplasten der Blätter. Dies kann durch die Pflanze allerdings verhindert werden, indem diese Poren geschlossen werden. Diese Schließzellantwort wurde zunächst als Teil der Immunantwort auf Bakterien angesehen (Melotto et al. 2006). Nichtsdestotrotz konnte beobachtet werden, dass die Stomata auch während der Infektion des Mehltaupilzes schließen, obwohl dieser nicht durch die Stomata in das Blatt eindringen. Daher haben wir Einzelzellstudien an intakten Gerstenpflanzen vorgenommen um zu klären, wie die Signale erkannt und weitergeleitet werden, die schließlich zum pathogen-induzierten Stomaschluss führen (Koers et al. 2011). Zusammengefasst kann gesagt werden, dass der Stomaschluss ein wichtiger Bestandteil der pflanzlichen Immunantwort ist. Innerhalb dieser Antwort der Stomata auf durch Wind übertragene Pathogene, spielt die Aktivierung der S-Typ Anionenkanäle eine entscheidende Rolle. Es konnte dabei gezeigt werden, dass die Immunantwort die Licht-induzierte Inhibierung dieser Anionenkanäle außer Kraft setzt. S-Typ Anionenkanäle sind aber nicht allein in der Pathogenabwehr von Bedeutung, sondern auch in der Reaktion der Pflanzen auf Trockenstress. Es ist jedoch nicht bekannt, in wie weit sich die beiden Signalwege überschneiden. Zusammen mit den neuen mutierten Gerstenlinien, werden die in dieser Arbeit beschriebenen Techniken zur Messung von Einzelzellen tiefere Einsichten in das Zusammenspiel zwischen Trockenstress und Pathogenabwehr in Pflanzen ermöglichen. Die daraus resultierenden Ergebnisse können zur Optimierung von Getreide für die moderne Landwirtschaft genutzt werden. Dies wird einer der wichtigsten Ansätze sein, um die Menschheit auch in Zukunft mit ausreichend Nahrung versorgen zu können. N2 - During evolution, plants had to evolve potent strategies to defend themselves against airborne pathogens, as well as against those encountered in the soil. Understanding the mechanisms that provide plant immunity is crucial for modern society. The world population is growing at rapid pace, leading to the necessity of using agricultural areas as productive as possible. Without improvement of agricultural practice, a sufficient supply with staple foods will not be possible. It is very likely that an important percentage of crop loss is due to plant diseases, even though precise data on this issue are lacking, (Orke et al. 1994, Pinstrup-Andersen; 2001). Crop loss is not exclusively caused by the death of infected plants, but more often by so called costs of resistance (Walters and Heil; 2007). To gain protection against an attacking pathogen, resources have to be consumed, which otherwise would be used for proper plant, crop and fruit development. Plant cuticles, that cover the leaf surface, are the first line of defence to airborne pathogenic microorganisms. To bypass this barrier, bacteria and some fungi use stomata as an entry site into the apoplastic space of leaves. The entry of pathogens through stomata can be prevented by plants upon closure of these pores. This guard cell response was proposed to contribute to plant innate immunity against bacteria (Melotto et al. 2006). However, stomata were found to close during the infection of powdery mildew fungi, which do not use open stomata to enter the leaf. We therefore pursued single cell studies within intact barley plants to elucidate the signal perception and transduction mechanisms that evoke stomatal closure during a pathogen attack (Koers et al. 2011). All results taken together, stomatal closure is an integral part of plant innate immunity. Within the stomatal response to airborne pathogens, the activation of S-type anion channels is essential. It is shown, that the immunity responses of guard cells bypass light induced inhibition of anion channels. S-type anion channels are not only crucial for responses to pathogens, but they are also involved in the response of guard cells towards drought. However, it is unknown to which extent both signals share mutual components. Together with the, now available, mutant lines of barley, the single cell techniques described in this thesis can provide a further insight into the interplay of drought and pathogen responses in plants. The results are likely to be used for optimizing crops for the future agriculture, which is a pivotal step in providing enough food for mankind in the near future. KW - Elektrophysiologie KW - Erysiphe graminis KW - Spaltöffnung KW - Gerste KW - Abwehrreaktion KW - Ionenkanal KW - electrophysiology KW - stomata KW - powdery mildew KW - immunity response KW - ion channel KW - Pflanzenphysiologie KW - Mehltau Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77335 ER -