TY - THES A1 - Zimmermann, Franz-Zeno T1 - Genotoxizität in Miniorgankulturen humaner nasaler Mukosa nach repetitiver Exposition mit Zinkoxid Nanopartikeln T1 - Genotoxicity in mini organ cultures of human nasal mucosa after repetetive exposition with zinc oxide nanoparticles N2 - Diese Studie beschäftigt sich mit den toxischen Effekten von Zinkoxid Nanopartikeln (ZnO NP) auf humane Nasenschleimhautzellen. Speziell wurde eine mögliche Kumulation von DNS-Schäden und deren Reparatur analysiert. Zu diesem Zweck wurde ein dreidimensionales Kultursystem, sogenannte Miniorgankulturen, aus humaner nasaler Mukosa verwendet. Eine Charakterisierung der verwendeten Zinkoxid Nanopartikel erfolgte unter dem Transmissionselektronenmikroskop (TEM), mittels dynamischer Lichtstreuung (DLS) und durch eine Zetapotentialmessung. Nach einer Woche Kultivierung fand eine Exposition der MOK mit einer Zinkoxid Nanopartikel Suspension in einer Konzentration von 0,1 µg/ml und 5 µg/ml statt. Als Positivkontrolle wurde in diesem Versuch 200µM Methymethansulfonat (MMS) zugesetzt. Es erfolgten drei jeweils einstündige Inkubationsphasen, wobei nach jeder Stunde ein Teil der MOKs für den Cometassay entnommen wurde. Nach dreimaliger Exposition wurden die verbliebenen MOKs für 24 Stunden zur Regeneration in unversetztem Nährmedium belassen und dann dem Cometassay zugeführt. Ergänzend wurde ein Sandwich ELISA zur Detektion von Caspase 3 durchgeführt. Zn2+ Ionen wurden im Zellkulturmedium analysiert. Der Nachweis von reaktiven Sauerstoffspezies (ROS) erfolgte fluoreszenzmikroskopisch. Die DLS konnte eine durchschnittliche Partikelaggregatgröße von 354 nm nachweisen und das Zetapotential betrug -11,2 mV. Die im Cometassay festgestellten DNS-Schäden zeigten bei einer Zinkoxid Nanopartikel Konzentration von 0,1 µg/ml erst nach der Regenerationsphase von 24 Stunden einen signifikanten Anstieg, während 5 µg/ml Zinkoxid Nanopartikel zu jedem Zeitpunkt einen signifikanten Anstieg der DNS Fragmentation bewirkten. Das Ausmaß an Strangbrüchen nach 24 Stunden stieg auch hier nach 24stündiger Regenerationsphase nochmals an. 200 µM MMS induzierten ebenfalls einen signifikanten Anstieg der OTM-Werte bei einer, zwei und drei Stunden. Im Laufe der Regenerationsphase führten Reparaturmechanismen zu einem Absinken der OTM-Werte. Der Sandwich ELISA zeigte keinen signifikanten Anstieg der Caspase 3 Werte. Im Nährmedium konnte eine Zn2+ Ionenkonzentration von 2,8 µmol/ml nach einer Inkubation mit 0,1 µg/ml Zinkoxid Nanopartikeln festgestellt werden. Bei einer Inkubation mit 5 µg/ml Zinkoxid Nanopartikeln zeigte sich eine Ionenkonzentration von 52,7 µmol/ml. Intrazelluläre ROS konnte nur bei einer Exposition mit 5 µmol/ml Zinkoxid Nanopartikeln nachgewiesen werden. Diese Daten lassen den Schluss zu, dass Zinkoxid Nanopartikel in den verwendeten Konzentrationen genotoxisch wirken, aber keine zytotoxische Wirkung entfalten. Die Schädigung kumuliert und schreitet während der Regenerationsphase noch fort. Eine multifaktorielle Schädigung der DNS, sowohl durch direkte Interaktion der Partikel mit dem Erbgut, als auch über entstandene ROS und Zn2+ Ionen, ist anzunehmen. N2 - This study examines the toxic effects of zincoxide nanoparticles (ZnO NPs) in nasal mucosa cells. Especially the possible accumulation of DNA damages und their reparation was analysed. For this purpose we used mini organ cultures (MOCs) out of human nasal mucosa. The zinc oxide nanoparticles were characterized under a transmission electron microscope and by zeta potential measurement. After one week of cultivation, the MOCs were exposed to a ZnO NP suspension. The concentrations were 0,1 µg/ml and 5 µg/ml. 200µM methylmethane sulfonate (MMS) was used as positive control. The MOCs were incubated three times for one hour. After each hour some of the MOCs were analysed with the Cometassay. The last MOCs stayed for 24 hours in the cell culture medium for regeneration. A sandwiche ELISA was performed to detect Caspase 3. Zn2+ ions were analysed in the cell culture medium. To detect reactive oxygen species (ROS), the cells were analysed under a fluorescence microscope. The average particle size was 345 nm. The zeta potential was –11,mV. DNA damage was detected to ZnO-NPs at 0.1 μg/ml ZnO-NPs after a 24h lasting regeneration time. 5 µg/ml ZnO NPs damaged the DNA at every point of time. The sandwich ELISA showed no significant increase of Caspase 3 in the medium. 0,1 µg/ml ZnO NPs resulted in a Zn2+ ion concentration of 2,8 µmol/ml and 5 µg/ml in a concentration of 52,7 µmol/ml. ROS could only be detected after an incubation with 5 µg/ml ZnO NPs. Thus the results suggest that ZnO NP in these concentrations are genotoxic but not zytotoxic. The damage cumulates and is increasing throughout the regeneration time. A multifactorial damage of the DNA, through direct interaction of the particles and also through ROS and zinc ions, is to suppose. KW - Nasenschleimhaut KW - Nanopartikel KW - Zinkoxid KW - Miniorgankultur KW - nanoparticle KW - nasal mucosa KW - zinc oxide KW - mini organ culture Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72641 ER - TY - THES A1 - Niederdraenk, Franziska T1 - Ensemble-Modellierung von Röntgenbeugungsdaten zur Strukturbestimmung von Nanopartikeln T1 - Ensemble modeling of X-ray diffraction data for the geometric structure determination of nanoparticles N2 - Ziel dieser Arbeit war es, die geometrische Struktur von Nanopartikeln mittels Pulver-Röntgenbeugung und einem neuen Analyse-Verfahren, der Ensemble-Modellierung (EM), zu ermitteln. Die genaue Aufklärung der kristallinen Struktur ist ein Schlüssel für die Entwicklung exakter theoretischer Modelle und damit für ein besseres Verständnis der Nanoteilchen und deren Eigenschaften. Dabei fußt die Methode auf einem atomaren Modell und berechnet daraus das Beugungsbild der Teilchen. Neben der Auswertung verschiedener Proben sollte ebenso das Potential der Methode überprüft werden - auch im Vergleich zu Standardmethoden wie der Rietveld-Verfeinerung oder einer Einzellinien-Anpassung. Im Gegensatz zur EM beinhalten letztere kein explizites Nanoteilchenmodell. Insgesamt kamen drei typische Nanopartikel-Systeme zum Einsatz: Zunächst wurden fünf ZnO-Proben untersucht, die aufgrund ihrer verschiedenen Liganden deutlich unterschiedliche Partikelgrößen zeigten. Die präsentierten CdS-Nanoteilchen bildeten dagegen mit unter 100 Atomen bereits den Übergang zur Clusterphysik. Das letzte Kapitel stellte schließlich drei Proben mit deutlich komplexeren Core-Shell-Partikeln vor, welche aus einem CdSe-Kern und einer ZnS-Schale bestehen. Dabei konnten mit Hilfe der EM für alle Systeme sehr viel detailliertere Aussagen gemacht werden, als mit den Standardmethoden. Anhand der ersten vorgestellten ZnO-Probe wurde gezeigt, wie man sich bei der Auswertung mit der EM schrittweise dem besten Modell nähert, indem man, startend mit der Partikelform, anschließend weitere komplexe Merkmale implementiert. In dem ZnO-Kapitel wurde ersichtlich, dass die Liganden eine große Rolle spielen - nicht nur für die Größe der Nanopartikel, sondern auch für deren Qualität. Weiterhin wurde festgestellt, dass der Ligand TG beinahe defektfreie Nanoteilchen liefert, während die Stabilisatoren DACH und DMPDA den Einbau von Stapelfehlern begünstigen. In den jeweiligen Vergleichen mit der Rietveld- und Einzellinien-Anpassung fiel auf, dass diese Methoden für kleine Nanoteilchen Resultate liefern, die als deutlich weniger vertrauenswürdig einzustufen sind als jene, die mit der EM erhalten wurden. Der Grund sind die für kleine Teilchen nicht vernachlässigbaren Faktoren wie eine (anisotrope) Form, Oberflächeneffekte, Parameter-Verteilungen etc., welche nur mit der EM berücksichtigt werden können. Noch ungenauer fällt die Analyse per Absorptionsspektroskopie plus theoretischen Methoden aus. Die einzige CdS-Probe wies mit ca. 1.3 nm Durchmesser besonders kleine Nanoteilchen auf. Das zugehörige Beugungsbild zeigte daher nur noch sehr wenige Strukturen, was bereits die Bestimmung der Kristallstruktur erschwerte. Bei nur noch einigen gestapelten Schichten verloren auch die Stapelfehler ihre ursprüngliche Bedeutung. Die maßgebliche Frage bestand somit darin, ob man bei Kristalliten mit unter 100 Atomen noch von einer "normalen" Kristallstruktur sprechen kann, oder ob hier bereits andere Strukturformen vorliegen, z.B. ähnlich den C60-Molekülen. Da die EM solche Hohl-Strukturen ebenfalls simulieren kann, wäre der nächste Schritt, diese für sehr kleine Partikel im Vergleich zu den üblichen Kristallstrukturen zu testen. Bei den drei betrachteten Core-Shell-Proben zeigte die EM abermals ihre große Stärke, indem sie es ermöglichte, die deutlich komplexeren Teilchen realistisch zu simulieren. So war es möglich, die experimentellen Röntgenbeugungs-Daten hervorragend wiederzugeben, was mit keiner der Standardmethoden gelang. Hierfür war es nötig, neben dem CdSe-Kern eine zusätzliche ZnS-Schalenstruktur einzuführen. Zwar konnte bei den Proben mit der EM alleine nicht eindeutig festgestellt werden, welcher ZnS-Schalentypus vorliegt, es wurden jedoch diverse Anhaltspunkte gefunden, die für ein lokal-epitaktisches Wachstum auf dem CdSe-Kern sprechen. Für die Methode der EM selbst lässt sich in der Retrospektive folgendes fest halten: Sie ist den Standard-Techniken wie der Rietveld-Verfeinerung für sehr kleine Nanopartikel deutlich überlegen. Der Grund dafür sind die vielfältig modellierbaren Strukturen, welche Defekte, Oberflächeneffekte, Parameterverteilungen etc. beinhalten können. Ein weiterer großer Pluspunkt der EM gegenüber anderen Methoden besteht in der Möglichkeit, die immer populärer werdenden Core-Shell-Partikel mit vielfältigen Schalenarten zu simulieren, wobei hier auch noch weitere komplexere Optionen für Schalen, z.B. zweierlei Schalen (Core-Shell-Shell-Teilchen), vorstellbar sind. Die Tatsache, dass all diese Merkmale zudem intrinsisch in dem berechneten Beugungsbild enthalten sind, ist von besonderem Gewicht, da dies bedeutet, keine künstlichen Parameter einführen und diese interpretieren zu müssen. Solange eine gewisse Atomanzahl pro Partikel nicht überschritten wird, und v.a. bei defektbehafteten Nanoteilchen, stellt die EM somit die erste Wahl dar. N2 - The goal of this thesis was to determine the geometric structure of very small nanoparticles by means of powder x-ray diffraction and a novel analysis method called Ensemble Modeling (EM). The knowledge of the crystalline structure is a key feature to develop new theoretical models and thus to better understand the particles' properties. The analysis method itself is based on an atomic model of the particles, which is used to calculate the diffraction pattern via the Debye formula. Apart from the investigation of several nanoparticle samples, the capability of the new technique was tested - especially in comparison to commonly used standard methods like the Rietveld refinement or single-line fits. In contrast to the EM, these methods do not contain a real model of the particles. Altogether, three characteristic nanoparticle systems were used: First of all, five ZnO samples were investigated, which showed different particle sizes (2-15 nm) due to the use of different stabilizing molecules. In contrast, the CdS particles presented here had a diameter of only 1.3 nm, which is already at the transition to cluster physics. The last chapter introduced three samples of the more complex core-shell-nanoparticles, which, in this case, consisted of a CdSe core and a ZnS shell. By applying the EM as analysis method, all particle systems could be investigated in much more detail than with other analysis methods. The first ZnO sample served as an example to explain the stepwise procedure of the EM. After the particle shape was determined, more and more complex features were implemented in order to eventually arrive at the atomic model best reproducing the real particle ensemble. In case of the ZnO samples it was shown that the ligands play a significant role - not only for the size of the particles but also for their structural quality. A further finding due to the analysis with the EM is the high amount of stacking faults for particles stabilized with the ligands DACH or DMPDA, while TG favors a defect-free growth of ZnO nanoparticles. In comparison to the Rietveld method or to a single-line fit, the results for small nanoparticles given by the EM are much more reliable, since none of the other fitting methods can take features like the (anisotropic) particle shape, surface effects or parameter distributions into account. The same holds for a particles' size analysis via UV/Vis absorption spectroscopy together with theoretical models. The EM, in contrast, can account for all of these sophisticated structural features. The only CdS sample in this work contained extremely small particles of about 1.3 nm in diameter. The according diffraction pattern thus shows very broad reflections and little usable structure, thereby hindering a straight-forward analysis. Since the CdS particles consisted of only a few stacked layers, even the concept of stacking faults looses its meaning. The question arises, whether the term "crystal structure" is still appropriate for a particle with less than 100 Atoms. For instance, it would be possible that the particles form hollow structures similar to the C60 molecules. Since these structures can be simulated with the EM as well, this could be one next step to further analyse the XRD data of the CdS sample. The last chapter of this thesis introduced three samples of core-shell-nanoparticles, each with a CdSe core and a ZnS shell. Here again, the power of the EM method was demonstrated by forming a realistic model of these much complexer particles. The calculated diffraction patterns reproduced the experimental data very well - in contrast to all other analysis methods. The success of the EM was due to the implementation of an additional ZnS structure in the simulated model. Even if the shell type of this additional structure could not clearly be identified by XRD and our analysis, there is some strong evidence for a local epitaxy of the ZnS on the CdSe core. In conclusion, it was demonstrated that the EM method is far superior to any of the standard techniques for the diffraction pattern analysis of small nanoparticles. The particular strengths of the EM are the manifold structures, which can be simulated, together with defects, surface effects, parameter distributions etc. A further advantage over the other analysis methods is the possibility to form realistic core-shell-particles with a diversity of shell types. Even more complex shells are conceivable, e.g. a mixed shell or the double shell of the core-shell-shell-particles. All these features are intrinsically included in the models and thus in the diffraction patterns, i.e., no artificial parameters must be introduced and later be interpreted. As long as a certain amount of atoms per particle is not exceeded, and, especially for particles containing many defects, the EM introduced here should thus be preferred. KW - Nanopartikel KW - Röntgenstrukturanalyse KW - Ensemble-Modellierung KW - Core-shell Nanoteilchen KW - CdSe/ZnS Nanoteilchen KW - Strukturbestimmung KW - Röntgenbeugung KW - Zinkoxid KW - Cadmiumselenid KW - XRD KW - structure determination KW - nanoparticles KW - ensemble modeling Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-52218 ER - TY - THES A1 - Moratin, Helena Anne T1 - Mechanismen Zinkoxid-Nanopartikel-assoziierter Toxizität am Beispiel einer humanen Plattenepithelkarzinom-Zelllinie und primärer humaner mesenchymaler Stammzellen T1 - Analysis of zinc oxide nanoparticle-associated mechanisms of toxicity using the example of a human squamous cell carcinoma cell line and primary human mesenchymal stem cells N2 - Einleitung: Zinkoxid (ZnO) ist eines der am häufigsten für industrielle Produktionen und Konsumgüter eingesetzten Nanomaterialien. Zytotoxizität von ZnO-Nanopartikeln (NP) war bereits Gegenstand einiger Studien, jedoch sind die molekularen Schädigungsmechanismen nicht gänzlich geklärt. Über genotoxische Eigenschaften, die bereits bei sub-zytotoxischen Dosen auftreten können, ist im Allgemeinen weniger bekannt. Ziel dieser Studie war die Erstellung eines umfassenden Toxizitätsprofils von ZnO-NP durch Einsatz multipler Testsysteme. Methoden: Neben der Plattenepithelkarzinom-Zelllinie FaDu wurden humane mesenchymale Knochenmarkstammzellen (BMSC) für unterschiedliche Zeiträume und Konzentrationen mit ZnO-NP behandelt. Zytotoxizität, Apoptoseinduktion und Zellzyklusalteration wurden durch MTT-Test, PCR und Durchflusszytometrie analysiert. Mit dem fpg-modifizierten Comet Assay wurden der Einfluss von oxidativem Stress auf das Gesamtausmaß der DNA-Schädigung untersucht. Ergebnisse: ZnO-NP führten im MTT-Test ab 8 µg/ml zu einer Reduktion der Vitalität in FaDu-Zellen. Durchflusszytometrisch wurden eine dosis- und zeitabhängige Zunahme von Apoptose sowie Veränderungen des Zellzyklus nachgewiesen. Im Comet Assay konnte nach Inkubation mit 5 µg/ml ZnO-NP eine signifikante DNA-Fragmentierung in BMSC nachgewiesen werden. Bei allen getesteten Konzentrationen wurde oxidativer Stress als wichtiger Einflussfaktor der Schädigung nachgewiesen. Diskussion: Vorliegende Studie liefert Hinweise dafür, dass ZnO-NP toxisch sind. Gegenwärtig ist eine definitive Aussage über das schädigende Potenzial von NP nicht zu treffen, da der Vergleich verschiedener Studien kaum möglich ist. Gerade die Verwendung von ZnO-NP als Bestandteil von Kosmetikprodukten, die repetitiv in geringen Mengen von Verbrauchern appliziert werden, sollte jedoch kritisch betrachtet werden. N2 - Introduction: Zinc oxide (ZnO) is among the most commonly used nanomaterials for consumer products. Cytotoxicity of ZnO-nanoparticles (ZnO-NP) has already been addressed in several studies; however, there is still a lack of knowledge concerning the molecular mechanisms of toxicity. As to genotoxicity, which can already occur at sub-toxic doses, data is generally rare. It was therefore the aim of this study to establish a broad profile of toxicity for ZnO-NP by applying multiple test systems. Methods: Besides the head and neck squamous cell carcinoma-derived cell line FaDu, primary human bone marrow-derived mesenchymal stem cells (BMSC) were treated with ZnO-NP with variable doses and for different time periods. Cytotoxicity, induction of apoptosis and cell cycle alteration were assessed by MTT-Test, PCR and flow cytometry. Fpg-modified Comet Assay was used to determine the influence of oxidative stress with regard to the total DNA-damage. Results: 8 µg/ml ZnO-NP reduced cell viability in FaDu cells in the MTT-Test. Dose- and time-dependent increase of apoptosis and alterations of the cell cycle were verified by flow cytometry. After incubation with 5 µg/ml ZnO-NP a significant DNA-fragmentation was measured in BMSC with the Comet Assay. In all tested concentrations oxidative stress could be identified as an important factor of cell damage. Discussion: This study provides evidence that ZnO-NP are toxic. At the current point a definite statement concerning the damaging potential of ZnO-NP is not to be made because the comparison between different studies is not possible. Yet especially the repetitive low-dose application of ZnO-NP as component of cosmetic products should be investigated toxicologically. KW - Zinkoxid KW - Nanopartikel KW - Zytotoxizität KW - Genotoxizität KW - Toxizität KW - Plattenepithelkarzinom KW - MSC Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204237 ER -