TY - THES A1 - Glinka, Michael T1 - Charakterisierung der Rolle des β-Aktin mRNA bindenden Proteins heterogenous nuclear ribonucleoprotein-R für das Axonenwachstum von Motoneuronen T1 - Characterisation of the role of the β-Aktin mRNA binding protein heterogenous nuclear ribonucleoprotein-R for the axonal growth of motoneurons N2 - Bei Yeast Two-Hybrid Untersuchungen wurde in unserer Arbeitsgruppe das RNA-Bindungsprotein hnRNP-R als Interaktionspartner von SMN gefunden und es konnte gezeigt werden, dass hnRNP-R mit SMN in Axonen von primären Motoneuronen kolokalisiert (Rossoll et al., 2002). hnRNP-R assoziiert mit der β-Aktin mRNA und nach Überexpression kommt es zu einer Akkumulation von β-Aktin in den Wachstumskegeln von neuronalen Zellen, sowie zu verstärktem Neuritenwachstum bei PC12 Zellen. Wird die SMN-Bindungsdomäne von hnRNP-R deletiert, ist dieser Effekt stark reduziert (Rossoll et al., 2003). Auf diesen in vitro Befunden ist die Hypothese begründet, dass hnRNP-R an der Translokation der β-Aktin mRNA in die Wachstumskegel von neuronalen Zellen beteiligt ist. Deshalb wurde im Rahmen dieser Arbeit die Rolle von hnRNP-R bei der Entwicklung in Neuronen des Nervensystems näher untersucht. Dazu wurden Zebrafisch Embryonen als in vivo Modellsystem für Morpholino vermittelte Knockdown Untersuchungen gewählt. Zunächst wurde ein gegen murines Protein hergestelltes hnRNP-R Antiserum charakterisiert und gezeigt, dass es das Zebrafisch Protein spezifisch erkennt. Dieses Antiserum wurde in Western Blot Analysen verwendet um den hnRNP-R Knockdown in Zebrafisch Embryonen zu verifizieren. Bei den hnRNP-R Morpholino injizierten Embryonen konnten dosisabhängig axonale Veränderungen beobachtet werden. Diese Veränderungen stimmen mit einem Krankheitsmodell für SMA im Zebrafisch überein. Es konnte gezeigt werden, dass das Überleben primärer Motoneurone in Zebrafisch Embryonen nicht beeinträchtigt ist und dass andere neuronale Zellen keine signifikante Beeinflussung durch einen hnRNP-R Knockdown erfahren. Um die Spezifität des axonalen Phänotyps, der durch hnRNP-R Knockdown hervorgerufen wurde zu belegen, wurde mit muriner hnRNP-R mRNA ein Rescue-Experiment durchgeführt. Es konnte gezeigt werden, dass dabei der axonale Phänotyp weitestgehend wieder aufgehoben wurde. Parallel zu den Zebrafisch Experimenten wurde ein hnRNP-R Knockout Konstrukt mittels homologer Rekombination in Escherichia coli hergestellt und in murine embryonale Stammzellen elektroporiert. Die Charakterisierung einer hnRNP-R Knockout Maus könnte weitere bedeutende Einsichten in die in vivo Funktionen von hnRNP-R bei der Embryonalentwicklung und speziell der Entwicklung von Motoneuronen gewähren. Um der Frage nach zu gehen, welche mRNAs in Wachstumskegeln von Axonen primärer Maus Motoneuronen zu finden sind oder durch Transportprozesse lokal akkumuliert sind,wurden Versuche unternommen, um mittels Laser-Mikrodissektion einzelne Wachstumskegel von Motoneuronen für Untersuchungen der enthaltenen mRNAs zu gewinnen. Erstmalig ist es im Rahmen dieser Arbeit gelungen, kompartimentalisierte Kulturen von primären Motoneuronen der Maus zu etablieren. Damit wurde die Grundlage geschaffen, um RNA-Profile von distalen Zellkompartimenten wie den Axonen und Wachstumskegeln zu bestimmen. N2 - In previous yeast two-hybrid studies, we have shown that hnRNP-R is an interaction partner of SMN and that it co-localises with SMN in axons of primary motor neurons (Rossoll et al., 2002). hnRNP-R associates with the β-actin mRNA and after overexpression, an accumulation of β-actin in growth cones of neuronal cells and elongated neurite growth of pc12 cells could be observed. If the SMN binding domain of hnRNP-R was deleted, this effect was strongly reduced (Rossoll et al., 2003). On this in vitro observations the hypothesis is based, that hnRNP-R plays an important role in the translocation of β-actin mRNA to the growth cones of neuronal cells. For that reason, the role of hnRNP-R in the development of neuronal cells of the nervous system was investigated in more detail, in line with this thesis. We have chosen embryonic zebrafish as an in vivo model system for morpholino mediated knockdown analysis of hnRNP-R. First of all an antiserum that has been generated against murine hnRNP-R protein was characterised and it could be shown that it specifically recognises the zebrafish protein. This antiserum was used in western blot analysis to verify the hnRNP-R knockdown in embryonic Zebrafish. Dose dependent axonal phenotypes could be described in hnRNP-R morpholino injected embryos, that resembled the alterations, observed in a disease model for SMA in zebrafish. We could show that the survival of motor neurons in zebrafish embryos was not impaired and that other populations of neuronal cells, were not significantly affected by the hnRNP-R knockdown. To prove the specificity of the axonal phenotype after hnRNP-R knockdown, a rescue experiment with co-injected mouse hnRNP-R mRNA has been performed, that nearly abolished the axonal phenotype. In parallel to the zebrafish experiments an hnRNP-R knockout construct was made by homologues recombination in Escherichia coli. This construct has been electroporated into embryonic stem cells of mice, and obtained clones have been screened. The characterisation of an hnRNP-R knockout mouse could reveal important insights of in vivo functions of hnRNP-R in embryonic development and especially the development of motor neurons. To answer the question, which mRNAs are located in growth cones of primary mouse motor neurons, or are locally accumulated due to mRNA transport processes, growth cones of primary mouse motor neurons have been cut by laser micro dissection. For the first time, compartmentalised cell cultures of primary motor neurons could be established during this thesis, providing the background to generate detailed RNA profiles of distal cell compartments like axons and growth cones. KW - Heterogene Ribonucleoproteine KW - Actin KW - Motoneuron KW - Axon KW - Axonaler Transport KW - hnRNP-R KW - Morpholino KW - Knockdown KW - β-Aktin KW - kompartimentierte Kulturen KW - primäre Motoneurone KW - BDNF KW - axonal transport KW - hnRNP-R KW - morpholino knockdown KW - β-actin KW - compartimentalized cultures KW - primary notoneuron KW - BDNF Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57410 ER - TY - THES A1 - Drexl, Hans Henning T1 - Der Einfluss von R-Roscovitine und Valproat auf das Wachstums- und präsynaptische Differenzierungsverhalten SMN-defizienter Motoneurone T1 - The Effects of R-Roscovitine and Valproic Acid on Axonal Growth and Presynaptic Differentiation of Smn-deficient Motoneurons N2 - Die spinale Muskelatrophie ist eine monogenetische Erkrankung, die bereits im Kindesalter aufgrund von Motoneurondegeneration zu Muskelatrophie führt und nicht selten einen tödlichen Verlauf nimmt. Ursache der Erkrankung ist ein Mangel an SMN-Protein. Der hierfür verantwortliche Verlust des SMN1-Gens kann durch das SMN2-Gen aufgrund eines gestörten Spleißprozesses am Exon 7 nicht kompensiert werden. Neben Aufgaben in der RNA-Prozessierung wird das SMN-Protein für den axonalen Transport von Ribonucleinpartikeln in Motoneuronen benötigt, was bei der SMA zu pathologischem Wachstum, Differenzierung und Funktion der Motoraxone führt. Im Rahmen dieser Arbeit wurden kultivierte Motoneurone aus einem Mausmodell für die SMA Typ I (Genotyp Smn-/-;SMN2) mit zwei unterschiedlichen Substanzen behandelt und deren Wirkungen auf das präsynaptische Differenzierungsverhalten der Motoneurone verglichen: R-Roscovitine, ein Agonist/Modulator spannungsabhängiger N-Typ- und P/Q-Typ-Kalziumkanäle, welcher zudem eine CDK-inhibierende Wirkung besitzt, sowie Valproat, ein HDAC-Inhibitor, der eine stimulierende Wirkung auf die SMN-Transkription hat. Es zeigte sich, dass R-Roscovitine in der Lage ist, das pathologische Wachstums- und präsynaptische Differenzierungsverhalten der Smn-defizienten Motoneurone zu normalisieren, ohne hierbei Einfluss auf die erniedrigte Menge an Smn-Protein zu nehmen. Die Behandlung mit Valproat beeinflusst hingegen weder die Menge an Smn-Protein, noch die pathologische Differenzierung der Wachstumskegel Smn-defizienter Motoneurone. Erklären lassen sich diese Effekte in erster Linie durch den Agonismus an spannungsabhängigen Kalziumkanälen durch R-Roscovitine. Durch vermehrten Kalziumeinstrom kommt es zur Normalisierung von Struktur und Funktion der Wachstumskegel. Ein CDK-vermittelter Effekt scheint unwahrscheinlich. Obgleich die genauen Vorgänge noch nicht verstanden sind, zeigen diese Ergebnisse, dass sich Smn-defiziente Motoneurone normal entwickeln können, wenn die hierfür erforderlichen kalziumabhängigen präsynaptischen Differenzierungssignale korrekt ausgelöst werden. Bei weiterer Erforschung sind Therapeutika denkbar, die in Zukunft die überwiegend genetisch orientierten Therapieansätze zur Hochregulation der SMN-Expression bei SMA-Patienten über einen von der Genetik unabhängigen Wirkmechanismus unterstützen können. N2 - Spinal muscular atrophy (SMA) is a monogenetic disease mostly of children and young adults. The affected show motoneuron degeneration, paralysis and muscular atrophy and the disease is frequently leading to death. SMA is caused by the loss of the SMN1 (survival motoneuron1) gene and thereby deficiency of the SMN protein. A second SMN gene in humans (SMN2) contains a mutation in Exon 7, why most of its transcripts are alternatively spliced and therefore truncated. Thus, the SMN2 gene is not able to compensate a SMN1 loss. The SMN protein is necessary for the assembly of snRNP particles, which are essential for RNA processing. In motoneurons, the SMN protein is additionally important for the axonal transport of mRNA. Therefore, cultured motoneurons from Smn-deficient mouse embryos show alterations in axonal growth as well as in size, differentiation and function of their growth cones. Especially low density of ß-actin and N-type (Cav2.2) voltage-gated calcium channels (VGCCs) and thereby reduced frequency of spontaneous Ca2+ transients have been described. These transients normally work as signals for differentiation on the growth cones. This work demonstrates that application of R-Roscovitine, an inhibitor of Cyclin dependent kinases (CDKs) 2 and 5 as well as a modifier/opener of VGCCs (N-type and P/Q-type), enhances VGCC accumulation and levels of ß-actin protein in growth cones and ameliorates defects of growth cone size and axon elongation in Smn-deficient motoneurons. These compensatory effects are primarily mediated by the enhanced VGCC clustering and hereby resuscitation of the presynaptic excitability; the low level of SMN protein in these cells is not risen by R-Roscovitine. Valproic acid, a well-known anti-epileptic drug and inhibitor of the histon-deacetylase (HDAC), has been shown to rise the level of SMN protein in different cell types by unspecific upregulation of transcription. Here, treatment of Smn-deficient cultured motoneurons with Valproate had no effects neither on the level of SMN protein nor on the VGCC accumulation in growth cones. In contrast to R-Roscovitine, Valproate inhibits VGCCs. These results underline the importancy of Ca2+ homeostasis for proper motoneuron differentiation and function. These mechanisms may offer an alternative approach for SMA treatment besides the existing gene-based strategy. KW - Spinale Muskelatrophie KW - R-Roscovitine KW - Valproat KW - SMA KW - Motoneuron KW - Zellkultur Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171696 ER - TY - THES A1 - Fischer, Matthias T1 - Der Einfluß der Ribosomale S6 Kinase 2 (RSK2) auf das Neuriten- und Synapsenwachstum in vivo und in Zellkultur T1 - Der Einfluß der Ribosomalen S6 Kinase 2 (RSK2) auf das Neuriten- und Synapsenwachstum in vivo und in Zellkultur N2 - In dieser Arbeit sollte die Funktion der Ribosomalen S6 Kinase 2 (RSK2) auf neuronaler Ebene untersucht werden. Dahingehend gab es, z.B. auf Grund der Phänotypen von Fliegen und Mäusen mit Mutationen im entsprechenden Gen oder von Patienten mit Coffin-Lowry-Syndrom (CLS) nur Vermutungen. Es bestand letztlich die Hoffnung, einen Beitrag zur Aufklärung der Pathophysiologie des CLS zu leisten. Es stellte sich auf Grund von Experimenten sowohl in vivo als auch in vitro in verschiedenen Modellsystemen in dieser Arbeit heraus, daß RSK2 einen negativen Einfluß auf das Neuriten- und Synapsenwachstum hat. In kultivierten Motoneuronen führte der KO von RSK2 zu längeren Axonen und die Überexpression eines konstitutiv aktiven RSK2-Konstrukts zu kürzeren Axonen. In PC12-Zellen führte die Expression von konstitutiv aktiven RSK2 Konstrukten zur Verkürzung der Neuriten und die Expression eines Kinase-inaktiven RSK2 Konstrukts zu längeren Neuriten. In vivo war die neuromuskuläre Synapse bei RSK2-KO Mäusen vergrößert und hatte bei Drosophila rsk Mutanten mehr Boutons. Das RSK2-Protein ist in Motoneuronen der Maus und in überexprimierter Form in den Boutons der neuromuskulären Synapse bei Drosophila nachweisbar. Damit wurde zum ersten Mal die Funktion von RSK2 auf neuronaler Ebene beschrieben. Bezüglich des Mechanismus, wie RSK2 das Nervenwachstum beeinflußt gab es deutliche Hinweise, die dafür sprechen, daß RSK2 dies über eine in der Literatur schon häufiger beschriebene Hemmung der MAPK ERK1/2 erreicht. Für diese Hypothese spricht die Tatsache, daß die ERK-Phosphorylierung in murinen Motoneuronen und im Rückenmark embryonaler Mäuse der RSK2-Mutante erhöht ist und der Axonwachstumsdefekt durch eine Hemmung von MEK/ERK behoben werden kann. Auch ist die ERK-Phosphorylierung an der murinen Muskel-Endplatte in der Mutante erhöht. Zudem zeigen genetische Epistasis-Experimente in Drosophila, daß RSK die Bouton-Zahl über ERK/RL hemmt. RSK scheint also in Drosophila von der Funktion her der RSK2-Isoform in Wirbeltieren sehr ähnlich zu sein. Ein weiteres wichtiges Ergebnis ist die Beobachtung, daß RSK2 bei Motoneuronen keinen wesentlichen Einfluß auf das Überleben der Zellen in Gegenwart neurotropher Faktoren hat. Möglicherweise spielen hier redundante Funktionen der RSK Familienmitglieder eine Rolle. Ein bislang unerklärter Befund ist die reduzierte Frequenz spontaner Depolarisationen bzw. damit einhergehender Ca2+ Einströme bei RSK2-KO Motoneuronen in Zellkultur. Die Häufigkeit und Dichte von Ca2+-Kanälen und aktive Zonen Proteinen war in Motoneuronen nicht von der Anwesenheit des RSK2-Proteins abhängig. Im Hippocampus konnte außerdem das RSK2-Protein präsynaptisch in den Moosfaser-Boutons der CA3 Region nachgewiesen werden. Es befindet sich auch in den Pyramidenzellen, aber nicht in den Pyramidenzell-Dendriten in CA3. Bezüglich der Bedeutung dieser Befunde für die Aufklärung der Pathologie des CLS ist zu folgern, daß der neuro-psychologische Phänotyp bei CLS Patienten wahrscheinlich nicht durch reduziertes Überleben von Neuronen, sondern eher durch disinhibiertes Axonwachstum oder Synapsenwachstum bedingt ist. Dies kann grob sowohl für die peripheren als auch die zentralen Defekte gelten, denn die Synapsen im ZNS und am Muskel sind in ihrer molekularen Ausstattung z.B. im Bereich der Vesikel, der aktiven Zonen oder der Transmitterausschüttung sehr ähnlich. Weiterhin könnte eine veränderte synaptische Plastizität u.a. an der Moosfaser-Pyramidenzell-Synapse in der CA3 Region des Hippocampus eine Rolle bei den kognitiven und mnestischen Einschränkungen der Patienten spielen. Die Entdeckung, daß aktiviertes ERK bei den beobachteten Effekten eine Rolle spielt kann für die Entwicklung von Therapiestrategien eine wertvolle Erkenntnis sein. N2 - In this thesis the function of the Ribosomal S6 Kinase 2 (RSK2) on the neuronal level should be investigated. Due to the phenotypes of flies and mice with mutations in the respective gene or of Coffin-Lowry-Syndrome (CLS) patients there existed only rough speculations. An aim was to make a contribution to the elucidaton of the pathophysiology of the CLS. In this thesis it could be shown by experiments in vivo as well as in vitro in different model systems, that RSK2 has a negative influence on neurite- and synapse growth. In cultivated motoneurons the KO of RSK2 increased the length of axons and the overexpression of a constitutive acitve RSK2-construct reduced axon length. In PC12 cells expression of constitutive active RSK2-constructs reduced neurite-length and expression of a kinase-dead RSK2-construct increased neurite-length. In vivo the size of the neuromuscular synapse of RSK2-KO mice and the bouton number at the Drosophila neuromuscular junction was increased. The RSK2-Protein could be found in mouse motoneurons and, if overexpressed, in boutons at the Drosophila neuromuscular junction. These results show for the first time, which function RSK2 has on the neuronal level. With respect to the mechanism, how RSK2 influences neurite growth, there was evidence, that RSK2 does this by inhibition of the MAPK ERK1/2. The latter has been described in literature before. Arguments for this are the findings, that ERKphosphorylation in mouse motoneurons and in embryonal spinal cord of the RSK2 mouse mutant is increased and that the axon-growth defect can be rescued by inhibition of MEK/ERK. Besides this, ERK-phosphorylation at the neuosmuscular endplate of RSK2-KO mice is increased. Moreover, genetic epistasis experiments in Drosophila show, that RSK inhibits bouton numbers via ERK/RL. So, Drosophila RSK seems to resemble, according to its function, the vertebrate RSK2-isoform. A further important result is the observation, that RSK2 has no effect on survival of motoneurons in the presence of neurotrophic factors. Possibly redundant functions of RSK family members are responsible for this. A so far unexplained finding is the reduced frequency of spontaneous depolarisations with concomitant Ca2+ Influx in cultured RSK2-KO Motoneurons. The amount and density of Ca2+ channels and active zone proteins was not dependent on the presence of the RSK2-Protein in motoneurons. In the hippocampus the RSK2-Protein could be found presynaptically in mossy-fiber boutons in the CA3 region. Moreover, it is localized in pyramidal cells, but not in the pyramidal cell dendrites in the CA3 region. With respect to the impact of these findings on the understanding of the CLS pathology, it is, according to the results of this thesis, probably not caused by reduced survival of neurons, but by disinhibited axon and synapse growth. This may account roughly for peripheral as well as central defects, because synapses in the central nervous system and at the muscle are very similar with respect to the molecular organization for example of vesicles, the active zone or transmitter release. Furthermore, a change in synaptic plasticity for example at the mossy-fiber pyramidal cell synapse in the CA3 region of the hippocampus could lead to the cognitive and mnestic deficits in CLS patients. The finding that activated ERK plays a role in the observed effects can guide the way for new therapeutic strategies. KW - Ribosom KW - Kinasen KW - Axon KW - Wachstum KW - RSK2 KW - Motoneuron Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48341 ER - TY - THES A1 - Pasedag, Saskia Maria T1 - Differenzielle Wirkungen neurotropher Faktoren auf das Axon-und Dendritenwachstum von Motoneuronen T1 - Differential effects of neurotrophic factors on axonal and dendritic growth of motoneurons N2 - In der vorliegenden Dissertation wurde die subzelluläre Lokalisation der Rezeptoren für die neurotrophen Faktoren BDNF, CNTF und GDNF in primären embryonalen und adulten Motoneuronen erstmalig genau charakterisiert. Die Rezeptoruntereinheiten des BDNF und CNTF Rezeptors, TrkB, p-TrkB, gp130 und p-Stat3, sind im Perikaryon, in Dendriten, im Axon und an den Axonterminalen bzw. Wachstumskegeln von Motoneuronen lokalisiert. Dabei sind die nativen Formen (TrkB, gp130) im Axon überwiegend membranständig, die aktivierten Formen (p-TrkB, p-Stat3) überwiegend im Inneren des Axons lokalisiert. Demgegenüber sind die Rezeptoruntereinheiten des GDNF Rezeptors, Ret und p-Ret, besonders stark in den Dendriten exprimiert. Auch im Perikaryon und an der neuromuskulären Endplatte sind Ret und p-Ret lokalisiert, nicht jedoch im Axon. Im zweiten Teil der Arbeit wurde das durch neurotrophe Faktoren bedingte Neuritenwachstum genau quantifiziert. Dabei wurde zwischen einer Stimulation des Axon- bzw. des Dendritenwachstums differenziert. Die mit GDNF behandelten Dendriten werden etwa doppelt so lang wie die Dendriten, der mit BDNF oder CNTF behandelten Motoneurone. GDNF ist somit ein potenter Stimulator des Dendritenwachstums bei isolierten primären Motoneuronen. Dieser Befund korreliert gut mit der starken Expression von Ret und p-Ret in den Dendriten. Des Weiteren wurde eine Analyse der Interaktion der neurotrophen Faktoren mit dem glutamatergen AMPA Rezeptor in Hinblick auf das Neuritenwachstum durchgeführt. Dabei zeigte sich, dass die Interaktion zwischen neurotrophen Faktoren und dem AMPA Rezeptor besonders für das Dendritenwachstum von Bedeutung ist. Die klinische Bedeutung neurotropher Faktoren und deren Rezeptoren wird im dritten Teil der Arbeit dargestellt. Die pmn Maus ist ein Mausmodell für humane degenerative Erkrankungen des Motoneurons, wie der ALS und der SMA. Pmn Motoneurone, die mit BDNF oder GDNF kultiviert werden, weisen den charakteristischen axonalen Wachstumsdefekt der pmn Motoneurone auf und werden nur etwa halb so lang wie gesunde Kontrollmotoneurone. Bemerkenswerterweise führt die Behandlung der pmn Motoneurone mit CNTF zu einer kompletten Remission des axonalen Wachstumsdefekts, so dass die Axone eine normale Axonlänge erreichen. Auch die Anzahl der pathologischen axonalen Schwellungen werden in vitro durch CNTF stark reduziert. CNTF scheint demnach der interessanteste neurotrophe Faktor für eine Behandlung degenerativer Motoneuronerkrankungen zu sein. N2 - Neurotrophins are important factors for many different functions of motoneurons, such as survival, neurite growth, as well as neuromuscular signalling. Neurotrophin receptors are therefore thought to be differently distributed in dendrites and axons. However, their precise localization and regulation in motoneurons were not well defined. This thesis characterized the exact subcellular localisation of the BDNF, CNTF and GDNF receptor subunits on adult and embryonic motoneurons. The BDNF und CNTF receptor subunits, gp130 and p-Stat3, are located in the perikaryon, in dendrites, in the axon as well as the growth cones and neuromuscular junctions of motoneurons. Immunofluorescent staining for the native forms (TrkB, gp130) is mainly found close to the membrane of the axon. In contrast, the activated forms (p-TrkB, p-Stat3) are mainly located inside the axon. GDNF receptor subunits Ret and p-Ret are highly expressed in the dendrites of motoneurons. In addition, Ret and p-Ret are also located in the perikaryon as well as the neuromuscular junction. Moreover, neurite outgrowth stimulated by neurotrophic factors was analyzed, differentiating axonal and dendritic growth. Primary motoneurons treated with GDNF grew dendrites which were twice as long as dendrites treated with BDNF or CNTF. Thus, GDNF is an important and potent stimulator of dendrite outgrowth in isolated primary motoneurons. This finding correlates well with the high expression of Ret and p-Ret in dendrites. On the other hand BDNF, CNTF and GDNF had equally potent effects on stimulating axonal growth. This thesis also characterized the interactions of neurotrophic factors with AMPA receptors regarding effects on neurite outgrowth. Interestingly, this interaction seems to be of greater importance for dendritic growth rather than axonal growth. The pmn mouse is a mouse model for neurodegenerative diseases of motoneurons, such as amyotrophic lateral sclerosis and spinal muscular atrophy. Pmn Motoneurons, which were cultured in presence of BDNF or GDNF, displayed the characteristic axonal growth deficiency as well as typical axonal swellings. The axon of these motoneurons reached only half the length of healthy control motoneurons. Surprisingly, treatment with CNTF rescued the pmn phenotype as the axons grew to the lengths of healthy control motoneurons. CNTF treatment also significantly reduced the number of pathological axonal swellings in vitro. Therefore CNTF seems to be the most promising therapeutic neurotrophic factor for treatment of neurodegenerative diseases of the motoneuron. KW - BDNF KW - CNTF KW - GDNF KW - Motoneuron KW - pmn KW - CNTF KW - BNDF KW - GDNF KW - Neuritenwachstum KW - neurotrophic KW - neurite KW - AMPA KW - axon KW - dendrite Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29473 ER - TY - THES A1 - Beck, Katherina T1 - Einfluss von RSK auf die Aktivität von ERK, den axonalen Transport und die synaptische Funktion in Motoneuronen von \(Drosophila\) \(melanogaster\) T1 - RSK2 alters ERK activity, axonal transport and synaptic function in motoneurons of \(Drosophila\) \(melanogaster\) N2 - In dieser Arbeit sollte die Funktion von RSK in Motoneuronen von Drosophila untersucht werden. Mutationen im RSK2-Gen verursachen das Coffin-Lowry-Syndrom (CLS), das durch mentale Retardierung charakterisiert ist. RSK2 ist hauptsächlich in Regionen des Gehirns exprimiert, in denen Lernen und Gedächtnisbildung stattfinden. In Mäusen und Drosophila, die als Modellorganismen für CLS dienen, konnten auf makroskopischer Ebene keine Veränderungen in den Hirnstrukturen gefunden werden, dennoch wurden in verschiedenen Verhaltensstudien Defekte im Lernen und der Gedächtnisbildung beobachtet. Die synaptische Plastizität und die einhergehenden Veränderungen in den Eigenschaften der Synapse sind fundamental für adaptives Verhalten. Zur Analyse der synaptischen Plastizität eignet sich das neuromuskuläre System von Drosophila als Modell wegen des stereotypen Innervierungsmusters und der Verwendung ionotroper Glutamatrezeptoren, deren Untereinheiten homolog sind zu den Untereinheiten der Glutamatrezeptoren des AMPA-Typs aus Säugern, die wesentlich für die Bildung von LTP im Hippocampus sind. Zunächst konnte gezeigt werden, dass RSK in den Motoneuronen von Drosophila an der präsynaptischen Seite lokalisiert ist, wodurch RSK eine Synapsen-spezifische Funktion ausüben könnte. Morphologische Untersuchungen der Struktur der neuromuskulären Synapsen konnten aufzeigen, dass durch den Verlust von RSK die Größe der neuromuskulären Synapse, der Boutons sowie der Aktiven Zonen und Glutamatrezeptorfelder reduziert ist. Obwohl mehr Boutons gebildet werden, sind weniger Aktive Zonen und Glutamatrezeptorfelder in der neuromuskulären Synapse enthalten. RSK reguliert die synaptische Transmission, indem es die postsynaptische Sensitivität, nicht aber die Freisetzung der Neurotransmitter an der präsynaptischen Seite beeinflusst, obwohl in immunhistochemischen Analysen eine postsynaptische Lokalisierung von RSK nicht nachgewiesen werden konnte. RSK ist demnach an der Regulation der synaptischen Plastizität glutamaterger Synapsen beteiligt. Durch immunhistochemische Untersuchungen konnte erstmals gezeigt werden, dass aktiviertes ERK an der präsynaptischen Seite lokalisiert ist und diese synaptische Lokalisierung von RSK reguliert wird. Darüber hinaus konnte in dieser Arbeit nachgewiesen werden, dass durch den Verlust von RSK hyperaktiviertes ERK in den Zellkörpern der Motoneurone vorliegt. RSK wird durch den ERK/MAPK-Signalweg aktiviert und übernimmt eine Funktion sowohl als Effektorkinase als auch in der Negativregulation des Signalwegs. Demnach dient RSK in den Zellkörpern der Motoneurone als Negativregulator des ERK/MAPK-Signalwegs. Darüber hinaus könnte RSK die Verteilung von aktivem ERK in den Subkompartimenten der Motoneurone regulieren. Da in vorangegangenen Studien gezeigt werden konnte, dass ERK an der Regulation der synaptischen Plastizität beteiligt ist, indem es die Insertion der AMPA-Rezeptoren zur Bildung der LTP reguliert, sollte in dieser Arbeit aufgeklärt werden, ob der Einfluss von RSK auf die synaptische Plastizität durch seine Funktion als Negativregulator von ERK zustande kommt. Untersuchungen der genetischen Interaktion von rsk und rolled, dem Homolog von ERK in Drosophila, zeigten, dass die durch den Verlust von RSK beobachtete reduzierte Gesamtzahl der Aktiven Zonen und Glutamatrezeptorfelder der neuromuskulären Synapse auf die Funktion von RSK als Negativregulator von ERK zurückzuführen ist. Die Größe der neuromuskulären Synapse sowie die Größe der Aktiven Zonen und Glutamatrezeptorfelder beeinflusst RSK allerdings durch seine Funktion als Effektorkinase des ERK/MAPK-Signalwegs. Studien des axonalen Transports von Mitochondrien zeigten, dass dieser in vielen neuropathologischen Erkrankungen beeinträchtigt ist. Die durchgeführten Untersuchungen des axonalen Transports in Motoneuronen konnten eine neue Funktion von RSK in der Regulation des axonalen Transports aufdecken. In den Axonen der Motoneurone von RSK-Nullmutanten wurden BRP- und CSP-Agglomerate nachgewiesen. RSK könnte an der Regulation des axonalen Transports von präsynaptischem Material beteiligt sein. Durch den Verlust von RSK wurden weniger Mitochondrien in anterograder Richtung entlang dem Axon transportiert, dafür verweilten mehr Mitochondrien in stationären Phasen. Diese Ergebnisse zeigen, dass auch der anterograde Transport von Mitochondrien durch den Verlust von RSK beeinträchtigt ist. N2 - In this thesis the function RSK in motoneurons of Drosophila has been analyzed. Mutations in the RSK2-gene cause the Coffin-Lowry-Syndrome (CLS) which is characterized by mental retardation. RSK2 is predominantly expressed in regions of the brain where learning and formation of the memory take place. Even no obvious changes in brain structures could be observed at macroscopic level in mouse and Drosophila which serve as an animal model for CLS. However deficits in various learning tasks could be observed due to the loss of the RSK function. Synaptic plasticity and the following changes in synaptic properties are fundamental for adaptive behaviors. The neuromuscular system of Drosophila suits as a model for studies of the synaptic plasticity because of the stereotypic innervation pattern and the use of ionotropic glutamate receptors which subunits are homologous to the subunits of the mammalian AMPA-type of glutamate receptors which are essential for the formation of LTP in the hippocampus. This study shows that RSK is located at the presynaptic site of the motoneurons of Drosophila which indicates a synapse-specific function of RSK. The structural analysis of the neuromuscular junction (NMJ) show that the loss of RSK causes a reduction in size of the NMJ, boutons, active zones and glutamate receptor fields. More boutons were found at the NMJ, but less active zones and glutamate receptor fields were established. The localization of RSK at the postsynaptic side could not be detected in this study although RSK regulates the synaptic transmission by affecting the postsynaptic sensitivity but not the presynaptic neurotransmitter release. Hence RSK could take part in the regulation of synaptic plasticity. Immunohistochemical analysis could depict a novel function of RSK in the synapse-specific localization of ERK. Further this study show that due to the loss of RSK more activated ERK is located in den cell bodies of the motoneurons. RSK functions as a negative regulator of the ERK/MAPK signaling in the somata of motoneurons. Additionally, RSK could regulate the distribution of ERK in the different subcompartments of the motoneurons. Previous studies show ERK as a regulator of synaptic plasticity by influencing the insertion of AMPA receptors into the postsynaptic membrane during LTP. RSK is activated by the ERK/MAPK signaling and functions not only as an effector kinase but also as a negative regulator of this pathway. If the effect of RSK on synaptic plasticity is due to its function as a negative regulator of ERK should be clarified in this work. Analysis of the genetic interactions of rsk and rolled, the Drosophila homologue of mammalian ERK, show that the reduced number of active zones and glutamate receptor fields found at the NMJ of RSK null mutants is caused by the function of RSK as a negative regulator of ERK. In turn RSK affects the size of the NMJ, also the size of the active zones and glutamate receptor fields by its function as an effector kinase of the ERK/MAPK signaling. Several studies have shown that the axonal transport of mitochondria is affected in many neuropathological diseases. This work could uncover a novel function of RSK in the regulation of the axonal transport in motoneurons. The loss of RSK causes the formation of agglomerates of the presynaptic proteins BRP and CSP. Therefore RSK takes part in the regulation of the transport of presynaptic material. In absence of RSK less mitochondria are transported in anterograde direction and more mitochondria are pausing. This results implicate a function of RSK in regulating the anterograde transport of mitochondria. KW - Taufliege KW - RSK KW - axonaler Transport KW - synaptische Funktion KW - ERK KW - Motoneuron KW - Motoneuron KW - Genmutation KW - Drosophila Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130717 ER - TY - THES A1 - Schweizer, Ulrich T1 - Genetische Untersuchungen zur Rolle von Cytochrom C und Stat3 bei der Regulation des embryonalen Zelltods von Motoneuronen der Maus T1 - Genetic studies on the role of Cytochrome C and Stat3 for the regulation of the cell death of embryonic mouse motoneurons N2 - Genetische Inaktivierung des somatischen Cytochrom C Gens der Maus Cytochrom C wurde als ein Interaktionspartner im Apoptosom beschrieben. Ziel dieses Projektes war es, die Rolle von Cytochrom C bei der Apoptose von Nervenzellen in vivo durch genetische Inaktivierung in der Maus zu untersuchen. Die homozygote Deletion des Cytochrom C Gens führt jedoch zu einem sehr frühen Entwicklungsdefekt: Schon am 8. Embryonaltag findet man nur noch Embryonen ohne erkennbare Körperachse. Im weiteren wurden daher heterozygote Tiere untersucht, die in bestimmten Geweben, wie Gehirn und Rückenmark, eine Reduktion der Menge von Cytochrom C aufweisen. Am ersten Tag nach der Geburt konnten keine Unterschiede zwischen Tieren mit einem oder zwei Cytochrom C Genen in Bezug die Anzahl von Motoneuronen gefunden werden. Auch nach perinataler Fazialisläsion war die Rate des Zelltods bei Tieren mit heterozygoter Deletion des Cytochrom C Gens unverändert. In vitro zeigte sich jedoch eine erhöhte Resitenz von Motoneuronen gegenüber Fas-induzierter Apoptose. Bei der Analyse der Apoptose von Thymozyten zeigte sich ein Trend, der eine kleine, aber reproduzierbare Verzögerung einer späten Zelltodphase nach UV-induzierter Apoptose nahelegt. Erste Experimente deuten außerdem auf einen Effekt der Cytochrom C Gendosis auf den Verlauf einer Experimentellen Autoimmunencephalitis (EAE) hin. Charakterisierung der NFL-Cre Maus Die zelltypspezifische Genablation mit dem Cre/loxP System umgeht einige der größten Probleme der klassischen Methode der Geninaktivierung in Mäusen, indem nur in bestimmten Geweben oder Zelltypen, eventuell sogar nur ab einem bestimmten Zeitpunkt, ein Gen gezielt ausgeschaltet werden kann. Allerdings hängt das Cre/loxP System von der Verfügbarkeit von brauchbaren Cre-transgenen Mauslinien mit entsprechenden Expressionsmustern und –kinetiken ab. Wir haben eine transgene Mauslinie etabliert und analysiert, die die Cre Rekombinase unter der Kontrolle des humanen Neurofilament-L Promotors exprimiert. Das Expressionsmuster von Cre wurde in mehreren Geweben mit RT-PCR und durch Verkreuzung mit einer Reportergenmaus untersucht. Im Gehirn wurden Cre exprimierende Zelltypen mit in-situ Hybridisierung, Immunhistochemie und wiederum mit Hilfe der Reportermaus identifiziert. Dabei zeigte sich eine spezifische Cre Expression in bestimmten Neuronpopulationen wie hippocampalen Pyramidenzellen und spinalen und cranialen Motoneuronen. Unsere NFL-Cre Maus besitzt einige Eigenschaften, die bisher publizierte Cre-Linien nicht aufweisen, so z.B.eine starke Cre Expression in hippocampalen Pyramidenzellen, aber nicht in Körnerzellen des Gyrus dentatus; Expression in cortikalen Pyramidenzellen, aber keine Expression im Striatum; Expression in zerebellären Purkinje-, aber nicht Körnerzellen; sowie die Expression in spinalen und cranialen Motoneuronen, aber nicht in angrenzenden Interneuronen. Die Rolle von Stat3 für das Überleben von Motoneuronen Die Mitglieder der CNTF/LIF/Cardiotrophin Genfamilie sind potente Überlebensfaktoren für embryonale und lädierte Motoneurone sowohl in vitro als auch in vivo. Diese Faktoren binden an Rezeptorkomplexe, die gp130 und LIFR als signaltransduzierende Komponenten enthalten. Im Gegensatz zu den Rezeptoren für andere neurotrophe Faktoren, führt die Aktivierung von gp130 und LIFR zur Phosphorylierung und Aktivierung des Transkriptionsfaktors Stat3. Es war aber zu Beginn dieser Arbeiten unklar, ob die Aktivierung von Stat3 für den Überlebenseffekt der neuropoietischen Zytokine notwendig ist. Um diese Frage zu beantworten, wurde Stat3 in Motoneuronen mit Hilfe des Cre/loxP Systems konditional inaktiviert. Stat3 ist nicht für das Überleben embryonaler Motoneurone essentiell, obwohl man in vitro eine Verschiebung der Dosis-Wirkungskurve für CNTF findet. In vivo hingegen kann kein erhöhter Zelltod von Motoneuronen nachgewiesen werden. Im Gegensatz dazu, kommt es bei adulten Tieren mit Inaktivierung von Stat3 in Motoneuronen zu einem erhöhten Zelltod nach Fazialisläsion. Diese Neurone können wiederum durch die Applikation neurotropher Faktoren, einschließlich CNTF, gerettet werden. Durch semiquantitative RT-PCR kann man zeigen, daß Stat3-regulierte Gene, deren Expression nach Nervenläsion induziert wird, in Neuronen mit Inaktivierung von Stat3 weniger stark exprimiert werden. Zu diesen Genen gehören Reg-2, ein Mitogen für Schwannzellen, das von regenerierenden Neuronen exprimiert wird, und Bcl-xL, ein Gen, welches direkt in die Apoptoseregulation eingreift. Diese Daten zeigen, daß Stat3 Aktivierung eine essentielle Rolle für das Überleben nach Läsion von postnatalen Motoneuronen spielt, aber nicht während der Embryonalentwicklung. Das bedeutet, daß die Signalwege ein und desselben neurotrophen Faktors sich während der Entwicklung und reifung des Organismus verändern können. N2 - Genetic inactivation of the somatic cytochrome C gene in mice Cytochrome C has been described as a component of the apoptosome. It was the aim of this project to analyze the role of cytochrome C in apoptosis of neurons in vivo by genetic inactivation in mice. Mice lacking cytochrome C, however, exhibit a very early embryonic phenotype: On embryonic day 8, only highly degenerated embryos can be found which even lack a body axis. Therefore, we subsequently analyzed heterozygous animals, as they showed a gene dose-dependent reduction of cytochrome C protein in several tissues, including brain and spinal cord. Testing motoneuron survival after development or after facial nerve lesion, we found no significant differences between heterozygous animals and their wildtype litter mates. In vitro, however, an increased resistance toward Fas-mediated apoptosis was observed in heterozygous motoneurons. When we analyzed induced apoptosis of thymozytes, we consistently found that a late phase of cell death was delayed in cytochrome C heterozygous cells. Characterization of the Cre-transgenic NFL-Cre mouse Cell type-specific gene ablation using the Cre/loxP technology can circumvent some of the greatest problems encountered with classical gene inactivation by selective inactivation of the gene of interest in a particular tissue or cell type, possibly at a specific time point. However, the Cre/loxP technology critically depends on the availability of suitable Cre-transgenic mouse lines. We have established and characterized a transgenic mouse line that expresses Cre recombinase under control of the human neurofilament-L promoter. Cre expression was studied by RT-PCR and cross-breeding with lacZ reporter mice. Our NFL-Cre mice exhibit some unique features not shared with other available Cre transgenic mouse lines: We find high Cre expression in hippocampal pyramidal neurons while granule cells in the dentate gyrus do not express Cre. In addition, we observed widespread Cre expression in cortical neurons, but none in striatal neurons. Finally, Cre is expressed in cranial and spinal motoneurons, but not in adjacent interneurons. The role of Stat3 for the survival of motoneurons Members of the CNTF/LIF/Cardiotrophin gene family are potent survival factors for embryonic and lesioned motoneurons in vitro as well as in vivo. These factors act through receptor comlexes containing gp130 and LIFR signal transducing subunits. A particular feature of these receptors is that their activation leads to phosphorylation and activation of the transcription factor Stat3, while neurotrophin receptors do not activate Stat3. It was the aim of this project to find out whether Stat3 activation in response to CNTF binding is required for its survival effect on motoneurons. Therefore, we conditionally inactivated Stat3 in motoneurons using our NFL-Cre transgenic mice. In NFL-Cre; Stat3flox/KO mice, we find that Stat3 is not essential for motoneuron survival during the the period of naturally occurring cell death, although motoneurons from these mice require higher doses of CNTF for their survival in vitro. In contrast, motoneuron survival is significantly reduced after facial nerve lesion in adult NFL-Cre; Stat3flox/KO mice. Stat3 proved essential for upregulation of Reg-2 and Bcl-xL expression in lesioned motoneurons. These data show that Stat3 activation plays an important role for motoneuron survival after nerve lesion in postnatal life but not during embryonic development, indicating that signaling requirements for motoneuron survival change during maturation. KW - Cytochrom c KW - Apoptosis KW - Nervenzelle KW - Cytochrom C KW - Stat3 KW - Motoneuron KW - Fazialisläsion KW - LIFR KW - Cytochrome C KW - Stat3 KW - motoneuron KW - facial nerve lesion KW - LIFR Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-3732 ER - TY - THES A1 - Frank, Nicolas Clemens T1 - Lokale axonale Wirkungen der CNTF-STAT3 Signalkaskade in Motoneuronen der pmn Maus - einem Mausmodel für die Amyotrophe Lateralsklerose T1 - Local Axonal Function of CNTF-STAT3 Signaling in Motoneurons of the pmn-Mouse – a Mouse Model for Amyotrophic Lateral Sclerosis N2 - 1. Zusammenfassung Während der Embryogenese und nach Verletzungen von Nerven regulieren neurotrophe Faktoren Signalwege für Apoptose, Differenzierung, Wachstum und Regeneration von Neuronen. In vivo Experimente an neugeborenen Nagern haben gezeigt, dass der Verlust von Motoneuronen nach peripherer Nervenläsion durch die Behandlung mit GDNF, BDNF, und CNTF reduziert werden kann In der pmn-Mausmutante, einem Modell für die Amyotrophe Lateralsklerose, führt die Gabe von CNTF, nicht aber von GDNF zu einem verzögerten Krankheitsbeginn und einem verlangsamten Fortschreiten der Motoneuronendegeneration. Auslöser der Motoneuronendegeneration in der pmn-Maus ist eine Mutation im Tubulin spezifischen Chaperon E (Tbce) Gen, das für eines von fünf Tubulin spezifischen Chaperonen (TBCA-TBCE) kodiert und an der Bildung von -Tubulinheterodimeren beteiligt ist. Diese Arbeit sollte dazu beitragen, die CNTF-induzierten Signalwege zu entschlüsseln, die sich lindernd auf den progredienten Verlauf der Motoneuronendegeneration in der pmn-Maus auswirken. Primäre pmn mutierte Motoneurone zeigen ein reduziertes Axonwachstum und eine erhöhte Anzahl axonaler Schwellungen mit einer anomalen Häufung von Mitochondrien - ein frühes Erkennungsmerkmal bei ALS-Patienten. Die Applikation von CNTF nicht aber von BDNF oder GDNF, kann in vitro die beobachteten Wachstumsdefekte und das bidirektionale axonale Transportdefizit in pmn mutierten Motoneurone verhindern. Aus älteren Untersuchungen war bekannt, dass CNTF über den dreiteiligen transmembranen Rezeptorkomplex, bestehend aus CNTFR, LIFR und gp130, Januskinasen aktiviert, die STAT3 an Tyrosin 705 phosphorylieren (pSTAT3Y705). Ich konnte beobachten, dass axonales fluoreszenzmarkiertes pSTAT3Y705 nach CNTF-Gabe nicht retrograd in den Nukleus transportiert wird. Stattdessen führt die CNTF-induzierte Phosphorylierung von STAT3 an Tyrosin 705 zu einer transkriptionsunabhängigen lokalen Reaktion im Axon. Diese pSTAT3Y705 abhängige Reaktion ist notwendig und ausreichend, um das reduzierte Axonwachstum pmn mutierter Motoneurone zu beheben. Wie die Kombination einer CNTF Behandlung mit dem shRNA vermittelten knock-down von Stathmin in pmn mutierten Motoneuronen zeigt, zielt die CNTF-STAT3 Signalkaskade auf die Stabilisierung axonaler Mikrotubuli ab und wirkt sich positiv auf die anterograde und retrograde Mobilität von axonalen Mitochondrien aus. Interessanter Weise konnte ich außerdem feststellen, dass eine akute Gabe von CNTF das mitochondriale Membranpotential in Axonen primärer pmn mutierter und wildtypischer Motoneurone erhöht und einen Anstieg von ATP auslöst. Meine Beobachtungen legen nahe, dass CNTF unerwarteter Weise auch eine transiente Phosphorylierung an STAT3 Serin 727 (pSTAT3S727) auslöst, die zur anschließenden Translokation von pSTAT3S727 in Mitochondrien führt. Diese Ergebnisse zeigen, dass STAT3 mehrere lokale Ziele im Axon besitzt, nämlich axonale Mikrotubuli und Mitochondrien. N2 - 2. Summary Both during development and after injury neurotrophic factors induce signaling pathways that regulate apoptosis, differentiation, growth and regeneration of neurons. In newborn rodents, treatment with GDNF, BDNF and CNTF can reduce the loss of motoneurons after peripheral nerve lesion. In the pmn mutant mouse, a model for amyotrophic lateral sclerosis, CNTF but not GDNF delays disease onset and slows down the course of motoneurons degeneration. Pmn mutant mice, suffer from a point mutation in tubulin specific chaperon E (Tbce) gene that codes for one of five tubulin specific chaperones (TBCA-TBCE) and is necessary for proper -tubulin heterodimer formation. The work presented here was designed to study the specific signaling pathways that are used by CNTF for attenuating progression of motoneuron degeneration in pmn mutant mice. Primary motoneurons from pmn mutant mice show reduced axon growth and irregular axonal swellings with abnormal accumulation of mitochondria – an early hallmark of pathology in ALS patients. In vitro, CNTF but not BDNF or GDNF was able to rescue defective axon growth and to prevent bidirectional transport interruption. It has already been shown that CNTF acts via the tripartite transmembrane receptor complex, composed of CNTFR, LIFR and gp130 to recruit Janus kinases that subsequently phosphorylate STAT3 on tyrosine 705 (pSTAT3Y705). After application of CNTF, I observed that axonal pSTAT3Y705 fused to a fluorescent tag is not retrogradely transported to the nucleus. In contrast, CNTF induced phosphorylation of STAT3 at tyrosine 705 leads to a transcriptional independent local reaction in motor axons which is necessary and sufficient to rescue axon growth in pmn mutant motoneurons. Combining CNTF treatment with shRNA mediated knock-down of Stathmin in pmn mutant motoneurons shows that CNTF-STAT3 signaling leads to microtubule stabilization in axons as well as improving anterograde and retrograde mobility of axonal mitochondria. Interestingly, I additionally found that an acute application of CNTF increases the membrane potential of axonal mitochondria that is accompanied with a rise of ATP levels in pmn mutant and wildtype motoneurons. Unexpectedly, I found STAT3 phosphorylated on serine 727 co-localizing with mitochondria after CNTF application. These results demonstrate that multiple local targets of STAT3 exist in axons that modulate structure and function of microtubules and mitochondria. KW - Motoneuron KW - Myatrophische Lateralsklerose KW - CNTF KW - STAT3 KW - axonaler Transport KW - Motoneuronenerkrankung KW - Maus KW - Ciliary neurotrophic factor KW - Amyotrophe Lateralsklerose Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121065 ER - TY - THES A1 - Lechner, Barbara Dorothea T1 - Modulation des axonalen Wachstums primärer Motoneurone durch cAMP in einem Mausmodell für die Spinale Muskelatrophie T1 - Modulation of axonal growth of primary spinal motor neurons by cAMP in a mouse model for Spinal Muscular Atrophy N2 - Die Spinale Muskelatrophie (SMA) ist eine häufige autosomal-rezessiv vererbte Erkrankung des motorischen Nervensystems bei Kindern. Ursache der Degeneration von spinalen Motoneuronen ist der homozygote Verlust des SMN- (survival of motoneuron) Gens und ein dadurch bedingter Mangel an SMN-Protein. Untersuchungen an Motoneuronen von Smn-defizienten Mäusen ergaben Störungen des axonalen Längenwachstums aufgrund einer Fehlverteilung des Zytoskelettproteins beta-Aktin und seiner mRNA in den Axonterminalen. Das Axonwachstum wird durch Aktin-Polymerisierung im Wachstumskegel gesteuert. beta-Aktin-mRNA findet sich auch in Axonen, und die lokale Proteinsynthese kann durch neuronale Aktivierung gesteigert werden. Das SMN-Protein ist am axonalen Transport von beta-Aktin beteiligt. In der vorliegenden Arbeit ergaben Western Blot-Analysen in neuralen Stammzellen (NSC) sowie spinalen Motoneuronen in vitro eine Steigerung der SMN-Proteinexpression durch 8-CPT-cAMP. Zur Untersuchung der Auswirkungen der erhöhten SMN-Proteinmenge auf die Pathologie der Motoneurone wurde ein in-vitro-Assay entwickelt, mit dessen Hilfe gezeigt werden konnte, dass eine Behandlung mit 100 µM 8-CPT-cAMP die axonalen Veränderungen isolierter embryonaler Smn-defizienter Motoneurone kompensieren kann. Motoneurone von 14 Tage alten Smn-defizienten und Kontroll-Mausembryonen wurden über sieben Tage hinweg auf einer Matrix aus Poly-Ornithin und Laminin-111 bzw. Laminin-121/221 kultiviert und mit 100µM cAMP und neurotrophen Faktoren behandelt. Nach Fixierung wurden die Zellen mit Antikörpern gegen Islet-1/2, tau und beta-Aktin gefärbt, mit Hilfe eines konfokalen Mikroskops fotografiert und digital vermessen. 8-CPT-cAMP erhöht den beta-Aktin-Gehalt in den axonalen Wachstumskegeln von Smn-defizienten Motoneuronen. Die Größe der Wachstumskegel nimmt durch die Behandlung um das 2-3fache zu und erreicht normale Werte. Auf Laminin-111 bleibt das Längenwachstum der Axone durch 100µM 8-CPT-cAMP unbeeinflusst, auf Laminin-121/221 wird das Längenwachstum normalisiert. Die beta-Aktin-Verteilung innerhalb der Axone und Wachstumskegel von Smn-defizienten Motoneuronen erscheint durch die cAMP-Behandlung nahezu normalisiert. Die Wiederherstellung der beta-Aktin-Verteilung in Wachstumskegeln durch cAMP kann große Auswirkungen auf die Funktionalität der Motoneurone haben. Die Ergebnisse sind möglicherweise ein erster Schritt auf dem Weg zu einer Therapie für die Spinale Muskelatrophie. N2 - Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by loss of alpha-motoneurons in the spinal chord due to low levels of the survival motor neuron (SMN) protein. The genetic cause is the homozygous loss or mutation of the telomeric SMN1 gene and retention of the centromeric SMN2 gene, whose transcripts consist of about 90% truncated and unstable and only 10% functional protein. Motoneurons of Smn-deficient SMN2 transgenic mouse embryos cultured on laminin-1 show abnormalities compared to wildtype controls such as shorter axons, smaller growth cones and a ß-actin protein and mRNA deficit in the distal part of the axon. ß-actin plays a major role in growth cone motility and transmitter release at the presynapse. In addition, SMN works in a complex to transport ß-actin mRNA, which is known to be localized and locally translated in axons and growth cones, along the axon. Local ß-actin protein synthesis can be stimulated by increased neuronal activation. We determined the effects of cAMP on ß-actin localisation in axons as well as on axonal growth parameters in Smn-deficient primary motoneurons. Motoneurons of 14 days old Smn-/-, SMN2 transgenic and wildtype mouse embryos were cultured on laminin for 7 days with 100µM 8-CPT-cAMP and neurotrophic factors BDNF and CNTF. Fluorescence staining and digital measurements revealed a major effect of cAMP treatment on ß-actin distribution and growth cone size, which were restored to normal. Neurite lengths on laminin-111 remained unaffected but were normalized on substrate containing a synapse-specific ß2-laminin isoform. Western blots with neural stem cells (NSC) and heterozygous Smn+/-; SMN2 transgenic motoneurons treated with 100µM cAMP showed a marked upregulation of Smn protein expression. These data point to an important role for cAMP as a possible target of SMA drug therapy. KW - Spinale Muskelatrophie KW - Motoneuron KW - Neurobiologie KW - Laminin KW - Actin KW - SMN KW - cAMP KW - SMN KW - cAMP KW - Spinal Muscular Atrophy Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39585 ER - TY - THES A1 - Karle, Kathrin Nora T1 - Untersuchungen zum Pathomechanismus der spinalen Muskelatrophie (SMA): Funktionen des SMN-Proteins für das Axonwachstum T1 - Studies on the pathomechanism of spinal muscular atrophy (SMA): functions of the SMN protein for axon growth N2 - Die proximale spinale Muskelatrophie (SMA) stellt eine der häufigsten erblichen Ursachen für den Tod im Kindesalter dar. Die Patienten leiden unter symmetrischer, langsam progredienter Muskelschwäche und in schweren Fällen auch an sensiblen Ausfällen. Die neurodegenerative Erkrankung wird autosomal-rezessiv durch Deletion bzw. Mutationen des SMN1-Gens (survival motor neuron 1-Gens) auf Chromosom 5q13 vererbt. Das SMN-Protein wird ubiquitär exprimiert und findet sich in allen untersuchten Geweben in einem Multiproteinkomplex, dem sogenannten SMN-Komplex, der die Zusammenlagerung von spleißosomalen Komplexen koordiniert. Die Funktion solcher Komplexe ist für alle Zelltypen essentiell. Deshalb stellt sich die Frage, welcher Pathomechanismus für die Erkrankung SMA verantwortlich ist. Die vorliegende Arbeit zeigt, dass die Überlebensraten der Smn–/–;SMN2-Motoneurone 14 Tage alter Mausembryonen gegenüber Smn+/+;SMN2-Motoneuronen (Kontrollen) nicht reduziert waren. Bei der morphologischen Untersuchung der Zellen zum gleichen Entwicklungszeitpunkt zeigten sich jedoch deutliche Unterschiede. Die Axonlängen der Smn-defizienten Motoneurone waren gegenüber Kontrollen signifikant verringert. Das Dendritenwachstum war nicht beeinträchtigt. Die Untersuchung der Wachstumskegel ergab bei den Smn–/–;SMN2 Motoneuronen eine signifikante Verminderung der Fläche gegenüber Kontrollen. Weiterhin zeigten sich Defekte im Zytoskelett. In den Motoneuronen von Kontrolltieren fand sich eine Anreicherung von beta-Aktin in perinukleären Kompartimenten sowie besonders stark in den Wachstumskegeln. Die beta-Aktin-Anreicherung nahm im Verlauf des Axons zu. In Smn–/–;SMN2-Motoneuronen war keine Anreicherung im distalen Axon oder in den Wachstumskegeln detektierbar. Eine gleichartige Verteilungsstörung fand sich für das SMN-Interaktionsprotein hnRNP R (heterogenous nuclear ribonucleoprotein R) und, wie andere Arbeiten zeigen konnten, auch für die beta-Aktin-mRNA, die spezifisch an hnRNP R bindet. In gleicher Weise wurden auch Veränderungen in den sensorischen Neuronen aus den Hinterwurzelganglien 14 Tage alter Mausembryonen untersucht. Bei Smn–/–;SMN2-Mäusen war die Neuritenlänge sensorischer Neurone im Vergleich zur Kontrolle gering, jedoch signifikant verkürzt und die Fläche der Wachstumskegel hochsignifikant verringert. Im Smn–/–;SMN2 Mausmodell für eine schwere Form der SMA fanden sich in den sensorischen Nervenzellen im Vergleich zu den Motoneuronen geringer ausgeprägte, jedoch gleichartige Veränderungen, was auf einen ähnlichen Pathomechanismus in beiden Zelltypen hinweist. N2 - Proximal spinal muscular atrophy (SMA) represents one of the most common hereditary diseases leading to death in childhood. The patients suffer from symmetric and slowly progressive muscle weakness and atrophy as well as sensory defects in severe cases. The neurodegenerative autosomal recessive disease is caused by deletion or mutations of the survival motor neuron 1 (SMN1) gene on chromosome 5q13. The SMN protein is expressed ubiquitously and it is found associated in a multiprotein complex, termed SMN complex, in all tissues under observation. It coordinates spliceosomal complex assembly. The function of these complexes is essential for all cell types. Hence, the question is which pathomechanism causes SMA. Here, we demonstrate that the survival rate of Smn–/–;SMN2 motor neurons of 14-day-old mouse embryos was not reduced in comparison to Smn+/+;SMN2 motor neurons (controls), whereas morphological differences were apparent at the same developmental stage of the cells. Axon length in Smn-deficient motor neurons was significantly reduced vs. control motor neurons. Dendritic outgrowth was not affected. Investigation of the growth cone area of Smn–/–;SMN2 motor neurons showed a significant reduction vs. controls. Additionally, defects in the cytoskeletal structure were detected. In motor neurons of control animals, accumulation of beta-actin was found in the perinuclear compartments, and more pronounced in the growth cones, with an increase of beta-actin accumulation along the axon. In Smn–/–;SMN2 motor neurons, no beta-actin accumulation was detected in distal parts of the axon or in the growth cones. The same imbalance was found for the distribution of the SMN interacting protein hnRNP R (heterogenous nuclear ribonucleoprotein R), and, as shown by others, also for the distribution of beta-actin mRNA, which specifically binds to hnRNP R. In the same manner, alterations of the sensory neurons from dorsal root ganglia of 14-day-old mouse embryos were examined. Neurite outgrowth length of Smn–/–;SMN2 sensory neurons was reduced to a small extent, but significantly, in comparison to control neurons, and reduction of the growth cone area was highly significant. In the Smn–/–;SMN2 mouse model resembling a severe type of SMA, alterations in sensory neurons were less prominent than defects in motor neurons, but of the same kind, pointing to a similar pathomechanism in both cell types. KW - Spinale Muskelatrophie KW - Actin KW - Motoneuron KW - SMN KW - hnRNP R KW - SMA KW - actin KW - motor neuron KW - SMN KW - hnRNP R Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26097 ER - TY - THES A1 - Mayer, Christine Rita T1 - Zyklisches AMP kompensiert morphologische und funktionelle Defekte in isolierten Smn-defizienten Motoneuronen T1 - Cyclic AMP compensates morphological and functional defects in isolated Smn-deficient motoneurons N2 - Die proximale spinale Muskelatrophie (SMA) ist eine autosomal rezessive Erb-krankheit, welche durch fortschreitende Muskelatrophie mit Betonung der pro-ximalen Extremitäten, sowie zunehmende motorische Lähmungen charakterisiert wird. Bedingt wird diese neurodegenerative Erkrankung durch Mutation bzw. Deletion des SMN1-Gens auf Chromosom 5q13. Dies führt zu reduzierten Mengen des ubiquitär exprimierten SMN-Proteins, da der Verlust des SMN1-Gens nicht durch das noch verbleibende SMN2-Gen kompensiert werden kann. Die SMN-Promotor-Region enthält ein CRE II bindendes Element, welches Effekte von zyklischem Adenosinmonophosphat (cAMP) vermittelt und so die SMN-Transkription in untersuchten Zellen stimuliert. Ausgehend von diesem Befund stellte sich die Frage, ob cAMP dem Mangel an volllängen SMN bei der SMA entgegen wirkt. Daher wurden für diese Dissertation neurosphärenbildende kortikale Vorläuferzellen und primär kultivierte Motoneuronen von Smn+/+; SMN2- und Smn–/–;SMN2-Mausembryonen untersucht, um zu klären, ob die cAMP-Behandlung der Zellen zu einer Hochregulierung des SMN2-Transkripts führt, und durch die resultierende Erhöhung des SMN-Proteingehalts morphologische und funktionelle Defekte kompensiert werden. Die Untersuchung zeigte eine signifikante Zunahme des SMN2-Transkriptgehalts in Anwesenheit von cAMP. Dadurch kam es zu einem Anstieg der SMN-Proteinmenge im Soma, Axon und Wachstumskegel von Smn–/–;SMN2-Motoneuronen. Die Verteilungs-störung des SMN-Interaktionspartners hnRNP R mit fehlender kontrolltypischer Anreicherung im distalen Axon und Wachstumskegel von Smn–/–;SMN2-Motoneuronen wurde ebenfalls durch cAMP kompensiert. Smn-defiziente Mo-toneurone zeigten im Vergleich zu Kontrollzellen kleinere Wachstumskegel sowie ein Defizit an β-Aktin im distalen Axon. Zudem fehlte in Smn–/–;SMN2-Motoneuronen die bei Kontrollen ausgeprägte Zusammenlagerung von N-Typ spezifischen Ca2+-Kanälen in der Präsynapse, die nach Kontakt mit der β2-Kette des endplattenspezifischen Laminin-221 spontan öffnen und so einen in-trazellulären Kalziumanstieg bewirken, wodurch es zu Erregbarkeitsstörungen und Axonelongationsdefekten bei Smn-defizienten Motoneuronen kommt. Die Behandlung der Smn-defizienten Motoneuronen mit cAMP führte zur Vergrößerung der Wachstumskegelfläche und zu einer im Verlauf des Axons zunehmenden Anfärbung mit β-Aktin. Außerdem kam es zu einer Erhöhung der Menge an Cav2.2-Kanalprotein in den Wachstumskegeln Smn-defizienter Motoneurone, was mit einer erhöhten Erregbarkeit korrelierte und zu einer Normalisierung der Axonlänge von Smn–/–;SMN2-Motoneuronen auf Laminin-221 führte. Die Ergebnisse dieser Arbeit lassen die Vermutung zu, dass Smn-defiziente Motoneurone in vivo Defekte im präsynaptischen Bereich der Motorendplatte aufweisen. In Zukunft können mit dem beschriebenen in vitro Assay weitere Substanzen, welche die SMN2-Traskription stimulieren, auf ihr kompensatorisches Potential getestet werden. N2 - Proximal autosomal recessive spinal muscular atrophy (SMA) is caused by mutation or deletion of the SMN1-gene on chromosome 5q13. The SMN promotor region contains a CRE II binding element, which mediates effects of cyclic adenosine monophosphate and stimulates the SMN transcription in examined cells. In animal models of SMA, spinal motoneurons exhibit reduced axon elongation and growth cone size. These defects correlate with reduced ß-actin protein levels in distal axons. In this study I examined primary cultured motoneurons from Smn+/+;SMN2- and Smn-/-;SMN2-mice embryos. The examination could show a significant increase of the SMN2 transcript by treating the cells with cAMP. The Smn protein level increases in the soma, axonal department and growth cones of Smn-deficient motoneurons which were treated with cAMP in cell culture. I could also show that Smn–deficient motoneurons exhibit severe defects in clustering Cav2.2 channels in axonal growth cones and that treating with cAMP compensate these defects. Growth cone size, axonal length, hnRNP R protein levels and ß-actin protein levels in distal axons being normalized by cAMP treating of the Smn-/-;SMN2-motoneurons. Other substances, which stimulate the SMN2 transcription, can be tested in the future with the in this study established in vitro assay. KW - cAMP KW - Spinale Muskelatrophie KW - Motoneuron KW - Actin KW - N-Typ Kalziumkanäle KW - SMN KW - cAMP KW - spinal muscular atrophy KW - N-type calcium channel KW - SMN KW - beta-actin Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-46457 ER -