TY - THES A1 - Flock, Marco T1 - Velocity Map Imaging-Untersuchung nichtstrahlender Prozesse in polyzyklischen Aromaten und deren van-der-Waals-Clustern T1 - A Velocity Map Imaging study on nonradiative processes in polycyclic aromatics and their van der Waals clusters N2 - Das erste Ziel der vorliegenden Dissertation bestand darin, ein bereits bestehendes TOF-MS-Setup dahingehend zu erweitern, um damit Velocity Map Imaging-Experimente durchführen zu können. Dies erforderte zunächst die Konzipierung und Programmierung einiger für die Datenaufnahme, -verarbeitung und -analyse benötigter LabView-Anwendungen. Anschließend konnten erste Kalibrierexperimente an Methyliodid, in denen wichtige experimentelle Parameter identifiziert und optimiert wurden, durchgeführt werden. Außerdem gelang es dadurch, die Messgenauigkeit des Setups auf 0.7 % und dessen Auflösungsvermögen auf 4.4 % zu bestimmen, was im Bereich für VMI-Apparaturen typischer Werte liegt. Zur weiteren Überprüfung der Funktionstüchtigkeit des Setups wurde in ersten zeitaufgelösten Experimenten im Folgenden die Desaktivierung des S1-Zustands von Pyridin untersucht. Neben der Reproduktion einiger bereits literaturbekannter Resultate konnten dabei zusätzlich die im Multiphotonen-Ionisationsschritt populierten Rydberg-Zustände identifiziert werden. Anschließend wurde mit Experimenten an bisher weniger gut untersuchten organischen Aromaten und Heteroaromaten fortgefahren. Das Ziel dieser Studien lag in der Aufklärung der photoinduzierten Dynamiken der Verbindungen, wobei das zur Verfügung stehende ps-Lasersystem die Möglichkeit bot, die Desaktivierung elektronisch angeregter Zustände gezielt in Abhängigkeit von deren Schwingungsenergie zu untersuchen. Der darin bestehende Vorteil zeigte sich vor allem in Studien an Tolan und Phenanthridin, deren erste angeregte, optisch aktive Zustände am Origin Lebensdauern im ns-Bereich aufweisen, die sich mit zunehmender vibronischer Anregung jedoch auf bis zu 10 ps verringern. Als Grund dafür konnten nichtstrahlende Desaktivierungsprozesse, für deren Eintreten eine energetische Barriere überwunden werden muss, identifiziert werden. Während in Tolan nach Photoanregung ein Übergang in einen (πσ∗)-Zustand, der zur Ausbildung einer trans-bent-Struktur führt, erfolgt, ist im Falle von Phenanthridin vermutlich ein El-Sayed-erlaubter ISC-Übergang in einen 3(nπ∗)-Zustand für die drastische Verkürzung der S1-Lebensdauer verantwortlich. Ein solcher konnte weder im zu Phenanthridin isomerischen Benzo[h]quinolin, noch in dessen PAH-Muttermolekül Phenanthren beobachtet werden, was auf die höhere energetische Lage bzw. die Abwesenheit des mittels ISC populierten 3(nπ∗)-Zustands in diesen Molekülen zurückgeführt werden kann. In weiteren im Rahmen der vorliegenden Arbeit durchgeführten Experimente wurden zudem die aromatischen Moleküle Acenaphthylen und 4-(Dimethylamino)benzethin (DMABE) untersucht. Zeitaufgelöste Studien zeigten dabei, dass die Desaktivierung der S2-Zustände beider Moleküle auf der sub-ps-Zeitskala stattfindet und mit dem vorhandenen Lasersystem daher nicht aufgelöst werden kann. In Acenaphthylen erfolgt die S2-Relaxation größtenteils über einen sequentiellen IC-Mechanismus, innerhalb dem der S1-Zustand des Moleküls intermediär besetzt wird. Dessen Lebensdauer konnte am Origin auf 380 ps bestimmt werden, fällt mit steigender Schwingungsanregung jedoch auf bis zu 55 ps ab. Für die Desaktivierung des S2-Zustands von DMABE konnte hingegen ein paralleles Relaxationsmodell, in dem neben dem S1-Zustand ein weiterer elektronisch angeregter Zustand populiert wird, nachgewiesen werden. Bei diesem könnte es sich möglicherweise um einen (πσ∗)-Zustand, dessen Besetzung die Ausbildung einer trans-bent-Geometrie innerhalb der Acetylen-Einheit des Moleküls zur Folge hat, handeln. Einen weiteren großen Teil der vorliegenden Dissertation nahmen Experimente an van-der-Waals-gebundenen Clustersystemen ein. Im Fokus der Studien standen dabei Moleküle mit ausgedehnten aromatischen π-Systemen, da solche eine hohe Relevanz für verschiedene materialwissenschaftliche Forschungsgebiete besitzen. Ein Beispiel hierfür ist Tetracen, welches als Modellsystem für die Untersuchung von Singlet Fission-Prozessen angesehen wird. In Kombination mit nichtadiabatischen Surface-Hopping-Simulationen zeigten Experimente an Tetracen-Dimeren, dass nach deren S2-Anregung zunächst ein schneller S1←S2-Übergang (τ < 1 ps), gefolgt von der Ausbildung einer Excimerstruktur, stattfindet. Letztere erfolgt mit einer Zeitkonstante von 62 ps und führt zu einem Anstieg des transienten Ionensignals, wohingegen die Desaktivierung des Excimer-Zustands von einem abklingenden Signalbeitrag mit τ = 123 ps repräsentiert wird. Wenngleich über die weitere Relaxation der Excimerspezies zum gegenwärtigen Zeitpunkt keine Aussage getroffen werden kann, besteht damit die Möglichkeit, dass Excimer-Zustände als Zwischenstufe im SF-Mechanismus isolierter Tetracen-Dimere auftreten. In zeitaufgelösten Experimenten an Phenanthren-Dimeren konnte ebenfalls ein Anstieg des transienten Signals mit einer vergleichbaren Zeitkonstante von τ = 86 ps, der jedoch auf einem konstanten Signaloffset endet, gefunden werden. Dies deutet darauf hin, dass auch Phenanthren-Dimere in der Lage sind, Excimerstrukturen, die im Gegensatz zu denen des Tetracens jedoch deutlich langlebiger sind, auszubilden. Studien an den Dimerspezies der Azaphenanthrene Benzo[h]quinolin und Phenanthridin offenbarten hingegen etwas schnellere Relaxationen mit Zeitkonstanten von 15 bzw. 40 ps. Zudem zeigten beide Spezies eine stark ausgeprägte Fragmentation, sodass für deren Untersuchung auf die VMI-Detektionsmethode zurückgegriffen werden musste. Dadurch wurde deutlich, dass sich Photoionen-Imaging-Experimente hervorragend für Studien an schwach gebundenen Clustersystemen eignen, da diese die Separation verschiedener Signalbeiträge innerhalb eines betrachteten Massenkanals ermöglichen. N2 - In the first part of this thesis an already existing TOF-MS setup was modified in order to enable Velocity Map Imaging experiments. Therefore, LabView programs for the aquisition, processing and evaluation of the experimental data had to be written. Afterwards, calibration experiments on methyl iodide were carried out to characterize and to optimize important experimental parameters. The experiments yielded values of 4.4 % and 0.7 % for the spectral resolution and the accuracy of the setup, respectively, in good agreement with reported values for typical VMI setups. In the next step, time-resolved experiments on the S1 state deactivation in pyridine were performed in order to further verify the functionality of the setup. In these experiments, several results from literature could be reproduced and additional information on the Rydberg states being populated during the multiphoton ionization of the molecules were obtained. Thus, the experiments proved the suitability of the setup and experiments on less well studied systems were carried out in the following. The goal of these studies was to elucidate the light-induced relaxation mechanisms of selected organic aromatics and heteroaromatics. Due to the spectral bandwidth of the available ps laser setup, dynamics of electronically excited states could be studied as a function of their vibronic energy. This advantage became obvious especially in studies on tolane and phenanthridine: In both molecules, the lifetime of the first excited bright state is in the ns range at its origin, but drops to around 10 ps at higher excitation energies. The reason therefore are nonradiative relaxation processes which can only take place when an energetic barrier is surmounted. In case of tolane, a transition to a (πσ∗) state, leading to the formation of a trans-bent structure, was found to occur at higher excitations. In contrast, an El-Sayed allowed ISC process to a (nπ∗) triplet state seems to be responsible for the drop of the S1 state lifetime in phenanthridine. Interestingly, neither in the isomeric azaphenanthrene benzo[h]quinoline, nor in the PAH parent molecule phenanthrene itself, such a behavior was observed. This is attributed to the higher energy of the first excited (nπ∗) triplet state in benzo[h]quinoline and its absence in phenanthrene, respectively. Further experiments presented in this thesis aimed to elucidate the excited-state dynamics of acenaphthylene and 4-(dimethylamino)benzethyne (DMABE). Time-resolved studies on both molecules revealed S2 state deactivations on the sub-picosecond timescale which thus can not be resolved with the available ps laser setup. In acenaphthylene, a subsequent IC relaxation back to the electronic ground state was found to occur upon S2 excitation and the lifetime of the intermediately populated S1 state was determined to 380 ps at its origin and to 55 ps at higher excitation energies. The S2 state of DMABE relaxes to the S1 state as well, but in addition, the population of another electronic state, which might possibly be a trans-bent (πσ∗) state, was observed. Another large part of the experimental work within this thesis was covered from studies on van der Waals clusters of different aromatic and heteroaromatic compounds. The investigations focused on molecules with extended π -systems, since those possess photophysical properties with high relevance for various applications in material science. As an example, tetracene dimers can be seen as a prototype for the singlet fission process and thus were studied in the scope of this work. In time-resolved experiments, a sequential relaxation with time constants of 62 and 123 ps was observed upon excitation of their S2 state. Based on non-adiabatic surface hopping simulations the time constants could be assigned to the formation and the following decay of an excimer species. Thus, the excimer state could act as an intermediate in the SF mechanism of isolated tetracene dimers, although no information on its further deactivation are available so far. Interestingly, the formation of the excimer state leads to a rise in the transient ion signal, whereas its deactivation correlates with a decaying contribution. A similar behavior was found in experiments on phenanthrene dimers, which relax to a long-lived electronic state with a rising time constant of 86 ps. This indicates that excimer structures are formed upon photoexcitation in phenanthrene dimers as well. However, since their deactivation was not observed on the timescale of the experiment, the phenanthrene excimers seem to possess a much longer lifetime than their tetracene analogues. Studies on the dimeric species of the phenanthrene aza-derivatives benzo[h]quinoline and phenanthridine revealed slightly faster deactivation processes with time constants of 15 and 40 ps, respectively. Furthermore, the multimers of both compounds showed strong fragmentations and thus had to be studied via VMI detection. Thereby it became obvious that photoion imaging experiments are an excellent tool for investigations on weakly bound van der Waals clusters, since they allow to distinguish between different signal contributions in a given mass channel. KW - Strahlungslose Desaktivierung KW - Photoelektronenspektroskopie KW - Molekularstrahl KW - REMPI KW - Pump-Probe-Technik KW - Velocity Map Imaging KW - Zeitaufgelöste Spektroskopie KW - Polycyclische Aromaten KW - Photophysik KW - Physikalische Chemie Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240786 ER - TY - THES A1 - Fiedler, Sebastian T1 - Strukturelle und elektronische Zusammenhänge von inversionsasymmetrischen Halbleitern mit starker Spin-Bahn-Kopplung; BiTeX (X =I, Br, Cl) T1 - Structural and electronic dependencies of non-centrosymmetric semiconductors with strong spin-orbit-coupling; BiTeX (X = I, Br, Cl) N2 - Diese Arbeit befasst sich mit der Untersuchung und Manipulation von Halbleitern, bei denen die Spin-Bahn-Kopplung (SBK) in Kombination mit einem Bruch der strukturellen Inversionssymmetrie zu einer impulsabhängigen Spinaufspaltung der Bandstruktur führt. Von besonderem Interesse ist hierbei der Zusammenhang zwischen der spinabhängigen elektronischen Struktur und der strukturellen Geometrie. Dieser wird durch eine Kombination komplementärer, oberflächensensitiver Messmethoden - insbesondere Rastertunnelmikroskopie (STM) und Photoelektronenspektroskopie (PES) - an geeigneten Modellsystemen untersucht. Der experimentelle Fokus liegt dabei auf den polaren Halbleitern BiTeX (X =I, Br, Cl). Zusätzliche Experimente werden an dünnen Schichten der topologischen Isolatoren (TI) Bi1,1-xSb0;9+xSe3 (x = 0. . . 1,1) und Bi2Te2Se durchgeführt. Die inversionsasymmetrische Kristallstruktur in BiTeX führt zur Existenz zweier nicht-äquivalenter Oberflächen mit unterschiedlicher Terminierung (Te oder X) und invertierter atomarer Stapelfolge. STM-Aufnahmen der Oberflächen gespaltener Einkristalle belegen für BiTeI(0001) eine Koexistenz beider Terminierungen auf einer Längenskala von etwa 100 nm, die sich auf Stapelfehler im Kristallvolumen zurückführen lassen. Diese Domänen sind groß genug, um eine vollständig entwickelte Banddispersion auszubilden und erzeugen daher eine Kombination der Bandstrukturen beider Terminierungen bei räumlich integrierenden Messmethoden. BiTeBr(0001) und BiTeCl(0001) hingegen zeichnen sich durch homogene Terminierungen auf einer makroskopischen Längenskala aus. Atomar aufgelöste STM-Messungen zeigen für die drei Systeme unterschiedliche Defektdichten der einzelnen Lagen sowie verschiedene strukturelle Beeinflussungen durch die Halogene. PES-Messungen belegen einen starken Einfluss der Terminierung auf verschiedene Eigenschaften der Oberflächen, insbesondere auf die elektronische Bandstruktur, die Austrittsarbeit sowie auf die Wechselwirkung mit Adsorbaten. Die unterschiedliche Elektronegativität der Halogene resultiert in verschieden starken Ladungsübergängen innerhalb der kovalent-ionisch gebundenen BiTe+ X- Einheitszelle. Eine erweiterte Analyse der Oberflächeneigenschaften ist durch die Bedampfung mit Cs möglich, wobei eine Änderung der elektronischen Struktur durch die Wechselwirkung mit dem Alkalimetall studiert wird. Modifiziert man die Kristallstruktur sowie die chemische Zusammensetzung von BiTeI(0001) nahe der Oberfläche durch Heizen im Vakuum, bewirkt dies eine Veränderung der Bandstruktur in zwei Schritten. So führt zunächst der Verlust von Iod zum Verlust der Rashba-Aufspaltung, was vermutlich durch eine Aufhebung der Inversionsasymmetrie in der Einheitszelle verursacht wird. Anschließend bildet sich eine neue Kristallstruktur, die topologisch nichttriviale Oberflächenzustände hervorbringt. Der Umordnungsprozess betrifft allerdings nur die Kristalloberfläche - im Volumen bleibt die inversionsasymmetrische Einheitszelle erhalten. Einem derartigen Hybridsystem werden bislang unbekannte elektronische Eigenschaften vorausgesagt. Eine systematische Untersuchung von Dünnschicht-TIs, die mittels Molekularstrahlepitaxie (MBE) erzeugt wurden, zeigt eine Veränderung der Morphologie und elektronischen Struktur in Abhängigkeit von Stöchiometrie und Substrat. Der Vergleich zwischen MBE und gewachsenen Einkristallen offenbart deutliche Unterschiede. Bei einem der Dünnschichtsysteme tritt sogar eine lokal inhomogene Zustandsdichte im Bindungsenergiebereich des topologischen Oberflächenzustands auf. N2 - This thesis is about the analysis and manipulation of semiconductor surfaces, for which Spin-Orbit-Coupling (SOC) in combination with a break of structural symmetry leads to a k-dependent spin separation in the electronic structure. Therefore, the relation between the spin-dependent electronic structure and the atomic geometry is of particular interest. Suitable model systems have been investigated by a combination of complementary surface-sensitive measuring methods, e.g. Scanning Tunneling Microscopy (STM) and Photoelectron Spectroscopy (PES). In this work, the main experimental focus is on the BiTeX (X =I, Br, Cl) polar semiconductors. Additional experiments have been carried out on thin films of topological insulators (TI) Bi1,1-xSb0,9+xSe3 (X = 0. . . 1.1) and Bi2Te2Se. The non-centrosymmetric crystal structure of BiTeX results in two non-equivalent surfaces with different terminations (Te or X) and inverted layer structure. STM measurements of the surface of cleaved single crystals show a coexistence of both terminations for BiTeI(0001) on a length scale of around 100 nm, which is caused by bulk stacking faults. These domains are large enough to show a fully developed band dispersion and therefore yield a combined band structure of both terminations when investigated with spatially integrating methods. By contrast, BiTeBr(0001) and BiTeCl(0001) show homogeneous terminations on a macroscopic scale. Atomically resolved STM measurements on each of the three systems reveal different defect densities for each of the atomic layers as well as different structural influences of the halogens. PES measurements show a strong influence of the termination on several surface properties, e.g. electronic band structure, work function and absorbate interaction. The different electronegativities of the halogens result in a varying degree of charge transfer within the covalently-ionically bonded BiTe+ X- unit cell. A more detailed study of the surface properties has been facilitated by Cs deposition and the subsequent investigation of alterations of the electronic structure resulting from interactions with the alkali metal. A surface modification of the crystal structure and chemical properties of BiTeI(0001) by vacuum annealing results in a variation of the band structure in two steps. At first, the loss of I causes a disappearance of the Rashba-splitting, which might be caused by the loss of non-centrosymmetry of the unit cell. In a second step, a new unit cell forms at the surface, which generates non-trivial topological surface states. This reordering only affects the surface while the unit cells of the crystal bulk remain non-centrosymmetric. Hybrid systems like this are expected to exhibit novel electronic properties. A systematic analysis of thin _lm TIs grown by molecular beam epitaxy (MBE) shows changes in morphology and electronic structure as a function of stoichiometry and substrate. The comparison of MBE and grown single crystals reveals a considerable difference between sample properties. One particular system even shows a locally inhomogeneous density of states within the binding energy regime of the topological surface state. KW - Rashba-Effekt KW - Inversionsasymmetrische Halbleiter KW - Polarer Halbleiter KW - Spin-Bahn-Wechselwirkung KW - Rastertunnelmikroskopie KW - Photoelektronenspektroskopie KW - BiTeI KW - BiTeBr KW - BiTeCl KW - Spin-Bahn-Kopplung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155624 ER - TY - THES A1 - Sachs, Sönke T1 - Organische Halbleiter: Fundamentale Aspekte von Metallkontakten, hochgeordneten Schichten und deren Anwendung in Feldeffekttransistoren T1 - Organic semiconductors: Fundamental aspects of metal contacts, highly ordered films and the application in field effect transistors N2 - Eingebettet in ein Konzept zum Aufbau eines Hochleistungs-Feldeffekt-Transistors auf der Basis organischer Halbleiter (OFET), werden in der vorliegenden Dissertation fundamentale Aspekte des Aufbaus und der Funktion organischer Halbleiter-Bauelemente erforscht. Die Kenntnis, welche maximale Leistungsfähigkeit organische Halbleiter in OFETs prinzipiell erreichen können, ist von elementarem Interesse, sowohl um Transportmodelle zu verfeinern, als auch um Mechanismen und Optimierungsansätze zu finden, mit denen OFETs generell verbessert werden können. Es wird das Ziel verfolgt, sich der maximalen Leistungsfähigkeit eines gegebenen Materialsystems anzunähern. Aufwendige Präparationsstrategien werden für dieses Ziel bewusst in Kauf genommen, auch wenn deshalb vermutlich kein direkter Zugang zu Anwendungen eröffnet wird. An geeigneten Modellsystemen können einzelne wichtige Aspekte, wie die elektronische Struktur an Metallkontakten und im organischen Halbleitervolumen sowie das Wachstum von Schichten und Kristalliten organischer Halbleitermoleküle auf einkristallinen Isolatorsubstraten charakterisiert werden. Die Ergebnisse dieser grundlegenden Experimente fließen in den Aufbau des geplanten OFETs ein. Auf dem Weg zu einem funktionsfähigen Bauelement mit bestmöglichen Eigenschaften wurden wesentliche Fortschritte erzielt. Der erste Schwerpunkt dieser Arbeit ist die Untersuchung elektronischer Niveaus an Metallkontakt-Grenzflächen und im Volumen des Modellsystems PTCDA/Ag(111) mit Zwei-Photonen-Photoelektronenspektroskopie (2PPE). Die 2PPE-Spektren der PTCDA/Ag(111)-Grenzfläche sind dominiert durch einen unbesetzten, parallel zur Grenzfläche stark dispersiven Shockley-artigen Grenzflächenzustand (IS), der sich durch die Chemisorption der Moleküle auf der Ag(111)-Oberfläche bildet. Bei der Untersuchung von intramolekular angeregten elektronischen Zuständen von PTCDA mit 2PPE zeigen sich im Vergleich zum Untergrund der Spektren schwache Signale, die jedoch mit einer geeigneten Beschreibung des Untergrunds davon separiert werden können. Besonders interessant ist in diesem Zusammenhang das LUMO, das bei einer Anregung aus dem HOMO eine um 0,4 eV stärkere energetische Absenkung zeigt, als bei der Anregung aus dem HOMO-1. Dies kann durch die unterschiedlichen exzitonischen Zustände, die bei den Anregungen entstehen, erklärt werden. Neben den metallischen Kontakten ist die Grenzfläche zwischen organischem Halbleiter und Gate-Isolator entscheidend für die Leistungsfähigkeit eines OFETs. Am Beispiel des Wachstums von Diindenoperylen-Molekülen (DIP) auf einkristallinen Al2O3-Substraten wurde die morphologische und strukturelle Ausbildung von organischen Halbleiterschichten mit optischer Mikroskopie und Rasterkraftmikroskopie untersucht. Das Wachstum kann als stark anisotrop charakterisiert werden. Die – im Vergleich zu den Bindungsenergien mit dem Substrat – deutlich größeren Bindungsenergien innerhalb der DIP-(001)-Kristallebenen führen bei Substrattemperaturen von 440 K zu einem Wachstum von aufrecht stehenden Molekülen. Es zeigt sich, dass die während des Wachstums herrschende Substrattemperatur einen entscheidenden Einfluss auf die Morphologie der DIP-Schicht hat. So nimmt die Inselgröße von etwa 200 nm bei 350 K auf über 700 nm bei 450 K zu. Außerdem wird ein Ansteigen der Filmrauheit, besonders ab etwa 430 K, beobachtet, das auf den Übergang zu einem anderen Wachstumsmodus bei diesen Temperaturen hinweist. Bei etwas höheren Temperaturen von etwa 460 K wird das Wachstum von DIP-Kristalliten beobachtet. Dabei können – abhängig von den gewählten Präparationsparametern – drei unterschiedliche Kristallit-Typen unterschieden werden: „Mesa-Kristallite“ mit lateralen Abmessungen von mehreren Mikrometern, „Dendritische Kristallite“, die eine verzweigte Struktur aufweisen, die mithilfe der Wachstumskinetik erklärt werden kann und „Schichtkristallite“, deren Morphologie sich durch teilweise starke Krümmungen auszeichnet. Insgesamt zeigt sich, dass die Morphologie kristalliner Strukturen durch eine feine Balance der Präparationsparameter Substrattemperatur, Aufdampfrate, Substratmorphologie und Substratreinheit bestimmt wird, so dass kleine Änderungen dieser Parameter zu deutlich unterschiedlichen Kristallitformen führen. Schließlich wird das Konzept zum Aufbau eines Hochleistungs-OFET vorgestellt und in Details weiterentwickelt. Fortschritte werden in erster Linie bei der Präparation der Gate-Elektrode erzielt, die unter dem Al2O3-Substrat angebracht werden soll. Für die Ausdünnung des Substrats wird eine Bohrtechnik weiterentwickelt und mit einer nasschemischen Ätzmethode kombiniert, so dass Isolatorstärken von unter 10 µm erreicht werden können. Erste wenige OFETs wurden auf der Basis dieses Substrats präpariert, allerdings ohne dass die Bauteile Feldeffekte zeigten. Verbesserungsmöglichkeiten werden diskutiert. N2 - In this thesis, fundamental aspects of organic semiconductor devices are investigated and incorporated into the construction and optimization of an organic semiconductor field effect transistor (OFET). The knowledge about the maximal performance that organic semiconductors can obtain in OFETs in principle is of particular interest. It enables to refine transport models and to unravel mechanisms and optimization strategies to improve OFETs in general. In order to approach this "high end" of OFETs, elaborate steps to optimize the devices are taken, despite the fact that they might not be feasible in a direct application. Well-characterized model systems are selected to study fundamental properties of devices, in particular the electronic structure at molecule/metal contacts and in the organic semiconductor bulk, as well as the growth of organic semiconductor molecules on single crystalline insulator substrates. The realization of a high performance OFET is pursued by a comprehensive approach in order to optimize particularly the interfaces of the device. Considerable progress is made towards a working OFET with best possible properties. A primary focus of this work, the investigation of the electronic structure at molecule/metal contacts and in the molecular bulk of the model system PTCDA/Ag(111) is performed using two photon photoelectron spectroscopy (2PPE). 2PPE makes it possible to access occupied and unoccupied energy levels and study the dynamics of electronic excitations. The 2PPE spectra of the PTCDA/Ag(111) interface are dominated by an unoccupied and strongly dispersing Shockley-type interface state (IS) that develops due to the chemisorptive interaction of the PTCDA with the metal. Intramolecular excitations of PTCDA with 2PPE show a very small signal compared to the background of the spectra. However, with an appropriate description of the background it is possible to extract information about electronic states. Of special interest is the excitation of the lowest unoccupied molecular orbital (LUMO) that shows different energetic relaxation mechanisms, depending on the origin of excitation. In addition to the importance of the molecule/metal contacts, the performance of OFETs is determined to a large extend by the quality of the organic semiconductor/gate insulator interface where the charge carrier channel is established. For optimal performance, the first layer of molecules should be free of defects and impurities. The morphology and structure of a molecular layer are investigated for diindenoperylene (DIP) molecules, adsorbed on a single crystalline Al2O3 substrate, by atomic force microscopy and optical microscopy. The growth of these molecules is determined by the binding energies, which are strongly anisotropic within the molecular film structure and between molecules and substrate. These anisotropies stimulate the growth of upright standing molecules at substrate temperatures of about 440 K. Dependent on the substrate temperature during growth, the morphology shows grains with lateral dimensions of about 200 nm at 350 K which increase up to 700 nm at 450 K. This change in morphology is accompanied by an increase of roughness, indicating a change of the growth mode, at higher temperatures. At slightly higher temperatures of about 460 K, the growth of crystallites is observed. Depending on the particular preparation parameters, three different types of crystallites develop: mesa crystallites with lateral dimensions up to several microns, dendritic crystallites, characterized by kinetic growth processes, and layered crystallites, that are bent in three dimensions. The morphologies can be explained by the strong anisotropy of the bonding strengths within the DIP crystal structure. To obtain a specific morphology, a subtle balance of the preparation parameters has to be found. Possibilities to utilize the grown crystallites in OFETs are discussed and the mesa type is found to be the most promising. The comprehensive concept for the development of a high performance OFET is introduced and refined in details. Improvements are made especially in the construction of the gate electrode that will be attached beneath the Al2O3 substrate. To thin out the substrate, a drilling technique is improved and combined with wet chemical etching, resulting in gate insulator thicknesses below 10 µm. On the basis of this preparatory work few first OFETs were built. However, no field effect could be measured. As a first step towards the electrical characterization of DIP-OFETs, OFETs based on Silicon-oxide were successfully prepared and characterized. Moreover, present challenges and possible improvements towards a high performance OFET are discussed. KW - Organischer Halbleiter KW - Feldeffekttransistor KW - Diindenoperylen KW - Saphir KW - Ag(111) KW - Zwei-Photonen-Photoelektronenspektroskopie KW - Kraftmikroskopie KW - Photoelektronenspektroskopie KW - Organic Semiconductors KW - 2 Photon Photoemission KW - Thin Films KW - Field Effect Transistor KW - Atomic Force Microscopy Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48684 ER - TY - THES A1 - Nuber, Andreas T1 - Intrinsische und extrinsische Einflüsse auf zweidimensionale elektronische Zustände T1 - Intrinsic and extrinsic influences on two-dimensional electronic states N2 - Im Rahmen dieser Arbeit wurden mit Hilfe von hochaufgelöster ARPES die Auswirkungen verschiedener intrinsischer und extrinsischer Einflüsse auf zweidimensionale elektronische Zustände untersucht: Eine Änderung der Morphologie aufgrund einer (2 × 1)-Rekonstruktion bewirkt beim OFZ von Au(110) im Vergleich zur nicht-rekonstruierten Oberfläche eine Verschiebung der Bindungsenergie von ca. 700meV. Dieses Verhalten wurde in LDA-slab-layer-Rechungen reproduziert und durch gezielte Modifikation der Oberflächenstruktur sowie kontrollierte Beeinflussung des OFZ durch die Adsorbate Ag, Na und Au verstanden. Eine Linienbreitenanalyse der sehr scharfen Minoritäts-QWS in dünnen Fe- Filmen auf W(110) ermöglichte eine Abschätzung der Elektron-Elektron- Wechselwirkung und eine Bestimmung der Elektron-Phonon-Kopplungskonstanten. Die starke Anisotropie der Dispersion der QWS ist des weiteren durch den Vergleich mit GGA-slab-layer-Rechnungen als intrinsische Eigenschaft dieser Zustände identifiziert worden. Mit Hilfe eines erweiterten PAM wurde zudem die k⊥-Dispersion des, den QWS zugrunde liegenden Volumenbandes, bestimmt. Die spinabhängigen Einflussfaktoren Spin-Orbit- und Austausch-Wechselwirkung sowie deren Kombination wurden am Beispiel des OFZ von dünnen Au-Filmen auf Ni(111), sowie an QWS in dünnen Ni-Filmen auf W(110) untersucht. Die in SPR-KKR-Photoemissionrechungen gefundene leichte Asymmetrie der spinaufgelösten Dispersion wurde in den spinintegrierten ARPESMessungen nicht beobachtet. Ab 9ML Au-Bedeckung konnte die Rashba- Aufspaltung des OFZ aufgelöst werden. Eine durch das W(110)-Substrat induzierte Rashba-Aufspaltung wurde bei sp-artigen QWS in dünnen Ni- Filmen beobachtet, welche jedoch mit weiteren Strukturen hybridisieren, was eine eindeutige Aussage über die tatsächliche Natur der Aufspaltung erschwert. N2 - In this thesis, the effects of intrinsic and extrinsic influences on two-dimensional electronic states are investigated utilizing high resolution ARPES: The change of the morphology due to a (2 × 1)-reconstruction on Au(110) results in a shift of the binding energy of the surface state of about 700meV with respect to an unaltered surface. This behavior was reproduced by LDAslab- layer calculations and could be understood using systematic modifications of the surface structure and controlled influences on the surface state by the adsorbates Ag, Na and Au. A lineshape analysis of the sharp minority QWS in thin Fe films on W(110) allowed for an estimation of the electron-electron interaction as well as for a determination of the electron-phonon coupling constants. Furthemore, the strong anisotropy of the dispersion of the QWS could be identified as an intrinsic property of these states by comparing the measured data to GGAslab- layer calculations. Using an extended PAM, the k⊥-dispersion of the bulk band was determined, the QWS originate from. The two spin dependent influencing factors spin-orbit and exchange coupling, as well as the combination of both, were investigated using the surface state of thin films of Au on Ni(111) and the QWS in thin films of Ni on W(110) as model systems. The small asymmetry within the spin-resolved dispersions, found in SPR-KKR photoemission calculations of the surface state on Au/Ni(111), could not be detected using spin integrated ARPES measurements. A Rashba splitting of the surface state could be resolved for Au thicknesses above 9ML. sp-type QWS in thin films of Ni showed a Rashbatype splitting induced by the W(110) substrate. Due to hybridization effects with additional structures, no definite statement can be made on the true nature of the observed splitting. KW - Niederdimensionales System KW - Elektronenstruktur KW - Photoelektronenspektroskopie KW - Oberflächenzustand KW - zweidimensional KW - Rashba KW - Austausch KW - intrinsisch KW - extrinsisch KW - ARPES KW - Photoelektronenspektroskopie KW - surface state KW - Rashba KW - exchange KW - intrinsic KW - extrinsic KW - ARPES KW - photoelectron spectrocsopy Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66213 ER - TY - THES A1 - Berner, Götz T1 - Funktionelle oxidische Heterostrukturen aus dem Blickwinkel der Spektroskopie T1 - Functional oxide heterostructures from a spectroscopic perspective N2 - In oxidischen Heterostrukturen rufen Neuordnung von Ladung und Spin eine Vielzahl von unerwarteten physikalischen Eigenschaften hervor. Die Möglichkeit, Leitfähigkeit, Magnetismus oder auch Hochtemperatur-Supraleitung zu kontrollieren, machen diese künstlich hergestellten Materialien vor allem in Hinblick auf eine zukünftige Anwendung in der Mikroelektronik äußerst interessant. Dies erfordert jedoch ein grundsätzliches Verständnis für die zugrunde liegenden Mechanismen. Die vorliegende Doktorarbeit befasst sich mit photonengestützter Spektroskopie, die einen direkten Zugang zur elektronischen Struktur dieser Heterostruktursysteme ermöglicht. Ein weiteres Ziel ist es, geeignete spektroskopische Methoden zur Charakterisierung der vergrabenen Schichten zu etablieren. Zwei prototypische oxidische Mehrschichtsysteme stehen im Zentrum der hier vorgestellten Untersuchungen. Das LaAlO3/SrTiO3-Heterostruktursystem weist ab einer kritischen LaAlO3-Filmdicke an der Grenzfläche ein zweidimensionales Elektronensystem mit hochmobilen Ladungsträgern auf. Als treibender Mechanismus wird die elektronische Rekonstruktion diskutiert. Im Rahmen dieser Arbeit wurde dieses zweidimensionale Elektronensystem mithilfe der Photoelektronenspektroskopie und der resonanten inelastischen Röntgenstreuung charakterisiert. Die daraus bestimmten Ladungsträgerdichten weisen im Vergleich mit Daten aus Transportmessungen auf eine Koexistenz von lokalisierten und mobilen Ladungsträgern an der Grenzfläche hin. Die Analyse von Rumpfniveau- und Valenzbandspektren zeigt, dass man zur Erklärung der experimentellen Resultate ein modifiziertes Bild der elektronischen Rekonstruktion benötigt, bei der Sauerstofffehlstellen an der LaAlO3-Oberfläche als Ladungsreservoir dienen könnten. Mithilfe der resonanten Photoelektronenspektroskopie war es möglich, die metallischen Zustände am chemischen Potential impulsaufgelöst zu spektroskopieren. So gelang es erstmals, die vergrabene Fermi-Fläche einer oxidischen Heterostruktur zu vermessen. Außerdem konnten Titan-artige Zustände identifiziert werden, die höchstwahrscheinlich durch Sauerstofffehlstellen im SrTiO3 lokalisiert sind. Diese werden als mögliche Quelle für den Ferromagnetismus interpretiert, der mit der supraleitenden Phase in der LaAlO3/SrTiO3-Heterostruktur koexistiert. Bei dem anderen hier untersuchten Mehrschichtsystem handelt es sich um die LaNiO3-LaAlO3-Übergitterstruktur. Der Einbau des metallischen LaNiO3 in eine Heterostruktur ist aufgrund seiner Nähe zu einer korrelationsinduzierten isolierenden Phase hinsichtlich einer kontrollierten Ausbildung von neuartigen Phasen besonders interessant. In der Tat beobachtet man unterhalb einer LaNiO3-Schichtdicke von vier Einheitszellen einen kontinuierlichen Metall-Isolator-Übergang, der sich in den Valenzbandspektren durch einen Verlust an Quasiteilchenkohärenz äußert. Auch wenn die impulsaufgelösten Daten am Fermi-Niveau durch Photoelektronenbeugung beeinflusst sind, so lässt sich dennoch eine Fermi-Fläche identifizieren. Ihre Topologie bietet die Möglichkeit eines Fermi-Flächen-Nestings mit der Ausbildung einer Spindichtewelle. Die Resultate unterstützen die Hinweise auf eine magnetische Ordnung im zweidimensionalen Grundzustand. N2 - Oxide heterostructures exhibit a manifold of unexpected physical properties due to charge and spin rearrangement. Because of the possibility to control the conductivity, magnetism or high-temperature superconductivity, these artificial materials are prospective candidates for future application in microelectronics. However, this needs a fundamental understanding of the mechanism leading to such effects. This thesis addresses the investigations of such systems by photoassisted spectroscopy providing a direct access to the electronic structure. The further aim of this study is to establish applicable spectroscopic methods for characterizing the buried layers in heterostructures. The study presented here deals with two prototypical oxide heterostructures. In the prominent LaAlO3/SrTiO3 heterostructure the formation of a two-dimensional electron system at the interface is observed, if the LaAlO3 layer exceeds a critical thickness. The electronic reconstruction is discussed as the driving mechanism. In this study the two-dimensional electron system is characterized by photoelectron spectroscopy and resonant inelastic x-ray scattering. The comparison of the charge carrier densities determined from spectroscopy with data from transport measurements indicates the coexistence of localized and mobile charge carriers at the interface. The analysis of core-level spectra as well as valence band spectra show that a modified electronic reconstruction picture is needed to explain the experimental observations. In such a scenario oxygen vacancies in the LaAlO3 surface layer might provide the extra charge. By using resonant photoelectron spectroscopy momentum-resolved measurements were performed to observe the metallic states at the chemical potential. For the first time a mapping of the buried Fermi surface of an oxide heterostructure has been accomplished. Additionally, some Titanium-derived states were identified in the spectra which are probably localized by surrounding oxygen vacancies in the SrTiO3. They are interpreted as a possible source of the ferromagnetism, which coexists with the superconducting phase in the LaAlO3/SrTiO3 heterostructure. The other multilayer system studied here is the LaNiO3-LaAlO3 superlattice structure. Due to its closeness to the correlation-induced insulating phase the integration of the metallic LaNiO3 in a heterostructure possibly opens the way to novel phases. Actually, a continuous metal-insulator transition is observed below a LaNiO3 layer thickness of four unit cells, which is manifested in a loss of quasiparticle coherence in the valence band spectra. Even though the momentum-resolved data is affected by photoelectron diffraction, a Fermi surface can be identified. Its topology provides the possibility of Fermi surface nesting and the formation of a spin density wave. Thus, the results support the indication for a magnetic ordering in the two-dimensional ground state. KW - Heterostruktur KW - Photoelektronenspektroskopie KW - RIXS KW - Übergitter KW - ARPES Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121721 ER - TY - THES A1 - Weinhardt, Lothar T1 - Elektronische und chemische Eigenschaften von Grenzflächen und Oberflächen in optimierten Cu(In,Ga)(S,Se)2 Dünnschichtsolarzellen T1 - Electronical and chemical properties of interfaces and surfaces in optimized Cu(In,Ga)(S,Se)2 thin film solar cells N2 - In der vorliegenden Arbeit wurden Untersuchungen an Dünnschichtsolarzellen auf der Basis von Cu(In,Ga)(S,Se)2, der heute vielversprechendsten Dünnschichttechnologie, durchgeführt. Für eine weitere Optimierung der Zellen ist ein detailliertes Verständnis ihrer chemischen, elektronischen und strukturellen Eigenschaften notwendig. Insbesondere die in dieser Arbeit untersuchten Eigenschaften an den Grenzflächen der Zelle sind aufgrund ihrer zentralen Rolle für den Ladungsträgertransport von besonderem Interesse. Bei den vorliegenden Untersuchungen kamen verschiedene Spektroskopien zum Einsatz. Mit einer Kombination von Photoelektronenspektroskopie und Inverser Photoelektronenspektroskopie war es möglich, sowohl eine direkte Bestimmung der Valenz- und Leitungsbandanpassungen an den untersuchten Grenzflächen durchzuführen als auch Oberflächenbandlücken zu bestimmen. Die Messungen wurden durch die volumenempfindliche Röntgenemissionsspektroskopie ideal ergänzt, die - wie diese Arbeit zeigt - zusammen mit der Photoelektronenspektroskopie besonders nützlich bei der Analyse des Durchmischungsverhaltens an Grenzflächen oder auch des Einflusses chemischer Behandlungen auf die chemischen und elektronischen Eigenschaften von Oberflächen ist. Im ersten Teil der Arbeit wurden vier Grenzflächen in Proben auf der Basis des Cu(In,Ga)(S,Se)2-Absorbers von Shell Solar (München) untersucht. Es konnte dabei zunächst das Durchmischungsverhalten an der CdS/CuIn(S,Se)2-Grenzfläche in Abhängigkeit des S-Gehaltes an der Absorberoberfläche untersucht werden. Bei Messungen an der i-ZnO/CdS-Grenzfläche wurde ein flacher Leitungsbandverlauf gefunden, zudem konnte eine Durchmischung an dieser Grenzfläche ausgeschlossen werden. Eine besondere Herausforderung stellten die Messungen an der Grenzfläche des Absorbers zum Molybdänrückkontakt dar, da diese Grenzfläche nach ihrem Entstehen unweigerlich unter der etwa 1-2 um dicken Absorberschicht begraben liegt. Durch geeignetes Abspalten des Absorbers vom Rückkontakt gelang es, diese Grenzfläche freizulegen und zu spektroskopieren. Die Untersuchungen zur Vorbehandlung des Shell-Absorbers mit einer ammoniakalischen Cd-Lösung dienten dem Verständnis der positiven Einflüsse dieser Behandlung auf den Zellwirkungsgrad. Dabei wurde neben verschiedenen Reinigungswirkungen auf den Absorber als wichtigster Befund die Bildung einer sehr dünnen CdS-Schicht und, für hohe Cd-Konzentrationen, einer zusätzlichen Cd(OH)2-Schicht auf der Absorberoberfläche nachgewiesen. Die gewonnenen Erkenntnisse über die Cd-Behandlung haben eine besondere Bedeutung für die Untersuchung der Grenzfläche des Absorbers und einer mit ILGAR ("Ion Layer Gas Reaction") hergestellten Zn(O,OH)-Pufferschicht. An dieser Grenzfläche wurde die Bandanpassung mit und ohne vorherige Cd-Behandlung des Absorbers vermessen. Wird die Bandanpassung ohne Vorbehandlung noch durch Adsorbate auf dem Absorber dominiert, wobei man ein "Cliff" im Leitungsband findet, so ist der Leitungsbandverlauf für die Grenzfläche mit Cd-behandeltem Absorber flach, was im Einklang mit den sehr guten Wirkungsgraden steht, die mit solchen Zellen erreicht werden. Im zweiten Teil der Arbeit wurden Messungen an Dünnschichtsolarzellen mit selenfreiem Cu(In,Ga)S2 Absorber diskutiert. Ein Problem des Cu(In,Ga)S2-Systems besteht heute noch darin, daß die offene Klemmenspannung geringer ausfällt, als dies aufgrund der im Vergleich zu CuInSe2 größeren Bandlücke zu erwarten wäre. Modelle, die dies auf eine ungünstige Bandanpassung an der CdS/Cu(In,Ga)S2-Grenzfläche zurückführen, konnten in dieser Arbeit durch die Messung der Leitungsbandanpassung, die ein deutlich "Cliff"-artiges Verhalte aufweist, bestätigt werden. Untersuchungen des Einflusses unterschiedlicher Oberflächenzusammensetzungen auf die chemischen und elektronischen Eigenschaften der Cu(In,Ga)Se2-Absorberoberfläche ergaben, wie sich die Bandlücke des Absorbers mit wachsender Kupferverarmung vergrößert und gleichzeitig die Bandverbiegung zunimmt. Im letzten, rein grundlagenorientierten Teil dieser Arbeit wurden Röntgenabsorptions- und resonante Röntgenemissionsmessungen an CdS und ZnS im Vergleich zu von A. Fleszar berechneten theoretischen Spektren, die unter Berücksichtigung der Übergangsmatrixelemente aus einer LDA-Bandstruktur berechnet wurden, diskutiert. Es konnten dabei sowohl Anregungen in exzitonische Zustände als auch kohärente Emission mit Informationen über die Bandstruktur gefunden werden. Auch war es möglich, die Lebensdauern verschiedener Valenzlochzustände zu bestimmen. Es zeigt sich, daß so die Bestimmung einer unteren Grenze für die Bandlücke möglich ist, für eine genaue Bestimmung bei den untersuchten Verbindungen jedoch ein Vergleich mit theoretischen Berechnungen notwendig ist. N2 - In this thesis, thin film solar cells based on Cu(In,Ga)(S,Se)2 - today's most promising thin film solar cell technology - were spectroscopically analyzed in some detail. Until now, good results could be obtained mainly by empirically optimizing the process parameters, but a further optimization calls for a fundamental understanding of the Cu(In,Ga)(S,Se)2 solar cell. Since this device is a multilayer system, a detailed knowledge of the chemical, structural, and electronic properties of its interfaces is required. Partly due to the cost effective production process of the Cu(In,Ga)(S,Se)2 thin film solar cells, their properties are very different from ideal reference systems like single crystals, which makes them a particularly interesting research field. However, this requires the consideration of two aspects: the investigated samples should originate as close as possible from the industrial production process and, when investigating interfaces, their properties have to be measured directly without relying on previously published bulk properties. Both aspects have been achieved in this work. Samples were directly taken from the production process of different collaboration partners, and a direct determination of the conduction and valence band alignments, which are crucial for the carrier transport through the cell device, were conducted by a combination of photoelectron spectroscopy and inverse photoemission. These techniques were ideally complemented by x-ray emission spectroscopy, which can be particular helpful when investigating intermixing processes or the influence of chemical treatments on the chemical and electronic properties of surfaces. In the first part of this thesis, four different interfaces in samples based on the Cu(In,Ga)(S,Se)2 absorber of Shell Solar were investigated. It could be shown, that the intermixing of sulfur and selenium at the CdS/Cu(In,Ga)(S,Se)2 interface found in earlier measurements is dependent on the sulfur content at the absorber surface. Next, the interface between the CdS buffer layer and the i-ZnO part of the window layer was investigated. For this interface, an intermixing can be excluded and a flat conduction band offset is found. By suitably removing the absorber from the back contact, it was possible to investigate the interface between the absorber and the Mo back contact with spectroscopic techniques giving insight into the chemical properties of this interface. The chemical treatment of the absorber by an ammonia-based Cd-solution was investigated for a better understanding of its beneficial impact on the cell performance. Apart from a cleaning of the absorber, the main finding was the formation of a very thin CdS/CdSe layer and, for high Cd-concentrations, of an additional Cd(OH)2 layer on the absorber surface. The investigated Cd-treatment significantly improves the performance of cells with a Zn(O,OH) buffer layer deposited with ILGAR ("Ion Layer Gas Reaction"). The band alignment at the interface between ILGAR Zn(O,OH) and the absorber was investigated with Cd-treated and untreated absorbers. In the second part of this thesis, measurements of thin film solar cells with selenium-free Cu(In,Ga)S2 absorbers are discussed. These absorbers have a larger band gap than CuInSe2, which gives them the potential of higher efficiencies. However, the gain in the open circuit voltage is smaller than expected raising one of the most important questions in the CIGSSe community. In this thesis, this question is answered by a model, that ascribes this behavior to an unfavorable band alignment at the CdS/Cu(In,Ga)S2 interface. The model is supported by the measurement of the band alignment showing a pronounced "cliff" in the conduction band. The investigation of the influence of different absorber surface compositions on the chemical and electronic properties of the Cu(In,Ga)Se2 surface shows, that the surface band gap is increased by increasing copper depletion. These measurements are an important contribution to the understanding of the different recombination behaviors and efficiencies of cells with copper-rich and copper-poor absorbers. In the last part of this thesis, x-ray absorption and resonant x-ray emission spectra of CdS and ZnS (i.e. the currently preferred buffer material (CdS) as well as one of its most promising alternatives (ZnS) for Cu(In,Ga)(S,Se)2 solar cells) were discussed and compared to calculations of A. Fleszar. In these calculations theoretical spectra were obtained ad hoc using an LDA band structure taking the transition matrix elements into account. Thereby valuable information about the band structure could be extracted from the coherent emission in the resonant spectra. Moreover lifetimes of different valence hole states were determined with the surprising observation of an 1.5 eV lifetime broadening of the S 3s deep valence hole. KW - Dünnschichtsolarzelle KW - Oberfläche KW - Elektronische Eigenschaft KW - Grenzfläche KW - Oberflächenchemie KW - Grenzflächenchemie KW - Photoelektronenspektroskopie KW - Röntgenemission KW - Inverse Photoemission KW - Solarzellen KW - Halbleitergrenzflächen KW - photoelectron spectrscopy KW - x-ray emission KW - inverse photoemission KW - solar cells KW - semiconductor interfaces Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16234 ER - TY - THES A1 - Michalke, Thordis T1 - Elektronen-Korrelationen und Elektron-Phonon-Kopplung in einem nanostrukturierten Adsorbatsystem T1 - Electron Correlations and Electron Phonon Coupling in a Nanoscaled Adsorbate System N2 - In meiner Arbeit werden die Auswirkungen von Vielteilcheneffekten in einem niedrigdimensionalen Adsorbatsystem untersucht. Ein solches System kann als einfaches Modellsystem zum Verständnis der Vielteilcheneffekte dienen. Mit Hilfe der Photoelektronenspektroskopie und Rastertunnelspektroskopie kann die Lebensdauer der Quasiteilchen direkt gemessen werden. An quasi-nulldimensionalen Quantenpunkten lässt sich außerdem der Einfluss der Dimensionalität und der Strukturgröße auf die Korrelationseffekte und Kopplungsstärken der Elektronen messen. Das Adsorbatsystem Stickstoff auf Kupfer (Cu(100)c(2x2)N) ist hierfür ideal geeignet. Bei der Adsorption von Stickstoff auf Cu(100) bilden sich auf Grund starker Verspannungen durch die inkommensurate c(2x2)-Bedeckung Stickstoff-Inseln mit einer typischen Größe von 5x5 nm². Auf diesen quasi-nulldimensionalen Quantenpunkten lässt sich lokal mit der Rastertunnelspektroskopie die elektronische Zustandsdichte messen. In den STS-Spektren und Bildern sind typische diskrete Eigenzustände eines Quantentrogs zu beobachten. Mit einem Modell gedämpfter, quasifreier Elektronen ist es gelungen, diese Eigenzustände zu simulieren und wichtige physikalische Größen, wie die effektive Masse, die Bindungsenergie und die mittlere Lebensdauer der Elektronen in den Inseln zu bestimmen. Mit Hilfe der Photoelektronenspektroskopie können zahlreiche adsorbatinduzierte Zustände identifiziert und die zweidimensionale Bandstruktur des Adsorbatsystems gemessen werden. Die Elektron-Phonon-Kopplung spielt in dem Stickstoff-Adsorbatsystem eine wichtige Rolle: Temperaturabhängige Messungen der zweidimensionalen Zustände lassen auf eine sehr starke Kopplung schließen mit Werten bis zu 1,4 für die Kopplungskonstante. Dabei ist die Kopplungsstärke wesentlich von der Lokalisierung der Adsorbatzustände abhängig. In der Nähe der Fermikante zeigt ein Adsorbatzustand eine außergewöhnliche Linienform. Die Spektralfunktion kann selbst bei recht hohen Temperaturen von 150 K mit dem Realteil der Selbstenergie der Elektron-Phonon-Kopplung beschrieben werden. Für die Phononenzustandsdichte wird dabei das Einstein-Modell verwendet auf Grund des dominierenden Anteils der adsorbatinduzierten optischen Phononen. Die Kopplungsstärke und der Beitrag der Elektron-Elektron und Elektron-Defekt-Streuung werden aus diesen Daten extrahiert. Auf Grund der sehr starken Elektron-Phonon-Kopplung könnte man spekulieren, ob sich in der Oberfläche Cooper-Paare bilden, deren Anziehung über ein optisches Adsorbatphonon vermittelt würde, und so eine exotische Oberflächen-Supraleitung verursachen. N2 - In my thesis the influence of many body effects on a low dimensional adsorbate system is studied. The adsorbate system provides as a modell system for the understanding of these many body effects. With photoelectron spectroscopy and scanning tunneling spectroscopy the lifetime of these quasi particles can be measured directly. For quasi zero dimensional quantum dots the influence of the dimensionality and the size of the structures to correlation effects and coupling constants of the electrons can be measured. The adsorbate system nitrogen on copper (Cu(100)c(2x2)N) is an ideal modell system for such studies. During the adsorption of nitrogen on Cu(100) nitrogen islands are formed with a typical size of 5x5 nm² due to the incommensurate c(2x2)structure and strain relief mechanism. Using scanning tunneling spectroscopy one is able to measure locally on a single island, a quasi-zero dimensional quantum dot. In STS-spectra quantum well states are observed with typical discrete eigen-states. A model is used to simulate these eigen-states and extract important physical parameters like the effective mass, the binding energy and the mean lifetime of the electronic states inside the islands. The photoelectron spectroscopy reveals several adsorbate induced states. The two dimensional bandstructure of the nitrogen adsorbate system has been measured. Electron phonon coupling plays a key role in these two dimensional states. Temperature dependent measurements reveal a very strong coupling with values up to 1,4 for the coupling constant. The coupling constant is very sensitive to the localization of the adsorbate states. One of the adsorbate induced states shows an exceptional line shape when approaching the Fermi energy: the spectral function can be described by the real part of the electron phonon self energy even at quite high temperatures (150 K). The Einstein model is used to describe the phonon density of states because of the dominant role of adsorbate induced optical phonons. The coupling constant and the contributions of the electron-electron and electron-defect scattering are deduced. Due to the very strong electron phonon coupling in the adsorbate system one may speculate about an exotic surface superconductivity, where the Cooper pairs might be confined to the surface and their attraction might be mediated by the adsorbate optical phonons. KW - Adsorbat KW - Nanostrukturiertes Material KW - Elektronenkorrelation KW - Elektron-Phonon-Wechselwirkung KW - Photoelektronenspektroskopie KW - Rastertunnelspektroskopie KW - Adsorbatsystem KW - Quasiteilchen-Lebensdauer KW - Quantentrogzustände KW - Photoelectron Spectroscopy KW - Scanning Tunneling Spectroscopy KW - Adsorbate System KW - Quasiparticle Lifetime KW - Quantum Well States Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11957 ER - TY - THES A1 - Falge, Mirjam T1 - Dynamik gekoppelter Elektronen-Kern-Systeme in Laserfeldern T1 - Dynamics of Coupled Electron-Nuclei-Systems in Laser Fields N2 - Die vorliegende Arbeit beschäftigt sich mit der theoretischen Untersuchung zweier Themenkomplexe: der Erzeugung Hoher Harmonischer in Molekülen und dem Einfluss von gekoppelter Elektronen-Kern-Dynamik auf Ultrakurzpuls-Ionisationsprozesse und Quantenkontrolle. Während bei der Untersuchung der Hohen Harmonischen die Auswirkungen der Kernbewegung auf die Spektren im Mittelpunkt des Interesses stehen, wird bei der Analyse der gekoppelter Elektronen-Kern-Dynamik das Hauptaugenmerk auf die nicht-adiabatischen Effekte gerichtet, die auftreten, wenn Kern- und Elektronenbewegung sich nicht, wie es im Rahmen der Born-Oppenheimer-Näherung in der Quantenchemie häufig angenommen wird, voneinander trennen lassen. N2 - This work aims at the theoretical analysis of high harmonic generation in molecules and the influence of coupled electron and nuclear dynamics on ultra-short pulse ionization processes. KW - Nichtadiabatischer Prozess KW - Laserstrahlung KW - Quantenmechanik KW - Molekulardynamik KW - Quantendynamik KW - nicht-adiabatische Effekte KW - Hohe Harmonische KW - Photoelektronenspektroskopie KW - quantum dynamics KW - nonadiabatic effects KW - high harmonic generation KW - photoelectron spectroscopy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72889 ER - TY - THES A1 - Dietl, Christian T1 - Beobachtung und Steuerung molekularer Dynamik mit Femtosekunden-Laserpulsen T1 - Observation and control of molecular dynamics using femtosecond laser pulses N2 - In dieser Arbeit wurden zwei Aspekte der Femtochemie mit den Methoden der Femtosekunden--Laserspektroskopie untersucht. Dabei wurden folgende Ziele verfolgt: Einerseits sollte die jüngst entwickelte Technik der adaptiven Pulsformung auf das Problem bindungsselektiver Photodissoziationsreaktionen angewandt werden, zum Anderen bestand die Aufgabe darin, die nichtadiabatische, photoinduzierte Dynamik am Beispiel der Photoisomerisierung von Stilben mit Hilfe der Photoelektronenspektroskopie zeitaufgelöst zu untersuchen. Die Methode der adaptiven Pulsformung wurde mit dem Ziel eingesetzt, eine bindungsselektive Photodissoziation zu verwirklichen. Dazu wurde diese Technik in Verbindung mit einem massenspektroskopischen Nachweis der Photofragmente verwendet. Die Experimente wurden an einigen Spezies der Methylhalogenide CH2XY (X,Y = Halogen) durchgeführt. Diese Verbindungen wurden als Modellsysteme gewählt, da sich gezeigt hat, dass auf Grund stark gekoppelter konkurrierender Dissoziationskanäle durch modenselektive Laseranregung keine Kontrolle erreicht werden kann. Mit dem hier durchgeführten Experiment an CH2ClBr wurde erfolgreich erstmals die Anwendung der adaptiven Femtosekunden-Pulsformung auf das Problem einer bindungsselektiven Photodissoziation demonstriert. Dabei konnte eine Steigerung der Dissoziation der stärkeren Kohlenstoff-Halogen Bindung um einen Faktor zwei erreicht werden. Weiterhin konnte experimentell gezeigt werden, dass das optimierte Produktverhältnis nicht durch eine einfache Variation der Laserpulsdauer oder Laserpulsenergie erzielt werden kann. Es wurde ein möglicher Mechanismus für die Kontrolle diskutiert, der im Gegensatz zu einem unmodulierten Laserpuls die Wellenpaketdynamik auf neutralen dissoziativen Potentialflächen zur Steuerung des Produktverhältnisses involviert. Wie sich aus einer genaueren Analyse des Fragmentspektrums ergab, wird durch den optimalen Laserpuls die Dissoziation in komplexer Weise moduliert. Dies zeigte sich z.B. auch durch eine Änderung des Isotopenverhältnisses in der Ausbeute des dissoziierten Br-Liganden vor und nach der Optimierung. Dieser Frage nach einer isotopenselektiven Photodissoziation wurde in einem weiteren Experiment an CH2Br2 nachgegangen. Dabei konnte jedoch nur eine geringe Variation von etwa fünf Prozent gegenüber dem natürlichen Isotopenverhältnis festgestellt werden. Als größtes experimentelles Problem stellte sich dabei die starke Intensitätsabhängigkeit der Produktausbeuten heraus, was die Suche nach der optimalen Pulsform stark einschränkte. Anhand des molekularen Photodetachments CH2I2-->CH2+I2 wurde gezeigt, dass durch die Analyse der optimalen Pulsformen Informationen über die Dynamik dieses Prozesses gewonnen werden können. Dazu wurde zunächst in einem Pump-Probe-Experiment die Dynamik der I2-Fragmentation nach einer Mehrphotonen-Anregung von CH2I2 mit 266nm Laserpulsen untersucht. Dieses Experiment ergab, dass das Molekül über einen angeregten Zwischenzustand auf einer sehr schnellen Zeitskala über Dissoziationskanälen zerfallen kann. Der dominante Kanal führt zu einer sequentiellen Abgabe einer der I-Liganden und resultiert in den Photoprodukten CH2I und I Im anderen Kanal, dem molekularen Photodetachment, werden die Photoprodukte I2 und CH2 gebildet. In einem Kontrollexperiment wurde dann versucht, das molekulare Photodetachment gegenüber dem dominanten sequentiellen Kanal mit geformten 800nm Laserpulsen zu optimieren. Es wurden Optimierungen mit dem Ziel der Maximierung der Ausbeute an den Photoprodukten I2 und CH2 gegenüber CH2I durchgeführt. Diese Experimente ergaben, dass für beide Fragmente des molekularen Photodetachments eine Steigerung des Produktverhältnisses um etwa einen Faktor drei möglich ist. Dabei zeigte sich, dass eine Maximierung auf ein Produktverhältnis (z.B. I2/CH2I) eine Steigerung des anderen um etwa den gleichen Faktor hervorruft. Dies ist ein deutlicher Hinweis, dass beide Photoprodukte über denselben Dissoziationskanal gebildet werden. Ein weiterer inweis wurde aus der Analyse der optimalen Pulsformen erhalten: In beiden Fällen weisen diese eine markante Doppelpulsstruktur mit einem zeitlichen Abstand von etwa 400fs auf. Dies erinnert stark an die Situation des Pump-Probe--Experiments, wo durch die Analyse des transienten Signals ebenfalls eine optimale Verzögerungszeit zwischen dem Pump- und Probe-Laserpuls von etwa 400fs ermittelt werden konnte, bei der die Produktverhältnisse gerade maximal sind. Im Vergleich zur Massenspektroskopie liefert die Photoelektronenspektroskopie in der kinetischen Energie der Photoelektronen eine zusätzliche Messgröße, die direkt Informationen über die Kerngeometrie des Systems liefern kann. Mit dieser Technik wurde die trans-cis-Photoisomerisierung von Stilben im ersten elektronisch angeregten Zustand S1(1Bu) zeitaufgelöst untersucht. Dabei ging es speziell um die Frage nach der Existenz eines weiteren 1Bu Zustandes, der in neueren theoretischen Untersuchungen diskutiert wurde. In einem Pump-Probe-Experiment wurde dazu das im Molekularstrahl präparierte trans-Stilben durch einen 266nm Laserpuls angeregt und die Dynamik durch einen weiteren 266nm Laserpuls abgefragt. Im Photoelektronenspektrum konnten zwei signifikante Beiträge mit unterschiedlicher Dynamik gefunden werden. Das transiente Signal des ersten Beitrags weist eine Zeitkonstante von etwa 20ps auf und konnte eindeutig der Isomerisierung des S1 Zustandes zugeordnet werden. Im Gegensatz dazu zeigte das Signal des zweiten Beitrags eine Zeitkonstante von 100fs. Dieses Signal könnte aus der Ionisation des S2 Zustandes resultieren, welcher bislang experimentell nicht beobachtet werden konnte. N2 - Adaptive femtosecond quantum control has proven to be a very successful method in many different scientific fields like physics, chemistry or biology. This technique allows to go beyond observation, another important field of femtosecond laser spectroscopy, and to obtain active control over quantum-mechanical systems. It uses interference phenomena in the time and/or frequency domain to achieve selectivity among different reaction channels available to the system. Adaptive femtosecond quantum control has been implemented using automated control algorithms, namely genetic algorithms, embedded in a feedback loop. The Feedback is obtained directly in the experiment. This means, that no information is needed about the underlying complex physical processes. Adaptive pulse shaping in combination with mass spectroscopy was employed in order to control the photo dissociation dynamics of some methyl halides (CH2XY). In this context, methyl halides serve as a model system in order to study bond selective photochemistry, as it is known that mode selective laser excitation failed to achieve control due to strong non adiabatic coupling between the different dissociation channels. In a first experiment bond selective photodissociation on CH2ClBr was demonstrated. The results show, that by using optimally tailored laser pulses the cleavage of stronger carbon halogen bond can be enhanced by a factor of two. This enhancement cannot be explained by a simple variation of laser pulse energy or intensity, respectively. Further spectroscopic results indicate that the optimally formed laser pulse found in the optimization experiment involves dynamics on neutral dissociative potential surfaces. A more detailed analysis of the optimal pulse shape found in the control experiment revealed that the optimal laser pulse alters the photodissociation of CH2ClBr in subtle way. This was seen in the change of the branching ratio of the bromine isotopes following the excitation with the optimal laser pulse. In order to investigate this further, optimization of the bromine isotope ratio in CH2Br2 was studied, where however, only a small change could be achieved. This can mainly be explained by a strong laser intensity dependence of the absolute yield of the photoproduct, which leads to large errors in the product ration and thus confuses the optimization algorithm.In a third experiment it was demonstrated that the analysis of the optimal pulse shapes allows extracting information about the underlying molecular processes. Therefore the molecular photodetachment CH2I2-->CH2+I2 was investigated using pump-probe spectroscopy as well as adaptive pulse shaping. The photoproducts were again detected using mass spectroscopy. Time resolved experiments reveal an ultrafast dissociation of the molecule via an intermediate state resulting in the dominant photoproducts CH2I and I. As a minor contribution molecular photodetachment is observed leading to the products CH2 and I2. In an automated control experiment the branching ratio of these two reaction channels is varied by a factor of three as compared to a bandwidth limited laser pulse. It is found that maximization of one product ratio (e.g. I2/CH2I) also results in a maximization of the other (CH2/CH2I). This shows that the photoproducts I2 and CH2 originate form one common intermediate species. Analysis of the optimal pulse shape reveals a double pulse with a distance of 400fs between the two features. This can be directly compared to the results of the pump-probe experiment. There the ratio of the transient signals of I2 versus CH2I was analysed. It was found that the maximum is reached after 400fs after the excitation of the molecule by the pump laser pulse. In the second part of the thesis photoelectron spectroscopy in combination with time-resolved femtosecond laser spectroscopy was employed to investigate the isomerization dynamics of trans-Stilbene in its first excited state S1 (1Bu). In a pump-probe experiment the molecule was excited by a 266nm laser pulse to its first excited state about 0.5eV above the isomerization barrier. The dynamics of the intermediate species was probed by ionization with a second time delayed 266nm laser pulse and the kinetic energy of the photoelectrons was measured as a function of the pump-probe delay. The spectra obtained clearly indicate contributions from two distinct reaction pathways. The transient signal of the first contribution shows a time constant of about 20ps and can be assigned to the isomerization dynamics of trans-Stilbene on the S1 state. The second contribution exhibits an ultrafast dynamics of about 100fs decay time and can be attributed to a second electronics state. Theoretical studies indeed predict a second electronic state of same symmetry as S1in the energy region reached by the experiment. KW - Ultrakurzer Lichtimpuls KW - Femtosekundenbereich KW - Molekulardynamik KW - Photochemische Reaktion KW - Regelung KW - Femtosekunden-Laserspektroskopie KW - Adaptive Quanten Kontrolle KW - molekulare Dynamik KW - Massenspektroskopie KW - Photoelektronenspektroskopie KW - femtosecond laser spectroscopy KW - adaptive quantum control KW - molecular Dynamics KW - mass spectrocopy KW - photoelectron spectroscopy Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12182 ER - TY - THES A1 - Graus, Martin T1 - Anwendung und Weiterentwicklung der Orbitaltomographie T1 - Application and Advancement of Orbital Tomography N2 - Als Orbitaltomographie wird eine junge Methode innerhalb der Photoelektronenspektrokopie bezeichnet, welche es ermöglicht, Molekülorbitale mit hoher Ortsauflösung abzubilden. Hierfür werden die zu untersuchenden Moleküle durch elektromagnetische Strahlung angeregt und die mittels Photoeffekt emittierten Elektronen hinsichtlich ihres Impulses und ihrer kinetischen Energie charakterisiert. Moderne Photoemissionsexperimente erlauben die simultane Vermessung des gesamten Impulshalbraumes oberhalb der Probe. Die detektierte Intensitätsverteilung stellt dann unter bestimmten Bedingungen das Betragsquadrat eines hemisphärischen Schnittes durch den Fourierraum des spektroskopierten Orbitals dar, wobei der Radius der Hemisphäre von der Energie der anregenden Strahlung abhängt. Bei den in dieser Arbeit untersuchten Systemen handelt es sich um adsorbierte Moleküle, die hochgeordnete Schichten auf kristallinen Edelmetalloberflächen bilden. Im Fall eindomänigen Wachstums liefern die parallel orientierten Moleküle identische Photoemissionssignale. Kommt es hingegen zur Ausbildung von Rotations- und Spiegeldomänen, stellt die gemessene Impulsverteilung eine Superposition der unterschiedlichen Einzelbeiträge dar. Somit lassen sich Rückschlüsse auf die Orientierungen der Moleküle auf den Substraten ziehen. Diese Charakterisierung molekularer Adsorptionsgeometrien wird anhand verschiedener Modellsysteme vorgestellt. Variiert man die Energie der anregenden Strahlung und somit den Radius der hemisphärischen Schnitte durch den Impulsraum, ist es möglich den Fourierraum des untersuchten Molekülorbitals dreidimensional abzubilden. Kombiniert man die gemessenen Intensitäten mit Informationen über die Phase der Wellenfunktion im Impulsraum, die durch zusätzliche Experimente oder rechnerisch gewonnen werden können, lässt sich durch eine Fouriertransformation ein dreidimensionales Bild des Orbitals generieren, wie Schritt für Schritt gezeigt wird. Im Zuge eines Photoemissionsprozesses kann das Molekül in einen angeregten vibronischen Zustand übergehen. Mittels Photoemissionsexperimenten mit hoher Energieauflösung lassen sich Unterschiede zwischen den Impulsverteilungen der schwingenden Moleküle und denen im vibronischen Grundzustand feststellen. Ein Vergleich der Messdaten mit Simulationen kann die Identifikation der angeregten Schwingungsmode ermöglichen, was eine neue Methode darstellt, Erkenntnisse über die Elektron-Phonon-Kopplung in molekularen Materialien zu gewinnen. N2 - Orbital tomography is a relatively young method within the field of photoelectron spectroscopy, which allows for imaging of molecular orbitals with high spatial resolution. After excitation of the specimen by electromagnetic radiation, electrons are emitted via the photoelectric effect and characterised regarding their momenta and kinetic energies by a photoelectron detector system. State-of-the-art photoemission experiments are capable of simultaneous mapping of the full emission hemisphere above the sample. Under certain conditions, measured intensity distributions are then proportional to the square of the absolute value of a hemispherical section through the investigated orbital's Fourier space. The radius of the hemisphere is dependent on the excitation energy. In this study, the systems under investigation constitute adsorbed molecules which form highly ordered layers on surfaces of noble metal crystals. If the growth process leads to a single domain in which all molecules are aligned parallel, the molecules send out identical photoemission signals. If rotational or mirror domains are however formed, the measured momentum distribution is a superposition of the individual contributions. As a consequence, conclusions on the orientation of the molecules on the substrate can be drawn. This characterization of molecular adsorption geometries is presented by means of various modell systems. Variation of the excitation energy associated with a change in the radius of the hemispherical section allows for a three-dimensional imaging of the investigated orbital's Fourier space. A combination of measured intensities with information on the phase of the wave function in momentum space, which can be derived experimentally or numerically, renders a three-dimensional reconstruction of the orbital possible via a Fourier transform, as shown step by step. As part of the photoemission process, the molecule can be transfered into an excited vibronic state. Employing photoemission experiments with high energy resolution, one can detect differences between the momentum distributions of vibrant molecules and those in the vibronic ground state. A comparison of experimental data with simulations can enable identification of the relevant vibronic mode, showcasing a new method to gain information on electron-phonon coupling in molecular materials. KW - ARPES KW - Molekülorbital KW - Photoelektronenspektroskopie KW - Orbitaltomographie KW - Impulsmikroskopie KW - Molekülspektroskopie KW - Molekülspektroskopie Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163194 ER -