TY - THES A1 - Lang, Stefan T1 - Transportuntersuchungen an vertikal- und lateral-gekoppelten niederdimensionalen Elektronensystemen T1 - Transport Investigations on Vertically and Laterally Coupled Low Dimensional Electron-Systems N2 - An Y-Schaltern konnte eine nichtlineare Verschiebung der Schwellspannung beobachtet werden. In einem Y-Schalter spaltet sich ein Stammwellenleiter über einen Verzweigungspunkt Y-förmig in zwei Astwellenleiter auf, so dass prinzipiell mehrere Maxima im Leitungsband existieren. Daher wurde ein Modell entwickelt, das die Dynamik der Leitungsbandmaxima im elektrischen Feld beschreibt. Dieses beinhaltet sowohl die geometrischen Kapazitäten als auch die Quantenkapazitäten des Y-Schalters. Zudem konnte gezeigt werden, dass lokalisierte Ladungen zur Beschreibung des Schaltens notwendig sind. Die Verschiebung der Schwellspannungen kann hierbei sehr gut durch das Zusammenspiel der klassischen und der Quantenkapazitäten beschrieben werden, wobei sich herausstellt, dass die Quantenkapazitäten des Systems einen dominierenden Einfluss auf das Schaltverhalten nehmen. Für X-förmige Verzweigungen wird gezeigt, dass für ausgewählte Spannungsbereiche an den vier lateralen Kontrollgates der Transport durch den X-Schalter entweder geblockt oder erlaubt ist. Dies wurde auf die Ausbildung eines Quantenpunkts im Zentrum des X-Schalters zurückgeführt. Es liegt also Coulomb-Blockade vor und der Elektronentransport durch die Struktur kann mittels eines Stabilitätsdiagramms analysiert werden. Es zeigt sich, dass die zentrale Elektroneninsel einen Durchmesser von etwa 20nm hat und eine Ladeenergie von E_C=15meV besitzt. Weiterhin konnten Transportbereiche aufgezeigt werden, welche einen negativen differentiellen Leitwert basierend auf einer dynamischen Kapazität aufweisen. Außerdem konnte in größeren Verzweigungen bistabiles Schalten aufgrund von Selbstschalten nachgewiesen werden. Es ist hierbei sowohl invertierendes als auch nicht-invertierendes Schalten zu beobachten. Es wurden Quantendrahttransistoren auf der Basis von wenigen Nanometer übereinander liegenden, vertikal gekoppelten Elektronengasen realisiert. Die Herstellung der Strukturen stellt hierbei besondere Herausforderungen an die Prozessierungstechniken. So mussten Barrieren unterschiedlicher Al-Konzentrationen während des Wachstums mittels Molekularstrahlepitaxie eingebracht werden, um einen Al-selektiven Ätzprozess anwenden zu können. Die beiden Elektronengase sind nach dem Wachstum lediglich durch eine 7nm dicke AlGaAs-Barriere voneinander getrennt. Um die beiden Elektronengase getrennt voneinander zu kontaktieren war es anschließend notwendig, ein spezielles Ätzverfahren anzuwenden. Es zeigte sich, dass eines der 2DEGs aufgrund des extrem geringen Abstands als hocheffektives Gate für das andere 2DEG dienen kann, wobei für die untersuchten Strukturen eine Gateeffektivität nahe eins, das heißt ein ideales Schalten, beschrieben wird. In Strukturen geringerer Dotierkonzentration wird anschließend hocheffektives Schalten bis zu einer Temperatur von 250K demonstriert. Basierend auf derartigen vertikal gekoppelten Elektronengasen wurden außerdem trocken geätzte Y-Transistoren hergestellt. Es kann bistabiles Schalten nachgewiesen werden, wobei analog zu den X-Strukturen ein Ast als Gate dient. Die Hysterese des bistabilen Schaltens kann dabei so klein eingestellt werden, dass rauschaktiviertes Schalten zwischen den beiden Ausgangszuständen des Systems zu beobachten ist. Es zeigt sich, dass das Schalten in solchen Strukturen mit einer Aktivierungsenergie von lediglich 0.4 kT erfolgt. Somit ist dieser Wert kleiner als das thermische Limit für stabiles Schalten in klassischen Bauelementen. Der 2-Terminal-Leitwert eines Quantendrahts bei Magnetfeldumkehr zeigt Asymmetrien, welche stark sowohl von den Spannungen an den Gates abhängen. Der Strom durch den Quantendraht kann einerseits mittels eines lateralen Gates und außerdem durch ein auf der Oberfläche liegendes vertikales Metallgate gesteuert werden. Hierbei wurde der Kanal einerseits durch Verarmung des 2DEGs über ein Metallgate definiert. Andererseits wurde auf der gegenüberliegenden Seite eine Potentialbarriere durch den Ätzgraben aufgebaut. Es stellte sich heraus, dass die gemessenen Asymmetrien auf den Wechsel zwischen elastischer Streuung der Kanalelektronen an der elektrostatischen Begrenzung und inelastischer Streuung an der geätzten Grenzfläche zurückzuführen sind. Für hohe Vorwärtsspannungen zeigt sich, dass der asymmetrische Anteil der dominierende Term im Leitwert ist. Dies erlaubt es, die vorliegende Struktur als Magnetfeldsensor, mit einer Sensitivität von 3.4mVT zu verwenden. Als Ausblick für die Zukunft kann festgestellt werden, dass komplex geformte Leiterbahnen durch die Ausnutzung von Effekten wie Coulomb-Blockade und Selbstschalten ein großes Potential für zukünftige Schaltkreise besitzen. Da Schaltenergien durch das Ausnutzen von Systemrauschen kleiner als das thermische Limit auftreten soll es ein Ziel für die Zukunft sein, Neuron ähnliche Schaltkreise auf der Basis von verzweigten Schaltern zu realisieren. N2 - This thesis reports on transport investigations performed with semiconductor nanostructures carrying low-dimensional, highly mobile electron gases. These structures are based on modulation doped GaAs/AlGaAs layers. Lithographic techniques were subsequently applied to define narrow channels with different geometries. In this way, laterally as well as vertically coupled conductors like Y- and X-structures were realized. Non-linear threshold voltage shifts in an electron Y-branch switch We have studied the threshold characteristics and gate efficiencies of electron Y-branch switches controlled by in-plane gates. The threshold voltage was found to shift in a nonlinear manner for a certain regime of inplane electric fields controlled by the voltage difference between the gates along the junction. This result is interpreted in terms of local conduction band maxima in the stem and the branches. To explain the non-linear threshold we propose a model based on coupled quantum capacitances and geometrical capacitances including charges localized in the Y-branch. Also the switching efficiencies, which are measures of how much of a change in the electrochemical potential of the gate is transferred into a change of the conduction band maximum, in the switch depend on the gate voltages. The switching efficiency is larger for those parts of the Y-branch with the smallest quantum capacitance. Network-calculations enabled us to determine the relevant system-parameters. Coulomb-blockade and bistability in X-structures We demonstrated charge transport to be blocked for certain voltage regimes applied to four laterally coupled sidegates of an X-structure. This is related to the formation of an electron island, a quantum dot, in the branching section of the device. Therefore, diamond patterns associated with Coulomb- blockade were observed in transport spectroscopy and the electron transport across the structure was analyzed by means of a stability diagram. It was found that the central electron island has a diameter of about 20nm with a charging energy of E_C=15meV. Furthermore we identified transport regimes showing a negative differential conductance. This was interpreted in terms of a dynamic capacitance between the island and the respective drain contact. Moreover bistable switching was demonstrated as a result of self-gating. Inverting as well as non-inverting switching in the self-gating regime is also realized. Coupled two dimensional electron gases Double GaAs quantum wells embedded between modulation-doped AlGaAs barriers with different Al contents were grown by molecular beam epitaxy. Independent electric contacts to each well were realized by applying different etching techniques. Particularly, the lower quantum well was electrically pinched off by an undercut of the lower AlGaAs barrier exploiting an Al-selective etching process. In contrast, the upper quantum well was locally depleted by top etched trenches. Transistor operation of quantum wires defined in such bilayers is demonstrated at room temperature with one GaAs layer used as conducting channel controlled by the other nearby layer as efficient quantum gate. Furthermore, in devices exploiting a low doping concentration, highly effective gating with gate leverage factors near unity is realized up to T=250K. Finally, bistable switching operation is observed for structures exploiting a floating gate. Provided this floating gate becomes charged, it is demonstrated that the threshold voltage of the waveguide increases drastically. Magnetic-field induced asymmetries in quantum wires with asymmetric gate coupling The two-terminal conductance of GaAs/AlGaAs quantum wires was studied in the non-linear regime. The quantum wires were coupled asymmetrically to a metal gate and investigated for a magnetic field perpendicular to the sample surface. A sidegate was defined by wet chemical etching of a deep trench. Adjacent to this trench a narrow metal top gate was deposited on the sample's surface. Therefore, the channel was on the one hand defined by local depletion of the 2DEG by means of a negative topgate voltage. On the other hand, the etched trench leads to a potential barrier serving also as sidewall. It was found that the conductance of the quantum wire shows pronounced asymmetries when the magnetic field is reversed. These asymmetries are related to different scattering mechanisms, i.e. specular scattering of the channel electrons at the sidewall caused by an electrostatic confinement and backscattering at the boundary due to the etched trench. The asymmetric conductance was identified to increase significantly with the bias voltage. This probably allows the application of such structures as magnetic field sensors with a sensitivity of 3.4mV/T KW - Quantendraht KW - Quantenwell KW - Transistor KW - Mesoskopischer Transport KW - Quantumwire KW - Electronics KW - Transistor Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37652 ER - TY - THES A1 - Brandenstein-Köth, Bettina T1 - Nichtlinearer Magnetotransport und memristive Funktionen von nanoelektronischen Bauteilen T1 - Nonlinear magneto transport and memristive functions of nanoelectronic devices N2 - Gegenstand dieser Arbeit sind Transportuntersuchungen an nanoelektronischen Bauelementen, wobei der Schwerpunkt in der Analyse von nichtlinearen Transporteigenschaften hybrider Strukturen stand. Zum Einsatz kamen auf GaAs basierende Heterostrukturen mit zum Beispiel kleinen Metallkontakten, die zu Symmetriebrechungen führen. Die Untersuchungen wurden bei tiefen Temperaturen bis hin zu Raumtemperatur durchgeführt. Es kamen zudem magnetische Felder zum Einsatz. So wurden zum einen der asymmetrische Magnetotransport in Nanostrukturen mit asymmetrischer Gateanordnung unter besonderer Berücksichtigung der Phononstreuung analysiert, zum anderen konnte ein memristiver Effekt in InAs basierenden Strukturen studiert werden. Des Weiteren konnte ein beachtlicher Magnetowiderstand in miniaturisierten CrAu-GaAs Bauelementen beobachtet werden, der das Potential besitzt, als Basis für extrem miniaturisierte Sensoren für den Betrieb bei Raumtemperatur eingesetzt zu werden. N2 - In the frame of this thesis transport investigations of nanoelectronic devices were performed with an emphasis on the analysis of nonlinear transport characteristics of hybrid structures with distinct asymmetries. In particular, devices based on GaAs/AlGaAs heterostructures combined with small metal contacts were investigated and pronounced nonlinear transport was found. The transport investigations were conducted at temperatures from 4:2K up to room temperature. Additionally, external magnetic fields were applied, too. An asymmetric magneto transport in nanostructures with asymmetric gate layouts and the role of phonon scattering was analyzed. Also a memristive effect was studied in InAs structures. Furthermore, a considerable magneto resistance in miniaturized structures was observed which has the potential to exploit similar devices as miniaturized sensors for application at room temperature. KW - Magnetowiderstand KW - Quantendraht KW - Niederdimensionales Elektronengas KW - Memristor KW - memristive Funktionen KW - Elektronengas KW - nichtlinearer Magnetotransport KW - Ladungslokalisierung KW - magnetoresistiver Effekt KW - memristive functions KW - nonlinear magnetotransport KW - magnetoresistive effect Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53643 ER - TY - THES A1 - Schumacher, Claus T1 - Herstellung und Charakterisierung von Nanostrukturen auf der Basis von II-VI-Materialien mittels der Schattenmaskentechnologie T1 - Fabrication and characterisation of nano structures based on II-VI-materials utilising the shadow mask technology N2 - Warum eigentlich Schattenmasken als neues alternatives Verfahren zur lateralen Strukturierung? Alle bislang üblichen Verfahren zur Herstellung lateral begrenzter Halbleiter-Kristalle strukturieren die zuvor epitaktisch flächig aufgewachsenen Schichten nachträglich. Hierdurch können Probleme entstehen. Etwa erzeugen nach einem nasschemischen Ätzprozess freistehende Quantentröge im Randbereich Oberflächenzustände, die zu nicht strahlender Rekombination führen können und daher die Lichtausbeute reduzieren. Der Prozess des erneuten Überwachsens solcher nachträglich geätzter Strukturen ist bislang noch nicht reproduzierbar. Weitere alternative Techniken, wie das Wachstum selbstorganisierter Quantenpunkte oder das it in-situ Spalten, bieten entweder noch keine befriedigende Kontrollmöglichkeit der Strukturgröße oder sind für eine industrielle Anwendung nur wenig praktikabel. Deshalb richtete sich der Blick auf das aus der III-V-Epitaxie bekannte Schattenmasken-Verfahren zur Herstellung makroskopischer sogenannter ,,nipi-Strukturen''. Diese zeigen den interessanten Effekt, dass sich die durch eine Schattenmaske wachsende Struktur in Wachstumsrichtung während des Wachstums von selbst zuspitzt. Die Größe der Masken-Apertur kann dadurch in einer Größenordnung bleiben, wie sie durch ein ultra-violett optisch lithographisches Verfahren hergestellt werden kann. Durch die Maske wächst dennoch, unterstützt von Schatten- und Selbstorganisationseffekten, ein Halbleiter-Kristall, der an seiner Spitze die Ausdehnung einer Nanostruktur hat. Im Rahmen dieser Arbeit gelang es erstmals mittels der Schattenmaskentechnologie eine ZnSe-Draht-Struktur herzustellen, deren Ausdehnung an der Spitze nur noch 25~nm beträgt. Da dieses Verfahren erstmals zur Herstellung von II-VI-Halbleiter-Schichten etabliert wurde, konnte auf keinerlei Vorarbeiten zurückgegriffen werden. Vor der Herstellung geeigneter Schattenmasken mussten zunächst geeignete Belichtungs-Masken für die optische Lithographie entworfen werden, bevor die Ätztechniken zur Herstellung der Schattenmasken selbst optimiert werden konnten. Am Ende der Schattenmaskenentwicklung stand ein Verfahren zur Präparation einer verlässlichen Startoberfläche für die anschließende II-VI-Epitaxie, ohne die ein reproduzierbares Wachstum durch die Schattenmaske nicht möglich ist. Nachdem die technologische Seite abgearbeitet war, mussten anhand geeigneter Epitaxieexperimente die Einflüsse durch die geänderten Wachstumsbedingungen erforscht werden. Insbesondere spielen beim Wachstum durch Schattenmasken Oberflächeneffekte wie Diffusion oder die Orientierung der Masken-Apertur bzgl. der Kristallrichtung eine wesentliche Rolle. Für die in dieser Arbeit verwendete Geometrie des Wachstums (Gruppe-II- und Gruppe-VI-Spezies werden aus bzgl. der Masken-Apertur spiegelbildlichen Raumwinkelbereichen angeboten) wurde herausgefunden, dass die Maskenöffnung entlang der [1-10]-Kristallrichtung orientiert sein sollte. Entlang dieser Richtung sind die Se-Dimere einer Se-reich rekonstruierten Oberfläche orientiert und somit verläuft die Vorzugsdiffusionsrichtung senkrecht zum Draht. Hierdurch können diffusionsgestützt schärfer definierte Flanken des Drahtes wachsen, als bei einer um 90° gedrehten Geometrie. Eigentlich soll nicht nur eine binäre Drahtstruktur entstehen, sondern es soll zum Beispiel ein ZnCdSe-Quantentrog in einen Draht aus einem geeigneten Barriere-Material eingebettet werden. Bei diesen Versuchen stellte sich anhand von Tieftemperatur-PL- und charakteristischen Röntgenphotonen-Spektren heraus, dass Cadmium in einem epitaktisch gewachsenen Draht stärker als andere Spezies auf der Wachstumsoberfläche diffundiert. Eine kontrollierte Deposition eines ZnCdSe-Quantentroges ist nicht möglich. Um Diffusionseffekte zu vermeiden kann statt eines ternären Troges ein binärer in eine nun quaternäre Barriere eingebettet werden. Dieser Ansatz wird bereits in einer parallel zu dieser Arbeit begonnenen Dissertation erfolgreich verfolgt. Bei der Etablierung eines neuen Verfahrens zur Herstellung von Halbleiter-Kristallen müssen auch Aussagen über die strukturellen Eigenschaften der gewachsenen Strukturen getroffen werden. Hierzu wurden die mittels eines ,,Lift-Off''-Prozesses nun freistehenden Drahtstrukturen einer Röntgenstrukturanalyse unterzogen. Die reziproken Gitterkarten zeigen bei senkrechter Orientierung der Beugungsebene relativ zum Draht, dass der Schichtreflex nicht auf der Relaxationsgeraden liegt. Bei einer rein plastischen Relaxation eines Halbleiter-Kristalls müsste dies jedoch für beide Orientierungen der Beugungsebene (senkrecht und parallel zum Draht) der Fall sein. Der Schichtreflex ist in Richtung des Substratreflexes verschoben. Der Netzebenenabstand ist somit also verkleinert. Eine mögliche Erklärung hierfür ist die zylinderförmige ,,Verbiegung'' der Atomebenen im Realraum und somit der Netzebenen im reziproken Raum. Die Überlegungen führen somit auf eine zusätzlich elastische anstelle auschließlich plastischen Relaxation des Kristalls. Um eine solche These erhärten zu können wurde auf der Basis der aus den REM- und AFM-Bildern ausgewerteten Geometrie der Drahtstrukturen ein atomares Modell eines verspannten Kristalls erstellt. Mittels eines Monte-Carlo-Algorithmus' kann dieses Modell seine eingeprägte Verspannungsenergie elastisch abbauen. Die Fouriertransformierte des Realraumbildes des elastisch relaxierten Drahtes lässt sich direkt mit den reziproken Gitterkarten vergleichen. Mittels dieser Simulation konnte die vertikale Verschiebung des Schichtreflexes unmittelbar den zylindrisch ,,verbogenen'' Kristallebenen zugeordnet werden. Ferner ermöglichen die Simulationen erstmalig die qualitative Interpretation der Beugungsmessungen an den Schattenmasken selbst. Die im Rahmen der Dissertation von H.R.~Ress vorgenommenen Beugungsmessungen an den Schattenmasken zeigen neben der vertikalen Verschiebung des AlGaAs-Schichtreflexes charakteristische diffuse Streifen um den Schichtreflex, die bislang unverstanden waren. Die Simulationen zeigen, dass diese Streifen erst bei der elastischen Relaxation des Drahtes durch die konvexe Wölbung der Drahtflanke entstehen. Diese diffusen Streifen lassen sich in den in dieser Arbeit gewachsenen Drähten aus II-VI-Halbleitern nicht unmittelbar nachweisen. Da die Schattenmasken bedingt durch das Herstellungsverfahren eine Rauigkeit der Schattenkanten von bis zu 150~nm aufweisen sind auch die Flanken der durch die Masken gewachsenen Strukturen stark aufgeraut. Deshalb streuen die den Draht begrenzenden Fassetten nicht kohärent und bieten entsprechend keine definierte Abbruchbedingung der Fouriertransformation. N2 - What is the motivation for the establishment of an alternative technique for lateral structuring? Till date, for definition of semiconductor nano structures, the established technology relies on the post-growth, ex-situ structuring of layer samples. The processes involved in this technology may cause a number of problems. For instance, wet chemical etching of quantum wires generate surface states which result in non radiative recombination of carriers and hence reduce the optical efficiency. Secondly, the process of overgrowth of such etched structures is not well controlled so far. Further alternative techniques like self organised growth of quantum dots or in-situ cleaved edge overgrowth either do not provide a satisfying size control or are too laborious for them to be industrially practicable. Thus, efforts were directed towards the use of shadow mask technique, a process well established for the fabrication of III-V n-i-p-i structures. These structures exhibit the interesting effect of an acuminating crystal during growth. A standard optical lithography process which achieves mask apertures down to 300~nm is sufficient: Driven by the effect of shadow and self organisation, the structure growing within the growth cavity has nano scale dimension at its tip. In the course of the work we succeeded, for the first time, to fabricate a ZnSe wire structure with a tip width of only 25nm. Since this technique was applied to the II-VI semiconductors for the first time, no relevant literature was available for the the preparatory work. Prior to the fabrication of suitable shadow masks, it is required to (a) design lithographic masks and (b) establish appropriate etching procedures. Additionally, the procedure requires the preparation of a reliable III-V surface for the subsequent II-VI growth. After successful implementation of the techniques, suitable experiments were developed which enabled the investigation of the growth conditions for the growth within a growth cavity. In particular, surface effects, like diffusion or the orientation of the mask aperture with respect to the symmetry directions of the crystal, play an considerable role. For the samples dicussed in this work, an alignment of the effusion cells was performed such that, group II and VI molecular beams impinged on the substrate at equal incident angles with respect to the surface normal. In this geometry, it was found that the highest lateral precision is achieved with mask apertures parallel to the [1-10] crystal direction. The selenium dimers are oriented along this direction and hence the main diffusion occures perpendicular to the wire. Hence the edges of the forming wire are more pronounced in this orientation. Originally, not only binary but also ternary quantum structures, for instance ZnCdSe quantum wells embedded into ZnSe barriers, were planned. Low temperature PL and EDAX experiments revealed that the cadmium diffusion coefficient is much larger than those of zinc and selenium. Therefore, a homogeneous cadmium distribution inside the ternary quantum well alloy, could not be achieved. To overcome this problem of segregation, a binary well can be embedded within a quaternary barrier. This approach was successfully pursued in a parallel endeavour. When a novel technique for fabrication of semiconductor structures is established, it is indespensable to provide evidence of high structural quality of the grown crystals. Therefore, the free standing wire structures were probed by high resolution x-ray diffraction analysis after the removal of the mask (lift-off process). The reciprocal space maps acquired in these experiments exhibit that the layer reflection does not lie on the line of relaxation only when the plane of diffraction is aligned perpendicular to the wire. Considering only plastic relaxation of the lattice, a deviation from the line of relaxation should occur for neither parallel nor perpendicular orientation. The layer reflection has moved towards the substrate reflection. The distance of lattice planes has therefore decreased. One possible explanation for this is a cylindrically shaped ''bending'' of atom planes in real space and consequentially of the lattice planes in reciprocal space. In conclusion, an additional elastic, instead of solely plastic relaxation, of the crystal has to be considered. To substantiate such a thesis, an atomic model was developed. The geometry of the modelled wire structures was choosen, based on the SEM and AFM images. The strain incorporated into the modelled crystal was relaxed by means of a Monte Carlo algorithm. The fourier transform of the real space image is related to the reciprocal space map directly. Based one this simulations, the vertically displacement of the layer reflection can be attributed to cylindrically bending of the lattice planes. Furthermore, these simulations enabled a qualitative interpretation of the diffractograms of the shadow masks themselves. In the course of this work, diffraction measurements were carried out on the III-V shadow masks by H.R. Ress. Apart from the vertical displacement of the AlGaAs layer reflection they were found to exhibit a characteristic cross-shaped diffuse reflection surrounding the layer reflection. This effect was not understood until now. The simulations clarified these features as due to a convex curvature of the wire's edges. Due to the low scattering volume of the II-VI wire structures fabricated in this work, these diffuse intensity is not observeable. Additionally, the fabrication technique itself brings in a roughness of the mask's shadow edges of roughly 150~nm, which in turn affects the roughness of wire structure. Hence the bounding facets of the wire do not scatter coherently and hence no defined termination condiction of the fourier transform is defined. KW - Zwei-Sechs-Halbleiter KW - Nanostruktur KW - Molekularstrahlepitaxie KW - Fernsehmaske KW - Schattenmaske KW - Halbleiter KW - MBE KW - Quantendraht KW - Nanostruktur KW - shadow mask KW - semiconductor KW - mbe KW - quantum wire KW - nano structure Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8754 ER - TY - THES A1 - Hartmann, David T1 - Elektrisches und magnetisches Schalten im nichtlinearen mesoskopischen Transport T1 - Electric and magnetic switching in nonlinear mesoscopic transport N2 - Im Rahmen dieser Arbeit wurden Transporteigenschaften von Nanostrukturen basierend auf modulationsdotierten GaAs/AlGaAs Heteroübergängen untersucht. Derartige Heterostrukturen zeichnen sich durch ein hochbewegliches zweidimensionales Elektronengas (2DEG) aus, das sich wenige 10 nm unterhalb der Probenoberfläche ausbildet. Mittels Elektronenstrahl-Lithographie und nasschemischer Ätztechnik wurde dieses Ausgangsmaterial strukturiert. Eindimensionale Leiter mit Kanalweiten von wenigen 10 nm wurden auf diese Weise hergestellt. Die Vorzüge derartiger Strukturen zeigen sich im ballistischen Elektronentransport über mehrere 10 µm und einer hohen Elektronenbeweglichkeit im Bereich von 10^6cm^2/Vs. Als nanoelektronische Basiselemente wurden eingehend eindimensionale Quantendrähte sowie y-förmig verzweigte Strukturen untersucht, deren Kanalleitwert über seitliche Gates kontrolliert werden kann. Dabei wurden die Transportmessungen überwiegend im stark nichtlinearen Transportregime bei Temperaturen zwischen 4,2 K und Raumtemperatur durchgeführt. Der Fokus dieser Arbeit lag insbesondere in der Untersuchung von Verstärkungseigenschaften und kapazitiven Kopplungen zwischen Nanodrähten, der Realisierung von komplexen Logikfunktionen wie Zähler- und Volladdiererstrukturen, dem Einsatz von Quantengates sowie der Analyse von rauschaktiviertem Schalten, stochastischen Resonanzphänomenen und Magnetfeldasymmetrien des nichtlinearen mesoskopischen Leitwertes. N2 - This thesis reports on transport features of nanoelectronic devices based on modulation doped GaAs/AlGaAs heterostructures with a two dimensional electron gas (2DEG) a few 10 nm below the sample surface. Using electron beam lithography and wet chemical etching techniques low dimensional conductors were designed with a channel width of a few 10 nm. Such conductors enable ballistic transport up to 10 µm with high electron mobilities in the range of 10^6cm^2/Vs. One dimensional quantum wires as well as y-branched structures were used as nanoelectronic basic elements, which were controlled by lateral side-gates. Transport measurements were mainly performed in the strong nonlinear transport regime at temperatures between 4.2 K and room temperature. Experimental investigations were focused on gain, capacitive couplings between single nanowires, the realisation of complex logic functions like counter and fulladder devices, quantum-gate applications, noise activated switching, stochastic resonance phenomena and magnetic field asymmetries of the nonlinear mesoscopic transport. KW - Niederdimensionales Elektronengas KW - Galliumarsenid-Bauelement KW - Galliumarsenid-Feldeffekttransistor KW - Nanoelektronik KW - Stochastische Resonanz KW - Elektronisches Rauschen KW - Quantendraht KW - Drei-Fünf-Halbleiter KW - Festkörperphysik KW - Y-Schalter KW - Magnetsensor KW - bistabiles Schalten KW - ballistischer Transport KW - Volladdierer KW - nanoelectronic KW - mesoscopic KW - ballistic KW - full adder KW - magnetic sensor KW - bistable switching Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29175 ER -