TY - THES A1 - Helf, Christian T1 - Herstellung von Polymethacrylat/Calciumphosphat-Implantatwerkstoffen durch den 3D-Pulverdruck T1 - Preparation of polymethacrylate/calcium phosphate implant materials via 3D powder printing N2 - Die Erstellung von komplex geformtem Knochenersatz wurde durch den 3D-Pulverdruck unter Verwendung von Calciumphosphatmaterialien beschrieben. Gegenstand der vorliegenden Arbeit war deren Modifikation durch die Verwendung von Methacrylatkunststoffen. Ziel war es, durch die Infiltration von nicht resorbierbaren Kunststoffen, wie sie in kommerziell erhältlichen Knochenzementen verwendet werden, die mechanischen Eigenschaften der nicht gesinterten Keramikstrukturen zu verbessern. Getestet wurden verschiedene Methoden der Infiltration sowie der nachfolgenden Polymerisationsinitiierung durch chemische, thermische oder photochemische Aktivatoren. Daneben erfolgte der Druck von Tricalciumphosphat-Pulvern, die mit Polymethylmethacrylat Partikeln versetzt wurden und durch eine hydraulische Verfestigungsreaktion mit Phosphorsäure aushärten. Die erstellten Materialien wurden auf ihre Porosität, ihre mechanischen Eigenschaften sowie auf die Phasenzusammensetzung ihrer anorganischen Matrix und den Konversionsgrat ihrer organischen Komponente hin untersucht. Es gelang, die freie Porosität der Calciumphosphat-Matrix durch Verwendung von flüssigen, monomeren Kunststoffen zu füllen und diese durch eine thermische Initiierung der radikalischen Polymerisation vollständig zur Aushärtung zu bringen. Bei der Reaktion kommt es neben einer Polymerisationskontraktion im organischen Bestandteil der Kunststoffe zu einer Phasenumwandlung der Bruschitanteile der Calciumphosphat-Matrix. Proben, die mit einem flüssigen Bisphenol-A-Derivat versetzt wurden, zeigten eine Verdreifachung ihrer Festigkeit und erreichten maximale Druckfestigkeiten von 99 MPa, Biegefestigkeiten von 35 MPa und einen E-Modul von 18 GPa. Verglichen mit den biomechanischen Eigenschaften des physiologischen Hartgewebes liegen die Werte damit deutlich über denen von spongiösem und unter denen von kortikalem Knochen. Eine künftige Optimierung erscheint durch die Schaffung einer chemischen Verbundphase zwischen dem anorganischen Calciumphosphat-Gefüge und den Polymerbestandteilen als aussichtsreich. N2 - The production of complex shaped bone graft was described by the 3D powder printing using calcium phosphate materials. The present work dealt with the modification of these materials by adding methylacrylate materials. The objective was to improve the mechanical properties of non-sintered ceramic structures by the infiltration of non-resorbable plastics such as used in commercialized bone cements. Different methods of infiltration as well as chemical, thermal or photochemical polymerization activators have been tested. In addition to that, tricalcium phosphate powders have been enriched by polymethylmethacrylate particles before being printed and cured by an hydraulic hardening reaction with phosphoric acid. The prepared materials have been tested for their porosity, their mechanical properties as well as for the phase composition of their inorganic matrix and the conversion rate of their organic components. It could be achieved to fill the open porosity of printed calcium phosphate matrix by using liquid, monomeric plastics and to cure them completely through a thermal initiation of radical polymerization. Besides the polymerization contraction in the organic component, the thermal treatment led to a phase transformation of the calcium phosphate brushite matrix. Samples, which were infiltrated with a liquid bisphenol-A derivative, showed a threefold increase of their strength and reached a maximum compressive strength of 99 MPa, a flexural strength of 35 MPa and a Young´s modulus of 18 GPa. Compared to biomechanical properties of physiological hard tissues, the levels were significantly higher than those of cancellous and lower than those of cortical bones. To further optimize, it seems promising to create a chemical bond between the inorganic phase of calcium phosphate microstructure and polymer components. KW - Rapid Prototyping KW - Knochenersatz KW - Knochenzement KW - Methacrylsäuremethylester KW - 3D-Pulverdruck KW - Calciumphosphat KW - Rapid Prototyping KW - 3D powder print KW - bone cements KW - methacrylate KW - calcium phosphate Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39575 ER - TY - THES A1 - Klarner, Michael T1 - 3D-Pulverdruck von Calciumphosphat-Keramiken mit polymeren und anorganischen Bindersystemen T1 - Polymer and inorganic 3D-rapid prototyping systems to build calciumphospate-ceramics N2 - Die vorliegende Arbeit hatte die Herstellung phasenreiner ß-Tricalciumphosphat (ß-TCP) - Implantate durch 3D-Pulverdruck zum Ziel. Variiert wurden hierbei die zum Druck verwendeten Pulver-Binder-Systeme. Als Verfestigungsmechanismen wurden hydraulisch abbindende Pulver-Binder-Systeme aus Tricalciumphosphat / Phosphorsäure bzw. Tetracalciumphosphat / Citronensäure untersucht, sowie der Zusatz quellfähiger Polymere zum Pulver, etwa Polyacrylsäure oder Hydroxypropylmethyl-Cellulose. Die gedruckten Strukturen wurden anschließend in Hinblick auf die zu erreichende Auflösung, die mechanischen Eigenschaften und die Zusammensetzung des Endproduktes verglichen. N2 - Custom made ß-tricalcium phosphate (ß-TCP) bone substitutes with a macroporous architecture were fabricated in this study using 3D powder printing with three different preparation strategies and analysed with regard to their mechanical and physical properties. Samples were either obtained by (A) using hydroxypropylmethylcellulose (5wt%) modified TCP (Ca/P=1.5) powder with water as a binder, (B) by using phosphoric acid (10%) as a binder with a calcium phosphate powder of a Ca/P ratio of 1.7 and different binder/volume ratios or (C) by printing a tetracalcium phosphate (Ca/P=2.0) / dicalcium phosphate (Ca/P=1.0) / tricalcium phosphate powder mixture with citric acid (25wt%). The production process was followed by a heat treatment at 1100°C for all variations to produce phase pure ß-TCP (Ca/P=1.5). The results showed that ß-TCP samples fabricated according to method (B) showed the best printing resolution with a minimum macropore diameter of approximately 500µm and a compressive strength of up to 7.4 ± 0.7 MPa. Since the samples could be removed from the powder bed immediately after printing, this method would significantly decrease processing time for commercial fabrication. KW - Rapid Prototyping KW - Biomaterial KW - 3D-Pulverdruck KW - Calciumphosphat KW - Tricalciumphosphat KW - Knochenersatzwerkstoff KW - Biokompatibel KW - ß-tricalcium phosphate KW - beta TCP KW - 3D - rapid prototyping KW - bone substitute Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-36373 ER - TY - THES A1 - Fuchs, Andreas Rudolf T1 - 3D-Pulverdruck von Zellkulturträgern mit Magnesium-Phosphat-Chemie T1 - 3d powder printing of scaffolds with a magnesium phosphate chemistry N2 - In der vorliegenden Arbeit wurden erstmals im 3D-Pulerdruckverfahren hergestellte Struvit-Matrizes auf ihre Eignung als Trägermaterial für Knochenzellen in vitro untersucht. Hierzu wurde die Zytokompatibilität sowie die chemische Löslichkeit von gedruckten Struvit-Strukturen betrachtet. In einem zweiten Schritt wurde untersucht, ob die biologische Funktion von BMP-2-Lösungen nach Durchlaufen des Druckprozesses erhalten bleibt und ob es möglich ist, BMP-2 unter Beibehaltung seiner biologischen Wirksamkeit direkt in Struvit-Matrizes zu drucken. Als Reaktanten zur Herstellung der Struvit-Matrizes wurde modifiziertes Farringtonit-Pulver mit definierter Körnung und eine äquimolare Binder-Lösung aus DAHP und ADHP verwendet. Die untersuchten Zellkulturträger mit Magnesiumammoniumphosphatchemie zeigten eine ausreichende Zytokompatibilität in vitro. Außerdem wurde gezeigt, dass thermolabile Proteine wie BMP-2 im 3D-Pulverdruckverfahren unter weitgehender Beibehaltung ihrer biologischen Wirksamkeit in vitro grundsätzlich prozessierbar sind. Die Freisetzung direkt eingedruckter Proteine aus den Struvit-Matrizes blieb jedoch hinter den Erwartungen zurück. Mit Struvit steht ein alternatives Zementsystem für den 3D-Pulverdruck zur Verfügung, welches spezifische Vorteile gegenüber den etablierten Calciumphosphaten bietet. Weitere Untersuchungen sind erforderlich, um die Ursache für die geringe BMP-Freisetzung aus den Struvit-Matrizes zu ermitteln und die Vorteile der neutralen Abbindereaktion voll nutzen zu können. N2 - The purpose of the present study was the investigation of 3d powder printed struvite-scaffolds as a carrier material for osteoblastic cells in vitro. For this purpose, their cytocompatibility and their chemical solubility were observed. In a second step we analysed, if BMP-2 could pass through the whole printing process without losing its biological function and furthermore if it is possible to print BMP-2 directly into struvite-scaffolds without a significant loss of biological activity. As reactants for the fabrication of the struvite-scaffolds, we used a modified farringtonite-powder and a binder solution consisting of an equimolar mixture of DAHP and ADHP. The investigated struvite-scaffolds showed a sufficient cytocompatibility. It was also shown, that thermolabile proteins, such as BMP-2, could be processed in 3d powder printing without losing much of their biological activity in vitro. The release of directly imprinted proteins out of the struvite scaffolds remained unsatisfying. Struvite is an alternative hydraulic-setting cement for 3d powder printing with certain advantages over the established calcium phosphate cements. Further investigations are necessary to identify the reasons for the low BMP-release out of the struvite-scaffolds and to take full advantage of the neutral setting reaction of struvite-cements. KW - Struvit KW - Rapid Prototyping KW - Knochen-Morphogenese-Proteine KW - 3D-Pulverdruck KW - BMP KW - Scaffold KW - 3d powder printing KW - scaffold KW - BMP KW - struvite Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77415 ER - TY - THES A1 - Kraski, Boris T1 - Zytokompatibilität von Bruschit. Ein im 3D-Pulverdruckverfahren hergestelltes Zellkulturträgermaterial T1 - Cytocompatibility of brushite cell culture scaffolds made by three-dimensional powder printing N2 - In der vorliegenden Arbeit wurde die Eignung einer im 3D-Pulverdruckverfahren fabrizierten Trägerstruktur auf Calciumphosphat-Basis (Bruschit) als Zellkultur-Scaffold untersucht. Dazu wurden die Konstrukte in vitro mit osteoblastären Zellen besiedelt und deren Proliferations- und Differenzierungsverhalten über eine Kultivierungsdauer von 12 Tagen analysiert. Als Parameter dienten hierbei die Zellviabilität, die Aktivität des osteoblastären Enzyms Alkalische Phosphatase sowie die Mediumkonzentration von Osteocalcin. Des Weiteren wurde der pH-Wert des Kulturmediums sowie die Konzentrationen der freien Elektrolyte Calcium und Phosphat untersucht. Die Ergebnisse belegen eine gute Zytokompatibilität des Trägermaterials. Diese äußerte sich in einer progredienten Proliferation phänotypisch osteoblastärer Zellen (gemäß Rasterelektronenmikroskopie). Die Zellen exprimierten das ostoblastentypische Enzym Alkalische Phosphatase, welches als früher Differenzierungsmarker gilt. Die Analyse der Osteocalcinproduktion führte aufgrund methodischer Probleme nicht zu verwertbaren Ergebnissen. Die Untersuchung des verbrauchten Zellkulturmediums ergab keine unphysiologischen Schwankungen des pH-Wertes. Jedoch konnten signifikante Veränderungen der Konzentration an freien Calcium und Phosphat-Ionen im Medium festgestellt werden. Diese sind auf die Löslichkeit des Trägermaterials im physiologischen Milieu zurückzuführen. Zusammenfassend konnte mittels vorliegender in vitro Versuche eine geeignete Zytokompatibilität des untersuchten Materials herausgearbeitet werden. Für mögliche klinische Anwendungen zum Knochenersatz sind weitergehende Untersuchungen, insbesondere osteokonduktiver Eigenschaften im orthotopen Implantatlager im Rahmen von in vivo Untersuchungen, erforderlich. N2 - This study investigated the cytocompatibility of low-temperature direct 3-D printed calcium phosphate scaffolds in vitro. The fabrication of the scaffolds was performed with a commercial 3-D powder printing system. Diluted phosphoric acid was printed into tricalcium phosphate powder, leading to the formation of dicalcium phosphate dihydrate (brushite). The biocompatibility was investigated using the osteoblastic cell line MC3T3-E1. Cell viability and the expression of alkaline phosphatase served as parameters. The culture medium was analyzed for pH value, concentration of free calcium and phosphate ions and osteocalcin. The brushite scaffolds showed a considerable increase of cell proliferation and viability. The activity of alkaline phosphatase showed a similar pattern. Optical and electron microscopy revealed an obvious cell growth on the surface of the brushite scaffolds. Analysis of the culture medium showed minor alterations of pH value within the physiological range. The content of osteocalcin of the culture medium was reduced by the printed scaffolds due to adsorption. We conclude that the powder printed brushite matrices have a suitable biocompatibility for their use as cell culture scaffolds. The material enables osteoblastic cells in vitro to proliferate and differentiate due to the expression of typical osteoblastic markers. KW - Rapid Prototyping KW - Biomaterial KW - 3D-Pulverdruck KW - Calciumphosphat KW - Bruschit KW - Knochenersatzwerkstoff KW - Biokompatibel KW - 3D - rapid prototyping KW - bone substitute KW - brushite Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78615 ER - TY - THES A1 - Jahn, Christoph Hans T1 - In vitro Untersuchung von 3D-pulvergedruckten Monetit-Strukturen T1 - Cytocompatibility of three-dimensional powder printed monetite structures N2 - Die vorliegende Arbeit hatte zum Ziel, die Zytokompatibilität von im 3D-Pulverdruckverfahren hergestellten Zellkulturträgern aus Dicalciumphosphat Anhydrat (CaHPO4, Monetit) in vitro zu untersuchen. Dieses Material lässt sich der Substanzklasse der Calciumphosphate zuordnen, welche aufgrund ihrer chemischen Ähnlichkeit zur mineralischen Phase des Knochens einen hohen Stellenwert als Knochenersatzmaterial besitzen. Die Trägerstrukturen wurden mittels CAD-CAM Technologie im 3D-Pulverdruckverfahren fabriziert. Dabei wurde auf ein entsprechend adaptiertes Zementsystem zurückgegriffen, bestehend aus Tricalciumphosphatpulver und Phosphorsäure. Die primär aus Dicalciumphosphat Dihydrat (Bruschit) bestehenden Konstrukte wurden anschließend durch Autoklavieren hydrothermal in Monetit umgewandelt. Die Kombination einer bei Raumtemperatur ablaufenden Zementabbindereaktion mit einem generativen Fertigungsverfahren wie dem Pulverdruck ermöglichte die Herstellung monolithischer Formkörper ohne thermische Verfestigung (Sinterung). Daher kann eine im Vergleich zu gesinterten Formkörpern gute thermodynamische Löslichkeit und somit gute Biodegradierbarkeit erwartet werden. Zur Evaluierung der Zytokompatibilität des pulvergedruckten Materials wurde nach Besiedlung mit osteoblastären Zellen deren Proliferations- und Differenzierungsverhalten in vitro untersucht. Die Zellviabilität, die Aktivität der Alkalischen Phosphatase sowie die Konzentration von Osteocalcin dienten als Parameter. Weiterhin wurden die Konzentration freier Elektrolyte und der pH-Wert im Nährmedium zur Evaluierung der Löslichkeit der Träger in vitro herangezogen. Anhand licht- und rasterelektronenmikroskopischer Aufnahmen erfolgte eine qualitativ-morphologische Einschätzung des Zellwachstums. Die Untersuchungen zeigen eine gute Zytokompatibilität des Trägermaterials aus Monetit. Die im Vergleich zu den Positiv-Kontrollen etwas erniedrigten Werte lassen sich durch die im Nährmedium festgestellten Elektrolytverschiebungen erklären, welche durch die thermodynamische Löslichkeit von Monetit zustande kommen. Diese Problematik der Zellkultur als geschlossenem System sollte jedoch in vivo bei stetigem Flüssigkeits- und Metabolitenaustausch keine Rolle spielen. Die Ergebnisse liefern einen Beitrag zur Erarbeitung neuartiger Knochenzemente, insbesondere aus Monetit. Klinisch interessant erscheint die verfahrensbedingte Möglichkeit, die Anforderungen nach guter Degradierbarkeit, präoperativer Fabrizierung und individueller Formgebung (z.B. passend zu einem individuellen Defekt) miteinander kombinieren zu können. N2 - The aim of this study was the in vitro examination of the cytocompatibility of dicalcium phosphate anhydrate (CaHPO4, monetit) cell culture carriers (alternativ: media) that are produced via 3D powder printing. Monetit is a calcium phosphate, a substance group, which, due to its chemical resemblance to the mineral phase of bone, is considered an important bone replacement material. The carrier structures were fabricated via CAD-CAM technology using 3D powder printing. We utilized an appropriately adapted cement system consisting of tricalcium phosphate powder and phosphoric acid. We subsequently hydrothermally transformed these carrier structures, which primarily consisted of dicalcium phosphate dihydrate (bruschit), into monetit by autoclaving. The combination of a cement setting reaction, taking place at room temperature, with a generative production method like powder printing enabled the production of monolithic molds lacking thermal solidification (sintering). We therefore expect good thermodynamic solubility and thus good biodegradability in comparison to sintered molds. In order to evaluate the cytocompatibility of this powder printed material we examined the proliferation and differentiation behavior of osteoblastic cell populations on the mold in vitro. Parameters were cell viability, the activity of alkaline phosphatase and the concentration of osteocalcin. Furthermore, we used the concentration of free electrolytes and the pH-value of the nutrient solution in order to evaluate the solubility of the carriers in vitro. Using light optical and scanning electron microscopic images, we undertook a quantitative morphological assessment of cell growth. Our examinations prove good cytocompatibility of the monetit carrier material. The rates/levels (werte) were slightly lowered when compared to positive controls, which can be attributed to electrolyte shifts within the nutrient solution, caused by the thermodynamic solubility of monetit. However the problems resulting from this closed system of cell cultures is not expected to be relevant in vivo where a constant exchange of fluids and metabolites is present. The results constitute a contribution for the development of new bone cements, in particular those consisting of monetit. The possibility of combining the requirements of good degradability, preoperative production and individualized shape (e.g. fitted to an individual defect), afforded by monetit’s mode of production appears to be of clinical interest. KW - Calciumphosphate KW - Monetit KW - 3D-Pulverdruck KW - Calciumphosphate Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113557 ER -