TY - THES A1 - Wilhelm, Thomas T1 - Konzeption und Evaluation eines Kinematik/Dynamik-Lehrgangs zur Veränderung von Schülervorstellungen mit Hilfe dynamisch ikonischer Repräsentationen und graphischer Modellbildung T1 - Conception and evaluation of a kinematics/dynamics course to change students' conceptions with the aid of dynamic-iconic representations and graphic modelling N2 - Auch nach dem herkömmlichen Mechanikunterricht in der Oberstufe verfügen viele Schüler nicht über angemessene physikalische Vorstellungen über die verwendeten physikalischen Begriffe und deren Zusammenhänge. Einführend wurden in dieser Arbeit allgemeine Aspekte zu Schülervorstellungen (Kapitel 2.1) sowie konkrete Schülervorstellungen zur Mechanik (Kapitel 2.2) und relevante Lehrervorstellungen (Kapitel 2.3) dargelegt. Ein Ziel dieser Arbeit war, ein Gesamtkonzept für einen veränderten Kinematik- und Dynamikunterricht ein- und zweidimensionaler Bewegungen in der Jahrgangsstufe 11 des Gymnasiums zu entwickeln, das möglichst vielen Schülern hilft, möglichst viele Fehlvorstellungen zur Mechanik aufzuarbeiten. Dazu wurden u.a. computergestützte Experimente und die Visualisierung der physikalischen Größen mit dynamisch ikonischen Repräsentationen (siehe Kapitel 3.2) eingesetzt, was neue Elementarisierungen und neue Unterrichtsstrategien ermöglichte (siehe Kapitel 8.2 oder Kapitel 5). Um gute Chancen zu haben, dass dieses Konzept den Schulalltag erreicht, wurde es lehrplankonform zum bayerischen Lehrplan konzipiert. Eine erste Zielsetzung der summativen Evaluation war festzustellen, inwieweit das gesamte Unterrichtskonzept von verschiedenen Lehrern durchführbar ist und wie diese es einschätzen (siehe Kapitel 8.4 oder Kapitel 6.3). Ein wichtiges Ziel war dann, mit Hilfe von Tests festzustellen, inwieweit es Veränderungen in den Schülervorstellungen gab (Vor-/Nachtest-Design) und diese Veränderungen mit konventionell unterrichteten Klassen zu vergleichen (Trainings-/Kontrollgruppen-Design) (konventionelle Klassen: Kapitel 8.1; Vergleich: Kapitel 8.5; Kapitel 6.4 + 6.5). Dazu wurden hauptsächlich bereits vorliegende paper-pencil-Tests verwendet, da eine Testneuentwicklung im Rahmen der Arbeit nicht möglich gewesen wäre. Da diese Tests verschiedene Schwächen haben, wurden mehrere verschiedene Tests gleichzeitig eingesetzt, die sich gegenseitig ergänzen. Die graphische Modellbildung in Verbindung mit Animationen ist ein fakultativer Teil dieses Unterrichtskonzeptes. Hierzu wurde zusätzlich eine eigene Interventionsstudie durchgeführt (siehe Kapitel 8.3 und Kapitel 4). Ergebnisse: Dynamisch ikonische Repräsentationen können dem Lehrer neue unterrichtliche Möglichkeiten geben und somit dem Schüler helfen, physikalische Konzepte angemessener zu verstehen. Die Einführung kinematischer Größen anhand zweidimensionaler Bewegungen, die nur mit ikonischen Repräsentationen in Form von Vektorpfeilen sinnvoll ist (geeignete Elementarisierung), führt zu einem physikalischeren Verständnis des Beschleunigungsbegriffes und vermeidet Fehlvorstellungen durch eine ungeeignete Reduktion auf den Spezialfall eindimensionaler Bewegungen. Mehr Schüler konzeptualisieren Beschleunigung wie in der Physik als gerichtete Größe anstelle einer Größe, die die Änderung des Geschwindigkeitsbetrages angibt und allenfalls tangentiale Richtung haben kann. Auch in der Dynamik sind dadurch hilfreiche Darstellungen und so sinnvolle Veränderungen des Unterrichts möglich. Um wesentliche Strukturen aufzuzeigen, werden komplexere Versuche mit mehreren Kräften und Reibung eingesetzt, was erst durch eine rechnerunterstützte Aufbereitung mit dynamisch ikonischen Repräsentationen ermöglicht wird. Diese Darstellungen ermöglichen auch eine aktive Auseinandersetzung der Schüler mit den Themen, indem von ihnen häufig Vorhersagen gefordert werden (geeignete Unterrichtsstrategie). Graphische Modellbildung als weiterer Einsatz bildlicher Darstellungen kann ebenso eine weitere Verständnishilfe sein. Schüler, die nach dem vorgelegten Unterrichtskonzept unterrichtet wurden, zeigten mehr Verständnis für den newtonschen Kraftbegriff. Da die entwickelten Ideen tatsächlich im Unterricht ankamen und dort Veränderungen bewirkten, kann von einer effektiven Lehrerfortbildung mit Transferwirkung gesprochen werden. N2 - Even after the traditional mechanics instruction in the senior classes, many students do not have any adequate physical conceptions of the physical terms and definitions used, as well as of their coherencies. This study therefore commences with a presentation of general aspects of students’ conceptions (chapter 2.1) as well as precise students' conceptions on mechanics (chapter 2.2) and relevant teachers’ conceptions (chapter 2.3). An objective of this study was to develop an overall concept for modified kinematics and dynamics instruction of motions in one and two dimensions in grade 11 of grammar school, aiming at helping as many students as possible to clear as many misconceptions on mechanics as possible. In order to achieve this goal, computer-aided experiments and the visualisation of physical quantities with dynamic-iconic representations (see chapter 3.2) were used, among other things, thus enabling new elementarizations as well as new teaching strategies (see chapter 9.2 or chapter 5). In order to have good chances that this concept reaches the school everyday life, it was conceived curriculum-conformal to the Bavarian curriculum. The first goal of the summative evaluation was to determine to what extent the entire teaching concept can be implemented by different teachers, and how they assess said concept (see chapter 9.4 or chapter 6.3). Subsequently, an important objective was to ascertain, by means of tests, to which extent the students’ conceptions had changed (pre-/post-testing design), and to compare these changes with conventionally taught classes (treatment-/control-group design) (conventional classes: chapter 9.1; comparison: chapter 9.5; chapters 6.4 + 6.5). For that purpose, already existing paper-pencil-tests were mainly used, as a new development of tests would not have been possible in the course of the study. These tests have various shortcomings, so several tests were used at the same time, complementing each other. Graphic modelling in combination with animations is part of this teaching concept. Additionally, an own intervention study was carried out in this context (see chapter 9.3 and chapter 4). Results: Dynamic-iconic representations can provide teachers with new teaching possibilities and thus help students to adequately understand physical concepts. An introduction of kinematic quantities with the aid of two-dimensional motions, which makes only sense with iconic representations in the form of vector arrows (suitable elementarization), leads to a more physical understanding of the acceleration concept and avoids misconceptions due to an inept reduction to the special case of motions in one dimension. More students conceptualize acceleration – like in physics – as a directed quantity instead of a quantity indicating the change of the magnitude of velocity and having at best tangential direction. This renders possible helpful representations for and thus reasonable changes of dynamics instruction as well: In order to illustrate essential structures, more complex experiments with several forces and friction are used, which is only feasible because of a computer-aided preparation with dynamic-iconic representations. These representations also allow for the students to actively deal with the subject by often asking them to make predictions (suitable teaching strategy). Graphic modelling as another application of iconic representations can also further understanding. Students who were instructed pursuant to the teaching concept on hand showed a greater understanding of Newton's concept of force. As the developed ideas were in fact well received in class and caused changes there, it can be called an effective further teacher training with a transfer effect. KW - Physikunterricht KW - Modellierung KW - Physikdidaktik KW - Kinematik KW - Dynamik KW - Modellbildung KW - Schülervorstellungen KW - physics education KW - kinematics KW - dynamics KW - modelling KW - students' conceptions Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39554 N1 - Das Buch mit CD-ROM kann unter der ISBN 978-3-8325-1046-6 auch online oder über den Buchhandel beim Logos-Verlag Berlin bestellt werden. Siehe auch http://www.logos-verlag.de/cgi-bin/buch?isbn=1046 ER - TY - THES A1 - Galmbacher, Matthias T1 - Lernen mit dynamisch-ikonischen Repräsentationen aufgezeigt an Inhalten zur Mechanik T1 - Learning from dynamic-iconic representations N2 - Im Physikunterricht wurde lange Zeit die Bedeutung quantitativer Zusammenhänge für das Physiklernen überbewertet, qualitative Zusammenhänge spielten dagegen eine eher untergeordnete Rolle. Dies führte dazu, dass das Wissen der Schüler zumeist ober­fläch­lich blieb und nicht auf neue Situationen angewendet werden konnte. TIMSS und Pisa offenbarten diese Schwierigkeiten. In den Abschlussberichten wurde kritisiert, dass die Schüler kaum in der Lage seien, Lernstoff zu transferieren oder pro­blem­lösend zu denken. Um physikalische Abläufe deuten und entsprechende Probleme lösen zu können, ist qua­litativ-konzeptuelles Wissen nötig. Dieses kann, wie Forschungs­ergebnisse belegen, am besten durch die konstruktivistisch motivierte Gestaltung von Lern­situationen sowie durch die Inte­gration externer Repräsentationen von Versuchs­aussagen in den Schul­unter­richt er­reicht werden. Eine konkrete Umsetzung dieser Bedingungen stellt der Ein­satz rechner­gestützter Experimente dar, der heutzutage ohne allzu großen technischen Aufwand rea­lisiert werden kann. Diese Experimente erleichtern es dem Lernenden, durch den direk­ten Umgang mit realen Abläufen, physikalische Konzepte zu erschließen und somit qua­litative Zusammenhänge zu verstehen. Während man lange Zeit von einer grundsätzlichen Lernwirksamkeit animierter Lern­um­gebungen ausging, zeigen dagegen neuere Untersuchungen eher Gegenteiliges auf. Schüler müssen offensichtlich erst lernen, wie mit multicodierten Re­prä­sentationen zu arbeiten ist. Die vorliegende Arbeit will einen Beitrag dazu leisten, he­raus­zufinden, wie lernwirksam sogenannte dynamisch-ikonische Repräsentationen (DIR) sind, die physikalische Größen vor dem Hintergrund konkreter Versuchsabläufe visuali­sieren. Dazu bearbeiteten im Rahmen einer DFG-Studie insgesamt 110 Schüler jeweils 16 Projekte, in denen mechanische Konzepte (Ort, Geschwindigkeit, Beschleu­nigung und Kraft) aufgegriffen wurden. Es zeigte sich, dass die Probanden mit den ein­ge­setzten DIR nicht erfolgreicher lernen konnten als ver­gleich­bare Schüler, die die gleichen Lerninhalte ohne die Unter­stützung der DIR erarbeiteten. Im Gegen­teil: Schüler mit einem geringen visuellen Vorstellungsvermögen schnitten aufgrund der Darbietung einer zusätzlichen Codierung schlechter ab als ihre Mit­schüler. Andererseits belegen Untersuchungen von Blaschke, dass solche Repräsen­ta­tionen in der Erarbeitungsphase einer neu entwickelten Unter­richts­kon­zep­tion auch und gerade von schwächeren Schülern konstruktiv zum Wissens­erwerb genutzt werden konnten. Es scheint also, dass die Lerner zunächst Hilfe beim Umgang mit neuartigen Re­prä­sen­ta­tions­formen benötigen, bevor sie diese für den weiteren Aufbau adäqua­ter physi­ka­lischer Modelle nutzen können. Eine experimentelle Unter­suchung mit Schü­lern der 10. Jahrgangsstufe bestätigte diese Vermutung. Hier lernten 24 Probanden in zwei Gruppen die mechanischen Konzepte zu Ort, Geschwin­dig­keit und Beschleunigung kennen, bevor sie im Unter­richt behandelt wurden. Während die Teil­nehmer der ersten Gruppe nur die Simulationen von Bewegungsabläufen und die zuge­hörigen Liniendiagramme sahen, wurden für die zweite Gruppe unterstützend DIR eingesetzt, die den Zusammenhang von Bewe­gungs­ablauf und Linien­diagramm veranschaulichen sollten. In beiden Gruppen war es den Probanden möglich, Fragen zu stellen und Hilfe von einem Tutor zu erhalten. Die Ergebnis­se zeigten auf, dass es den Schülern durch diese Maßnahme ermöglicht wurde, die DIR erfolgreich zum Wissens­er­werb einzusetzen und sig­nifikant besser abzuschneiden als die Teilnehmer in der Kon­troll­­gruppe. In einer weiteren Untersuchung wurde abschließend der Frage nachgegangen, ob DIR unter Anleitung eines Tutors eventuell bereits in der Unterstufe sinnvoll eingesetzt werden können. Ausgangspunkt dieser Überlegung war die Tatsache, dass mit der Einführung des neuen bayerischen G8-Lehrplans wesentliche Inhalte, die Bestand­teil der vorherigen Untersuchungen waren, aus dem Physik­unterricht der 11. Jgst. in die 7. Jahrgangsstufe verlegt wurden. So bot es sich an, mit den Inhalten auch die DIR in der Unterstufe ein­zusetzen. Die Un­tersuchungen einer quasiexperimentellen Feldstudie in zwei siebten Klassen belegten, dass die betrachte­ten Repräsentationen beim Aufbau entsprechender Kon­zepte keinesfalls hinderlich, sondern sogar förder­lich sein dürften. Denn die Schüler­gruppe, die mit Hilfe der DIR lernte, schnitt im direkten hypothesenprüfenden Vergleich mit der Kontrollklasse deutlich besser ab. Ein Kurztest, der die Nachhaltigkeit des Gelernten nach etwa einem Jahr überprüfen sollte, zeigte zudem auf, dass die Schüler der DIR-Gruppe die Konzepte, die unter Zuhilfenahme der DIR erarbeitet wurden, im Vergleich zu Schülern der Kontrollklasse und zu Schülern aus 11. Klassen insgesamt überraschend gut verstanden und behalten hatten. N2 - For a long time the significance of quantitative interrelations for the acquisition of physics has been overestimated in physics education while qualitative interrelations have been considered of less importance. This has resulted in the students’ knowledge most often remaining superficial and not suited to be adapted to new situations. TIMSS and Pisa have revealed these difficulties, criticizing the conventional physics education for de­manding too little transfer achievements and not preparing students to solve physical problems on their own by thinking constructively. To be able to solve physical problems and interpret physical processes, qualitative-con­ceptual knowledge is vital. According to results of the latest research this can be achieved most efficiently by creating constructivist learning situations as well as inte­grating external representations of conclusions from experiments. A concrete way to reach these envisaged aims is the application of PC-assisted experiments, which can be put in practise without an exceeding technical effort. These experiments enable the stu­dents - by being directly confronted with a realistic process - to get insight into physical concepts and thus to understand qualitative interrelations. For a long time a basic learning efficiency of animated learning environments was as­sumed, more recent research, however, has rather pointed in the opposite direction. Ob­viously students must first learn how to work with multi-coded representations. This pa­per is intended to contribute to the exploration of the efficiency of the so-called dynamic-iconic representations (DIR), which visualize physical values against the background of concrete test procedures. For this purpose 110 students have covered 16 projects each within a DFG study, in which mechanical concepts (place, velocity, acceleration and force) are dealt with and developed further. As it turned out, students working with the dynamic-iconic represen­tations did not learn more efficiently than those working without the assistance of the dynamic-iconic representations. On the contrary: students with a less distinct visual-spa­tial ability did worse than their fellow-students, obviously due to the presentation of yet another encoding. On the other hand research by Blaschke has proven that such representations can be used constructively to gain knowledge especially by the inefficient students during the acquisition stages of a (newly-developed) teaching conception. Consequently, it seems that students must first receive some sort of assistance with handling novel forms of representation before being able to use them for getting to know about the further construction of physical models. An experimental study with partici­pants from tenth-grade high school classes has confirmed this assumption. Another study dealt with the question as to whether dynamic-iconic representations can already be applied expediently in the lower grade. It was performed because significant contents of the physics year 11 curriculum had been moved to year 7 with the introduc­tion of the new Bavarian G8 (eight-year high school) curriculum. Thus it seemed advis­able to apply the dynamic-iconic representations along with the contents in the lower grade. The research done in a quasi experimental field study has shown that the representations in question are by no means obstructive, but in parts conducive to the students’ ability to develop corresponding conceptions. This can be seen from the fact that the group of stu­dents learning with the assistance of dynamic-iconic representations did indeed con­siderably better than the ‘control group’. With its results this paper is supposed to contribute to a better understanding of the ap­plication of multimedia learning environments. The medium alone cannot induce mea­ningful learning processes – these processes must be well-structured and start as soon as possible, so that they can teach the students to deal with the different encodings sen­sibly. I am convinced that this is the only way the various possibilities our current IT age offers us with its multimedia worlds or multi-coded learning environments can be used efficiently. KW - Multimedia KW - Graphische Darstellung KW - Repräsentation KW - Computerunterstütztes Lernen KW - Computersimulation KW - Computer KW - Physikunterricht KW - Natur und Technik KW - Codierung KW - Mechanik KW - Newton KW - Isaac KW - Kraft KW - Kraftmessung KW - Didaktik KW - Dynamisch-ikonische Repräsentation KW - G8 Bayern KW - Natur und Technikunterricht KW - dynamic-iconic representation KW - learning KW - physics KW - mechanic Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29271 ER - TY - THES A1 - Finkenberg, Frank T1 - Flipped Classroom im Physikunterricht T1 - Flipped Classroom in Physics Education N2 - In der Unterrichtsmethode Flipped Classroom sind schulische und häusliche Aktivitäten vertauscht. Instruktionale Elemente werden in online verfügbare Lernvideos ausgelagert, welche die Schüler als häusliche Vorbereitung ansehen. Im Unterricht stehen dann schülerzentrierte Tätigkeiten im Vordergrund, in denen die Schüler ihr Wissen anwenden und vertiefen können. Durch die Auslagerung von Inputphasen wandelt sich die Rolle des Lehrers vom Instructor zum Lernbegleiter. Die vorliegende quasi-experimentelle Studie im Pre-/Postdesign mit Kontrollgruppe untersuchte die Wirkungen des Flipped Classroom in Physikkursen der Oberstufe (Grundkursniveau) an zwei deutschen Gymnasien mit N = 151 Schülerinnen und Schülern. Acht Physikkurse der 11. Jahrgangsstufe nahmen an der Studie teil, die sich über einen Zeitraum von zwei Schuljahren erstreckte (2015/16 und 2016/17). Vier der fünf teilnehmenden Lehrkräfte unterrichteten sowohl einen Kontroll- als auch einen Treatmentkurs. Sämtliche Lernvideos wurden von den Lehrkräften selbst erstellt. Dabei integrierten sie reale Experimente, um dem Anspruch physikauthentischen Unterrichts gerecht zu werden. Die Forschungsfragen richteten sich sowohl auf die Leistung in einem Fachwissenstest als auch auf affektive Lernmerkmale wie die Motivation, das Interesse und das Selbstkonzept. Zusätzlich wurden die wahrgenommene Lehrerunterstützung und das Hausaufgabenverhalten untersucht. Die Anwendung von Flipped Classroom im Physikunterricht zeigte größtenteils positive Effekte. Die Schülerinnen und Schüler im Flipped Classroom hatten einen höheren kognitiven Lernzuwachs und ein besseres Selbstkonzept als ihre Mitschüler, die traditionell unterrichtet wurden. Das Leistungsniveau und das Geschlecht der Schülerinnen und Schüler hatten dabei keinen Einfluss auf diese Effekte. Während die Motivation, sich mit Physik zu beschäftigen, in der Kontrollgruppe sank, blieb sie in der Treatmentgruppe auf konstantem Niveau. Bei genauerem Blick zeigte sich, dass die Motivation bei Schülerinnen im Flipped Classroom anstieg, bei Schülerinnen im traditionellen Unterricht jedoch abnahm. Das Interesse am Unterrichtsfach Physik wurde in beiden Gruppen geringer. Sowohl die wahrgenommene Lehrerunterstützung als auch die Hausaufgabendauer blieben in beiden Gruppen zwischen Pre- und Posttest unverändert. Die Hausaufgabendisziplin war im Flipped Classroom jedoch deutlich höher, was zeigt, dass die Schülerinnen und Schüler eher bereit waren, sich instruktionale Lernvideos anzusehen als klassische Hausaufgaben zu bearbeiten. N2 - Flipped Classroom inverts traditional teaching methods by delivering direct instruction in online learning videos. The students watch the videos at home so that class time is freed up for student centered and collaborative activities that allow a deeper exploration of the con-tent. By outsourcing lectures, the role of the teacher shifts from instructing to coaching the students. The quasi-experimental pre/post-study with control group examined the effects of flipped classroom applied to basic physics courses at two German secondary schools with N = 151 students in a three-months-treatment. Eight 11th grade physics courses took part in the study that was conducted in the school years 2015/16 and 2016/17. Four of five teachers in-volved in the study taught both control and treatment courses. All videos were produced by the teachers and incorporated real experiments to ensure an authentic physics education experience. The research questions focused on the performance in a content knowledge test as well as non-cognitive attitudes such as motivation, interest and self-concept. In addition, perceived teacher support and homework habits were also evaluated. Applying flipped classroom in physics school education showed largely positive results. The students in flipped classroom had a higher gain in cognitive learning and a better self-concept than those in a traditional classroom setting. Physics aptitude as well as gender did not moderate these effects. Whereas the motivation to engage in physics declined in the control group, it remained unchanged in the treatment group. In particular, female students in flipped classroom developed a higher motivation to engage in physics than their female peers who lost motivation in the traditional classroom. The interest in physics as a school subject decreased in both groups. The perceived teacher support and the average length of homework stayed the same in both groups between pre- and post-test. However, the homework discipline was considerably higher in flipped classroom which showed that stu-dents were more likely to watch instructional videos than do traditional homework. KW - Physikunterricht KW - Lernvideos KW - active learning KW - Integriertes Lernen KW - Vergleichsstudie KW - Schüleraktivierung KW - explanatory videos KW - comparative study KW - performance KW - motivation KW - Lernerfolg KW - Kooperatives Lernen KW - E-Learning KW - Aktivierung KW - Motivation KW - Interesse Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164146 ER -