TY - THES A1 - Unsleber, Sebastian Philipp T1 - Festkörperbasierte Einzelphotonenquellen als Grundbausteine der Quanteninformationstechnologie T1 - Solid-state single photon sources as building blocks for the quantum information technology N2 - Die vorliegende Arbeit hatte das Ziel basierend auf Halbleiternanostrukturen eine effiziente und skalierbare Quelle einzelner und ununterscheidbarer Photonen zu entwickeln. Dies ist eine Basiskomponente von zukünftigen quantenphysikalischen Anwendungen wie der Quantenkommunikation oder dem Quantencomputer. Diese Konzepte nutzen gezielt quantenmechanische Systeme um einerseits Kommunikation absolut abhörsicher zu machen oder um neuartige Computer zu konstruieren, die bestimmte Aufgaben - wie die Produktzerlegung großer Zahlen - effizienter lösen als heutige Systeme. Ein mögliche Realisierung der Quantenkommunikation ist beispielsweise die Schlüsselverteilung zwischen zwei Parteien durch Verwendung des BB84-Protokolls. Dazu wird eine Lichtquelle benötigt, welche die physikalisch kleinstmögliche Lichtmenge - ein einzelnes Photon - aussendet. Der Kommunikationskanal wird dann über verschiedene Polarisationszustände dieser Photonen gegen ein Abhören nach außen hin abgesichert. Da die maximale Kommunikationsdistanz aufgrund von Verlusten im Quantenkanal beschränkt ist, muss das Signal für größere Distanzen mit Hilfe eines sog. Quantenrepeaters aufbereitet werden. Ein solcher kann ebenfalls unter Verwendung von Einzelphotonenquellen realisiert werden. Das Konzept des Quantenverstärkers stellt aber die zusätzliche Anforderung an die Einzelphotonenquelle, dass die ausgesendeten Lichtteilchen in der Summe ihrer Eigenschaften wie Energie und Polarisation immer gleich und somit ununterscheidbar sein müssen. Auf Basis solcher ununterscheidbarer Photonen gibt es zudem mit dem linear optischen Quantenrechner auch mögliche theoretische Ansätze zur Realisierung eines Quantencomputers. Dabei kann über die Quanteninterferenz von ununterscheidbaren Photonen an optischen Bauteilen wie Strahlteilern ein Quanten-NOT-Gatter zur Berechnung spezieller Algorithmen realisiert werden. Als vielversprechende Kandidaten für eine solche Lichtquelle einzelner Photonen haben sich in den letzten Jahren Halbleiter-Quantenpunkte herauskristallisiert. Dank des festkörperbasierten Ansatzes können diese Strukturen in komplexe photonische Umgebungen zur Erhöhung der Photonen-Extraktionseffizienz und -Emissionsrate eingebettet werden. Ziel dieser Arbeit war somit eine effiziente Quelle einzelner ununterscheidbarer Photonen zu realisieren. Im Hinblick auf die spätere Anwendbarkeit wurde der Fokus zudem auf die skalierbare bzw. deterministische Fabrikation der Quantenpunkt-Strukturen gelegt und zwei technologische Ansätze - die kryogene in-situ-Lithographie und das positionierte Wachstum von Quantenpunkten - untersucht. Im ersten experimentellen Kapitel dieser Arbeit wird ein neuartiges Materialsystem vorgestellt, welches sich zur Generation einzelner Photonen eignet. Es können spektral scharfe Emissionslinien mit Linienbreiten bis knapp über 50 µeV aus Al$_{0,48}$In$_{0,52}$As Volumenmaterial beobachtet werden, wenn diese Schicht auf InP(111) Substraten abgeschieden wird. In Querschnitt-Rastertunnelmikroskopie-Messungen wurden ca. 16 nm große Cluster, welche eine um ungefähr 7 % höhere Indiumkonzentration im Vergleich zur nominellen Zusammensetzung des Volumenmaterials besitzen, gefunden. Über die Simulation dieser Strukturen konnten diese als Quelle der spektral scharfen Emissionslinien identifiziert werden. Zudem wurde mittels Auto- und Kreuzkorrelationsmessungen nachgewiesen, dass diese Nanocluster einzelne Photonen emittieren und verschieden geladene exzitonische und biexzitonische Ladungsträgerkomplexe binden können. Anschließend wurde der Fokus auf InGaAs-Quantenpunkte gelegt und zunächst im Rahmen einer experimentellen und theoretischen Gemeinschaftsarbeit die Kohärenzeigenschaften eines gekoppelten Quantenpunkt-Mikrokavität-Systems untersucht. Über temperaturabhängige Zwei-Photonen Interferenz Messungen und dem Vergleich mit einem mikroskopischen Modell des Systems konnten gezielt die Bestandteile der Quantenpunkt-Dephasierung extrahiert werden. Auf diesen Ergebnissen aufbauend wurde die gepulste, strikt resonante Anregung von Quantenpunkten als experimentelle Schlüsseltechnik etabliert. Damit konnten bei tiefen Temperaturen nahezu vollständig ununterscheidbare Photonen durch eine Zwei-Photonen Interferenz Visibilität von über 98 % nachgewiesen werden. Für ein skalierbares und deterministisches Quantenpunkt-Bauelement ist entweder die Kontrolle über die Position an welcher der Quantenpunkt gewachsen wird nötig, oder die Position an der eine Mikrokavität geätzt wird muss auf die Position eines selbstorganisiert gewachsenen Quantenpunktes abgestimmt werden. Im weiteren Verlauf werden Untersuchungen an beiden technologischen Ansätzen durchgeführt. Zunächst wurde der Fokus auf positionierte Quantenpunkte gelegt. Mittels in das Substrat geätzter Nanolöcher wird der Ort der Quantenpunkt-Nukleation festgelegt. Durch die geätzten Grenzflächen in Quantenpunkt-Nähe entstehen jedoch auch Defektzustände, die negativen Einfluss auf die Kohärenz der Quantenpunkt-Emission nehmen. Deshalb wurde an diesem Typus von Quantenpunkten die strikt resonante Anregung etabliert und zum ersten Mal die kohärente Kopplung des Exzitons an ein resonantes Lichtfeld demonstriert. Zudem konnte die deterministische Kontrolle der Exzitonbesetzung über den Nachweis einer Rabi-Oszillation gezeigt werden. Abschließend wird das Konzept der kryogenen in-situ-Lithographie vorgestellt. Diese erlaubt die laterale Ausrichtung der Mikrokavität an die Position eines selbstorganisiert gewachsenen Quantenpunktes. Damit konnte gezielt die Emission eines zuvor ausgewählten, spektral schmalen Quantenpunktes mit nahezu 75 % Gesamteffizienz eingesammelt werden. Die Ununterscheidbarkeit der Quantenpunkt-Photonen war dabei mit einer Zwei-Photonen Interferenz Visibilität von bis zu $\nu=(88\pm3)~\%$ sehr hoch. Damit wurde im Rahmen dieser Arbeit eine Einzelphotonenquelle realisiert, aus der sich sehr effizient kohärente Photonen auskoppeln lassen, was einen wichtigen Schritt hin zur deterministischen Fabrikation von Lichtquellen für quantenphysikalischen Anwendungen darstellt. N2 - The aim of this thesis was to develop an efficient and scalable source of single and indistinguishable photons. This is a fundamental element of future quantum physical applications like quantum communication or quantum networks. These concepts use quantum mechanical systems to either establish absolute secure communication or to construct new computers, whose calculating capacity for specialized algorithms - like integer factorization - is far beyond today's systems. One possible realization of quantum communication is the key distribution between two parties via using the BB84-protocol. This scheme needs a lights source that emits the physical smallest amount of light - a single photon. The communication channel between transmitter and receiver is then secured against eavesdropping by different polarisation states of these photons. The non-avoidable loses in the quantum channel limit the maximum possible communication distance, which is why the signal has to be amplified with a so called quantum repeater after a certain distance. Such a repeater can also be realized with a single photon source. In addition to the BB84-protocol, for realizing the concept of a quantum repeater the photons have to share all their properties like energy and polarization, i. e. they need to be indistinguishable. Over the past years, semiconductor quantum dots have been identified as a promising candidate for such a light source. Due to the solid state scheme, these structures can be implemented into complex photonic architectures to increase the outcoupling efficiency and the emission rate of single photons. The main goal of the following work was therefore the realization of an efficient source of single and indistinguishable photons. Keeping future applications in mind, the additional focus of this work was lying on the scalable and deterministic fabrication of these quantum dot structures and two technological approaches - the cryogenic in-situ-lithography and the positioned growth of quantum dots - were investigated. In the first part of this thesis, a novel material system, which serves as a source of single photons is presented. Spectrally sharp emission features with a linewidth down to 50 µeV from bulk Al$_{0,48}$In$_{0,52}$As grown on InP(111) substrates were observed. Via cross-section scanning tunneling microscopy measurements, nanoclusters with a diameter of approximately 16 nm and a 7 % increased indium concentration compared to the nominal composition, were found. Additional simulations of these complexes identify these nanoclusters as sources of the spectrally sharp emissions lines. Furthermore, single photon emission as well as the formation of multi excitonic charge complexes within these clusters via auto- and crosscorrelation measurements is confirmed. Afterwards, the work focusses on InGaAs-quantum dots and, as a first step, the coherence properties of a coupled quantum dot microcavity system are investigated within a joint theoretical and experimental work. Via temperature dependent two-photon interference measurements the single dephasing mechanisms of this system are extracted via modelling the results with a microscopic theory. Based on this results, the strict resonant excitation of quantum dots was established as a experimental key technique and quantum dot photons with a two-photon interference visibility above 98 % were generated at low temperatures. For scalable and deterministic quantum dot devices, one either needs to control the growth spot of a quantum dot or the position of an etched microcavity has to be aligned to the position of a self-organized quantum dot. In the subsequent parts if this work, studies on both technological approaches are presented. First, spectroscopic experiments on site controlled quantum dots were carried out. Via etched nanoholes, the nucleation spot of the quantum dot is defined. These etched surfaces may lead to defect states, which decrease the coherence of the quantum dot emission. In order to avoid these detrimental influence, the strict resonant excitation of such site controlled quantum dots is established and the coherent coupling of the site controlled quantum dot exciton to the resonant laser field is observed. In addition, deterministic control of the site controlled quantum dot population is achieved, which is verified via the observation of the first Rabi-oscillation. Finally, the so-called in-situ-lithography is presented, which allows for the lateral alignment of a self-organized quantum dot and the fundamental mode of a micropillar. Using this technique, an overall collection efficiency of single photons from a pre-selected quantum dot with a small linewidth of almost 75 % is shown. The coherence of this quantum dot was notably, which is demonstrated by a two-photon interference visibility as high as $\nu=(88\pm3)~\%$. In summary, an efficient source of single and indistinguishable photons was realized in this thesis, which is an important step towards the fabrication of deterministic quantum dot devices for quantum mechanical applications. KW - Quantenpunkt KW - Einzelphotonenemission KW - Quantenkommunikation KW - Einzelphotonenquelle KW - Mikrosäulenresonator KW - Nichtunterscheidbarkeit KW - Verteilte Bragg-Reflexion KW - Optischer Resonator Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147322 ER - TY - THES A1 - Geßler, Jonas T1 - Reduktion des Modenvolumens von Mikrokavitäten im Regime der schwachen und starken Kopplung T1 - Reduction of the mode volume of microcavities in the regime of weak and strong coupling N2 - Ziel dieser Arbeit war die Reduktion des Modenvolumens in Mikrokavitäten. Ein klei-nes Modenvolumen ist für die Stärke der Licht-Materie-Wechselwirkung wesentlich, weil dadurch z.B. die Schwelle für kohärente Lichtemission gesenkt werden kann [1]. Der Purcell-Faktor, ein Maß für die Rate der spontanen Emission, wird durch ein mi-nimales Modenvolumen maximiert [2, 3]. Im Regime der starken Kopplung steigt mit Abnahme des Modenvolumens die Rabi-Aufspaltung und damit die maximale Tempe-ratur, bei der das entsprechende Bauteil funktioniert [4, 5]. Spektrale Eigenschaften treten deutlicher hervor und machen die Funktion der Struktur stabiler gegenüber stö-renden Einflüssen. Der erste Ansatz, das Modenvolumen einer Mikrokavität zu reduzieren, zielte darauf, die Eindringtiefe der optischen Mode in die beiden Bragg-Spiegel einer Mikrokavität zu minimieren. Diese hängt im Wesentlichen vom Kontrast der Brechungsindizes der alternierenden Schichten eines Bragg-Spiegels ab. Ein maximaler Kontrast kann durch alternierende Schichten aus Halbleiter und Luft erreicht werden. Theoretisch kann auf diese Weise das Modenvolumen in vertikaler Richtung um mehr als einen Faktor 6 im Vergleich zu einer konventionellen Galliumarsenid/Aluminiumgalliumarsenid Mikro-kavität reduziert werden. Zur Herstellung dieser Strukturen wurden die aluminiumhal-tigen Schichten einer Galliumarsenid/Aluminiumgalliumarsenid Mikrokavität voll-ständig entfernt und so der Brechungsindexkontrast maximiert. Die Schichtdicken sind dabei entsprechend anzupassen, um weiterhin die Bragg-Bedingung zu erfüllen. Die Herstellung einer freitragenden Galliumarsenid/Luft-Mikrokavität konnte so erfolg-reich demonstriert werden. Die Photolumineszenz der Bauteile weist diskrete Reso-nanzen auf, deren Ursache in der begrenzten lateralen Größe der Strukturen liegt. In leistungsabhängigen Messungen kann durch ausgeprägtes Schwellenverhalten und auf-lösungsbegrenzte spektrale Linienbreiten Laseremission nachgewiesen werden. Wegen der Abhängigkeit der photonischen Resonanz vom genauen Brechungsindex in den freitragenden Schichten eignen sich die vorgestellten Strukturen auch zur Bestimmung von Brechungsindizes. Alternativ kann die photonische Resonanz durch Einbringen verschiedener Gase in die freitragenden Schichten abgestimmt werden. Beides konnte mit Erfolg nachgewiesen werden. Der Nachteil dieses Ansatzes liegt vor allem darin, dass ein elektrischer Betrieb der so gefertigten Strukturen nicht möglich ist. Hier bie-tet der zweite Ansatz eine bestmögliche Lösung. Das alternative Konzept für den oberen Bragg-Spiegel einer konventionellen Galli-umarsenid/Aluminiumgalliumarsenid Mikrokavität ist das der Tamm-Plasmonen. Der photonische Einschluss wird hier durch einen unteren Bragg-Spiegel und einem dün-nen oberen Metallspiegel erreicht. An der Grenzfläche vom Halbleiter zum Metall bil-den sich die optischen Tamm-Plasmonen aus. Dabei kann der Metallspiegel gleichzei-tig auch als elektrischer Kontakt genutzt werden. Die Kopplung von Quantenfilm-Exzitonen an optische Tamm-Plasmonen wird in dieser Arbeit erfolgreich demons-triert. Im Regime der starken Kopplung wird mittels Stark-Effekt eine vollständige elektro-optische Verstimmung, d.h. vom Bereich positiver bis hin zur negativen Ver-stimmung, des Quantenfilm-Exzitons gegenüber der Tamm-Plasmonen Mode nachge-wiesen. Die Messungen bestätigen entsprechend des reduzierten Modenvolumens (Faktor 2) eine erhöhte Rabi-Aufspaltung. Dabei sind die spektrale Verschiebung und die Oszillatorstärke des Quantenfilm-Exzitons konsistent mit der Theorie und mit Li-teraturwerten. Der wesentliche Nachteil des Ansatzes liegt in der maximalen Güte, die durch den großen Extinktionskoeffizienten des Metallspiegels limitiert ist. N2 - The goal of this thesis was to reduce the mode volume of microcavities. A reduced mode volume increases the strength of light matter coupling, which leads to lower lasing thresholds. The Purcell-factor, a measure for the spontaneous emission rate, is at maximum for a minimum mode volume. In the regime of strong coupling, a smaller mode volume leads to a larger Rabi splitting, which in turn increases the maximum operating temperature of a given device. Spectral features become more pronounced and the microcavity is more robust against disturbances caused by environmental fluctuations. The first approach to reduce the mode volume of a microcavity addresses the penetration depth of the optical field into the Bragg mirrors of a microcavity. It mainly depends on the refractive index contrast of the alternating layers of the Bragg mirror. The maximum contrast is realized by alternating layers consisting of semiconductor and air. Based on theoretical calculations, the mode volume can be decreased in the vertical direction by a factor of 6 compared to a conventional gallium arsenide/aluminum gallium arsenide microcavity. Therefore the aluminum containing layers of a conventional gallium arsenide/aluminum gallium arsenide microcavity are completely removed. The layer thicknesses have to be adjusted to still satisfy the Bragg condition. The successful fabrication of high quality gallium arsenide/air microcavities is demonstrated. Photoluminescence measurements reveal discrete resonances due to the finite dimensions of the structure. Power dependent measurements show a distinct threshold which indicates – combined with the resolution limited spectral linewidth – photon lasing. The dependence of the photonic resonance on the exact value of the refractive index of the Bragg mirror is used to determine the refractive index of gases channeled into the selfsupporting air layers. Alternatively, the photonic resonance of the structure can be tuned by injecting gas into the air layers. Both features could be demonstrated successfully. The structure not being suitable for electrical operation is the main disadvantage of this approach. In this case the second concept is the better solution. The alternative approach for the upper Bragg mirror of a conventional gallium arsenide/aluminum gallium arsenide microcavity exploits the Tamm-Plasmons. To achieve photonic confinement, the cavity is sandwiched between a lower Bragg mirror and a thin metal top mirror. At the semiconductor-metal interface, photonic Tamm-Plasmon states appear. Additionally, the metal mirror is used as electrical contact. The coupling of the quantum well exciton to the Tamm-Plasmon is presented. In the strong coupling regime, a complete electro-optical resonance tuning (i.e. from positive to negative tuning of the exciton resonance compared to the Tamm-Plasmon state) is demonstrated, exploiting the quantum confined Stark effect. The measurements confirm an increased Rabi splitting due to the reduced mode volume (factor of 2 reduced mode volume). Spectral shift and oscillator strength of the exciton in the electric field are consistent with theory and literature values. The most critical point of this approach lies within the limited Q-factor due to the large extinction coefficient of the top metal layer. KW - Galliumarsenidlaser KW - Optischer Resonator KW - Mikrooptik KW - Moden KW - Mikrokavität KW - Licht-Materie-Wechselwirkung KW - GaAs/Luft-Braggspiegel KW - Tamm-Plasmonen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144558 ER -