TY - THES A1 - Kröker, Kristin T1 - DNA-Kohlenstoffnanorohr-Konjugate - Biokompatibilität, ex vivo-Verhalten, Funktionalisierung T1 - DNA-carbon nanotube conjugates - biocompatibility, ex vivo behavior, funtionalization N2 - Einzelstrang-DNA-dispergierte und individualisierte (6,5)-chirale Kohlenstoffnanoröhren bilden als Konjugatsystem den Ausgangspunkt dieser Dissertation. Im Vordergrund stehen dabei Untersuchungen zur Biokompatibilität dieser ssDNA-SWNT-Konjugate sowie deren Verhalten nach Zellpenetration und eine Funktionalisierbarkeit zum Wirkstofftransportsystem. Das erste Projekt widmet sich in Kapitel 4 dem Studium der Konjugatstabilität unter physiologischen Bedingungen und einer Verträglichkeit gegenüber zellulären Systemen. Experimente zur Biokompatibilität werden erstmals an Nanorohrkonjugaten durchgeführt, welche nach Ultrazentrifugation im Dichtegradienten sorgfältig individualisiert vorliegen. Die umgebungssensitiven photophysikalischen Charakteristika vereinzelter (6,5)-SWNTs können zu einer Beurteilung der Konjugatintegrität in physiologischem Milieu genutzt werden. Die Stabilität von ssDNA-SWNT-Strukturen wird in Anwesenheit des Restriktionsenzyms DNase I und dem in Zellnährmedien enthaltenen protein- und nukleasereichem Serum FBS auf die Probe gestellt. In beiden Fällen kann eine ausreichende ssDNA-SWNT-Integrität attestiert werden, die eine Verwendung unter Zellkultivierungsbedingungen erlaubt. Unter Berücksichtigung verschiedener in Zellen vorliegender pH-Umgebungen werden die Konjugate ebenfalls dieser Variation ausgesetzt. Bei Vorliegen stark saurer und basischer pH-Werte kann die Integrität von ssDNA-SWNT-Konjugaten nicht gewährleistet werden, was sich durch Aggregation bemerkbar macht. Innerhalb des breiten pH-Bereichs zwischen den Werten 3 und 11 hingegen kann eine gute Stabilität bestätigt werden. Für zelluläre Anwendungen bedeutet dieser Befund keine Einschränkung, da in Kulturen lediglich neutrale bis schwach saure pH-Werte oberhalb von 4.5 zu finden sind. Nachdem die Biostabilität der ssDNA-SWNT-Konjugate gewährleistet ist, kann in Zytotoxizitätsstudien eine ex vivo-Verträglichkeit des Nanomaterials getestet werden. Erste Untersuchungen mit der Mausmakrophagenlinie J774.1 weisen wie auch ausführliche Studien gegenüber menschlichen Epithelzellen HeLa auf eine uneingeschränkte Kompatibilität in den eingesetzten Konzentrationen hin. HeLa-Zellen, die mit DGU-gereinigten Nanorohrproben behandelt werden, zeigen eine geringfügig höhere Vitalität als nach Inkubation mit einer Rohdispersion undefinierter SWNT-Bündel. Im Gesamtbild ergibt sich somit eine zufriedenstellende Biokompatibilität individualisierter ssDNA-SWNT-Konjugate, womit das in dieser Arbeit zentrale Kohlenstoffnanorohrsystem den Anforderungen für dessen biomedizinische Verwendbarkeit gerecht wird. Der Schwerpunkt weiterer Untersuchungen liegt im zweiten Projekt aus Kapitel 5 auf dem Verhalten von ssDNA-SWNT-Konjugaten nach deren Aufnahme in HeLa-Zellen. Auch hier kann die starke Sensitivität der optischen Eigenschaften individualisierter (6,5)-Kohlenstoffnanoröhren gegenüber Umgebungseinflüssen genutzt werden, um Veränderungen im Emissionsverhalten von SWNTs nach deren zellulärer Aufnahme gegenüber dem Ausgangszustand zu beobachten. Nach ausführlicher Weißlicht-, Fluoreszenz- und SWNT-Photolumineszenzmikroskopie, aus deren Resultaten eine erfolgreiche Internalisierung von ssDNA-SWNTs in HeLa-Zellen eindeutig hervorgeht, stehen PL-spektroskopische Untersuchungen der Kohlenstoffnanoröhren im Vordergrund. Durch einen Vergleich des Emissionsverhaltens der ssDNA-SWNT-Konjugate in und außerhalb von Zellen können spektrale Verschiebungen, Linienverbreiterungen und verkürzte Fluoreszenzlebensdauern nach zellulärer Aufnahme festgestellt werden. Sowohl eine Aggregation von SWNTs als auch eine Beeinflussung durch die pH-Umgebung reichen nicht für eine vollständige Erklärung des Befunds aus. Vielmehr kann die in endosomalen Kompartimenten durch das Größenverhältnis von Endosomen zu SWNTs entstehende räumliche Nähe einer großen Nanorohrmenge untereinander als Ursache für eine Veränderung der dielektrischen Umgebung und folglich des Emissionsverhaltens betrachtet werden. Durch Verwendung der Kohlenstoffnanoröhren als Marker und Sensor können ssDNA-SWNT-Konjugate in Zellen somit nicht nur lokalisiert, sondern darüber hinaus hinsichtlich einer möglichen Aggregation untersucht werden. Aus den in dieser Arbeit vorgestellten Daten kann zwar eine vollständige Aggregation der SWNTs durch deren Aufnahme in Zellen ausgeschlossen werden, sie muss jedoch in geringfügigem Ausmaß neben einer Beeinflussung durch die pH-Umgebung und die große räumliche Nähe durchaus in Betracht gezogen werden. Individualisierte ssDNA-SWNT-Konjugate können damit erstmals zeitaufgelöst PL-mikrospektroskopisch in HeLa-Zellen charakterisiert werden. Für das letzte Projekt werden in Kapitel 6 neuartige Funktionalisierungsmöglichkeiten von ssDNA-SWNT-Konjugaten zu zellulären Transportsystemen unter Erhalt der photophysikalischen Eigenschaften erforscht. Dazu soll das Dispergiermittel DNA als Kupplungsstelle für eine kovalente Anbindung eines Agenz genutzt werden. Anstelle eines Wirkstoffes werden die Untersuchungen mit einem Fluorophor als Modellverbindung durchgeführt, welcher den Vorteil einer einfachen Detektierbarkeit liefert. Prinzipiell besteht die Möglichkeit, das Oligomer mit dem Fluorophor vorzufunktionalisieren und anschließend auf die Oberfläche der SWNTs zu bringen. Als effektiver erweist sich die Methode der direkten Kupplung des Farbstoffs an bereits DNA-dispergierte SWNTs. Der Erfolg in der Präparation von FluorophorssDNA- SWNT-Konjugaten wird über die Emission des Fluorophors mit entsprechenden Referenzexperimenten gemessen. Der Versuch einer Quantifizierung liefert jedoch sehr hohe Werte, die lediglich als eine obere Grenze für die gefundene Anzahl gebundener Fluorophore pro Nanoröhre angesehen werden können. Im Verlauf des Projekts kann eine Funktionalisierbarkeit der Nanoröhren über das Dispergieradditiv DNA als neue Strategie aufgezeigt werden. Im Gegensatz zu bekannten Wirkstofftransportsystemen bietet dieser Funktionalisierungsansatz den Vorteil, dass die optischen Eigenschaften der individualisierten ssDNA-SWNT-Konjugate erhalten bleiben, welche wieder um einen gleichzeitigen Einsatz der Nanoröhren als Transporter und Marker bzw. Sensor erlauben. Die vorliegende Dissertation liefert neben dieser bisher unbekannten Funktionalisierungsstrategie neue Erkenntnisse über die Biokompatibilität speziell von individualisierten ssDNA-SWNT-Konjugaten und deren Verhalten in HeLa-Zellen. Mit diesem Wissen kann der gezielte Wirkstofftransport durch Kohlenstoffnanoröhren als biokompatibles und zellgängiges Trägersystem anvisiert werden. N2 - The key element of this thesis is a conjugate system of single-stranded DNA and individualized (6,5) single-wall carbon nanotubes. The investigations are mainly focused on the biocompatibility of ssDNA-SWNT conjugates, as well as their behavior after cell penetration and general ability to be functionalized for drug delivery. Within the first project, chapter 4 contributes to the study the conjugate stability under physiological conditions and compatibility towards cellular structures. For the first time, such biocompatibility experiments are carried out with nanotube conjugates, which are thoroughly individualized by ultracentrifugation assisted density gradient. The photophysical characteristics of isolated (6,5) SWNTs are highly sensitive towards their environment and can thus be used to evaluate the state of conjugate integrity in a physiological milieu. The stability of ssDNA-SWNT structures is tested in the presence of restriction enzyme DNase I and FBS serum, an important nutrient medium ingredient rich in proteins and nucleases. In either case, the integrity of ssDNA-SWNT conjugates is not affected. With respect to the pH variety occuring in cell structures, the conjugate stability is also investigated in acid and base milieu. Both strong acid and alkaline pH environments influence the integrity of ssDNA-SWNT, leading to aggregation of nanotubes. Conversely, good conjugate stability can be evaluated in a wide pH range between 3 and 11, revealing unlimited applicability towards cells, where the pH environment is known to vary between neutral and weakly acid pH values above 4.5. After evaluation of the biostability of ssDNA-SWNT conjugates, they have to be tested in ex vivo cytotoxicity assays. Studies are primarily carried out with murine macrophage-like cells J774.1 and in more detail with the human cervix carcinoma cell line HeLa. Both indicate no cytotoxic effects with applied SWNT concentrations. Within the HeLa cell studies, the impact of DGU preparation on SWNT cytotoxicity is a further point of interest. As a result, slightly enhanced cell viability can be observed with DGU purified samples as compared to raw dispersion consisting of non-defined SWNT bundles. Overall, ssDNA-SWNT conjugates can be assumed to be sufficiently biostable and thus suitable for biomedical applications. Further investigations in the second part of this work in chapter 5 are focused on the behavior of ssDNA-SWNT conjugates after cellular uptake. Again, the strong environmental sensitivity of optical properties of individualized (6,5) carbon nanotubes can be used to detect changes of the SWNT emission after internalization. Different techniques have been employed to visualize ssDNA-SWNT structures in HeLa cells using white light, fluorescence, and SWNT photoluminescence microscopy. By PL spectroscopy of ssDNA-SWNTs in cells spectral shifts, line-broadening and shortened lifetimes are observed when comparing SWNT emission inside and outside of cell culture. Neither nanotube aggregation nor the influence of the cell-specific pH environment are sufficient explanations for such spectral behavior. Indeed, the spatial proximity of SWNTs with each other in small sized endosomal cell compartiments is supposed to cause nanotube-nanotube interactions that change the dielectric environment and thus the emission behavior of SWNTs. Within the use of carbon nanotubes as marker and sensor, ssDNA-SWNT conjugates cannot only be localized, but also characterized, with regard to possible nanotube aggregation. The data presented in this work can, on the one hand, exclude a total aggregation of SWNTs within their cellular uptake. But, on the other hand, a small extent of aggregation, pH environmental effects, and the spatial proximity of a high amount of SWNTs in comparatively small endosomes have to be considered as factors that influence SWNT emission properties. In this study, individualized ssDNA-SWNT conjugates can be characterized via time-resolved PL microspectroscopy for the first time. The last project in chapter 6 addresses to new functionalization routes of ssDNA-SWNT conjugate with respect to drug delivery applications while retaining the photophysical characteristics. The SWNT dispersion additive DNA serves as binding site for covalent attachment of agents. For a convenient sample characterization, a fluorophor is used as model compound instead of a specific drug. In general, fluorophor-ssDNA-SWNT systems can be obtained by pre-functionalization of oligomers with dye, followed by attachment of the modified DNA on the nanotube surface. More promising, however, is the route via a direct coupling reaction of activated fluorophor molecules with specific ssDNA-SWNT conjugates. The successful sample functionalization can be evaluated from the fluorescence of the dye in comparision with corresponding control experiments. An attempt for quantification of functionalization is found to be problematic as the revealed values are too high and can thus only be regarded as upper limits for the number of fluorophors per nanotube. A new functionalization method for SWNTs can be established using noncovalently bound DNA as the coupling point. Compared to well-known drug delivery systems, the optical properties of SWNTs can be retained with this procedure, allowing the simultaneous use of nanotubes as cellular transporter and marker or sensor. In addition to the new functionalization strategy, further knowledge about biocompatibility of well-isolated ssDNA-SWNT conjugates and their behavior after cellular uptake can be obtained through this thesis. Thus, a targeted drug delivery with isolated carbon nanotubes as biocompatible and a cell penetrating carrier system could be aimed for future work. KW - Biokompatibilität KW - DNS KW - Nanopartikel KW - Funktionalisierung KW - HeLa-Zelle KW - NIR-Spektroskopie KW - Photolumineszenz KW - Kohlenstoffnanoröhre KW - Dichtegradientenultrazentrifugation KW - carbon nanotube KW - density gradient ultracentrifugation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74552 ER - TY - THES A1 - Zimmermann, Franz-Zeno T1 - Genotoxizität in Miniorgankulturen humaner nasaler Mukosa nach repetitiver Exposition mit Zinkoxid Nanopartikeln T1 - Genotoxicity in mini organ cultures of human nasal mucosa after repetetive exposition with zinc oxide nanoparticles N2 - Diese Studie beschäftigt sich mit den toxischen Effekten von Zinkoxid Nanopartikeln (ZnO NP) auf humane Nasenschleimhautzellen. Speziell wurde eine mögliche Kumulation von DNS-Schäden und deren Reparatur analysiert. Zu diesem Zweck wurde ein dreidimensionales Kultursystem, sogenannte Miniorgankulturen, aus humaner nasaler Mukosa verwendet. Eine Charakterisierung der verwendeten Zinkoxid Nanopartikel erfolgte unter dem Transmissionselektronenmikroskop (TEM), mittels dynamischer Lichtstreuung (DLS) und durch eine Zetapotentialmessung. Nach einer Woche Kultivierung fand eine Exposition der MOK mit einer Zinkoxid Nanopartikel Suspension in einer Konzentration von 0,1 µg/ml und 5 µg/ml statt. Als Positivkontrolle wurde in diesem Versuch 200µM Methymethansulfonat (MMS) zugesetzt. Es erfolgten drei jeweils einstündige Inkubationsphasen, wobei nach jeder Stunde ein Teil der MOKs für den Cometassay entnommen wurde. Nach dreimaliger Exposition wurden die verbliebenen MOKs für 24 Stunden zur Regeneration in unversetztem Nährmedium belassen und dann dem Cometassay zugeführt. Ergänzend wurde ein Sandwich ELISA zur Detektion von Caspase 3 durchgeführt. Zn2+ Ionen wurden im Zellkulturmedium analysiert. Der Nachweis von reaktiven Sauerstoffspezies (ROS) erfolgte fluoreszenzmikroskopisch. Die DLS konnte eine durchschnittliche Partikelaggregatgröße von 354 nm nachweisen und das Zetapotential betrug -11,2 mV. Die im Cometassay festgestellten DNS-Schäden zeigten bei einer Zinkoxid Nanopartikel Konzentration von 0,1 µg/ml erst nach der Regenerationsphase von 24 Stunden einen signifikanten Anstieg, während 5 µg/ml Zinkoxid Nanopartikel zu jedem Zeitpunkt einen signifikanten Anstieg der DNS Fragmentation bewirkten. Das Ausmaß an Strangbrüchen nach 24 Stunden stieg auch hier nach 24stündiger Regenerationsphase nochmals an. 200 µM MMS induzierten ebenfalls einen signifikanten Anstieg der OTM-Werte bei einer, zwei und drei Stunden. Im Laufe der Regenerationsphase führten Reparaturmechanismen zu einem Absinken der OTM-Werte. Der Sandwich ELISA zeigte keinen signifikanten Anstieg der Caspase 3 Werte. Im Nährmedium konnte eine Zn2+ Ionenkonzentration von 2,8 µmol/ml nach einer Inkubation mit 0,1 µg/ml Zinkoxid Nanopartikeln festgestellt werden. Bei einer Inkubation mit 5 µg/ml Zinkoxid Nanopartikeln zeigte sich eine Ionenkonzentration von 52,7 µmol/ml. Intrazelluläre ROS konnte nur bei einer Exposition mit 5 µmol/ml Zinkoxid Nanopartikeln nachgewiesen werden. Diese Daten lassen den Schluss zu, dass Zinkoxid Nanopartikel in den verwendeten Konzentrationen genotoxisch wirken, aber keine zytotoxische Wirkung entfalten. Die Schädigung kumuliert und schreitet während der Regenerationsphase noch fort. Eine multifaktorielle Schädigung der DNS, sowohl durch direkte Interaktion der Partikel mit dem Erbgut, als auch über entstandene ROS und Zn2+ Ionen, ist anzunehmen. N2 - This study examines the toxic effects of zincoxide nanoparticles (ZnO NPs) in nasal mucosa cells. Especially the possible accumulation of DNA damages und their reparation was analysed. For this purpose we used mini organ cultures (MOCs) out of human nasal mucosa. The zinc oxide nanoparticles were characterized under a transmission electron microscope and by zeta potential measurement. After one week of cultivation, the MOCs were exposed to a ZnO NP suspension. The concentrations were 0,1 µg/ml and 5 µg/ml. 200µM methylmethane sulfonate (MMS) was used as positive control. The MOCs were incubated three times for one hour. After each hour some of the MOCs were analysed with the Cometassay. The last MOCs stayed for 24 hours in the cell culture medium for regeneration. A sandwiche ELISA was performed to detect Caspase 3. Zn2+ ions were analysed in the cell culture medium. To detect reactive oxygen species (ROS), the cells were analysed under a fluorescence microscope. The average particle size was 345 nm. The zeta potential was –11,mV. DNA damage was detected to ZnO-NPs at 0.1 μg/ml ZnO-NPs after a 24h lasting regeneration time. 5 µg/ml ZnO NPs damaged the DNA at every point of time. The sandwich ELISA showed no significant increase of Caspase 3 in the medium. 0,1 µg/ml ZnO NPs resulted in a Zn2+ ion concentration of 2,8 µmol/ml and 5 µg/ml in a concentration of 52,7 µmol/ml. ROS could only be detected after an incubation with 5 µg/ml ZnO NPs. Thus the results suggest that ZnO NP in these concentrations are genotoxic but not zytotoxic. The damage cumulates and is increasing throughout the regeneration time. A multifactorial damage of the DNA, through direct interaction of the particles and also through ROS and zinc ions, is to suppose. KW - Nasenschleimhaut KW - Nanopartikel KW - Zinkoxid KW - Miniorgankultur KW - nanoparticle KW - nasal mucosa KW - zinc oxide KW - mini organ culture Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72641 ER - TY - THES A1 - Beringer, Reiner Ernst T1 - Synthese von Dextran-umhüllten Eisenoxid-Nanopartikeln als Kontrastmittel für die MR-Tomographie T1 - Synthesis of dextran-coated iron oxide nanoparticles as contrast agent for MRI N2 - Durch Fällung von Eisen(II)- und Eisen(III)-salzen wurden Dextran-umhüllte Eisenoxid-Nanopartikel (SPIOs) und durch anschließende Umsetzung mit Epichlorhydrin und Ammoniak CLIOs gewonnen. An diesen Kolloiden wurden niedermolekulare Moleküle wie Diamine oder Bernsteinsäureanhydrid als Linker angebracht. Ein weiterer Aspekt dieser Arbeit stellt die Anbindung von Fluoreszenzmarkern und Antikörpern an der Partikeloberfläche sowie deren spektroskopische Untersuchung dar. N2 - By precipitation of iron (II) - and iron (III) salts dextran-coated iron oxide were nanoparticles (SPIOs) synthesized and CLIOs were generated by reaction with epichlorohydrin and ammonia. At these colloids low molecular weight molecules such as diamines or succinic anhydride were placed as a linker. Another aspect of this work is the integration of fluorescent markers and antibodies on the particle surface and spectroscopic investigation of these colloids. KW - Eisenoxide KW - Magnetische Resonanz KW - NMR-Tomographie KW - Nanopartikel KW - Dextrane KW - Kontrastmittel KW - Eisenoxid-Nanopartikel KW - SPIO KW - CLIO KW - Kontrastmittel KW - iron oxide nanoparticles KW - MR contrast agent KW - SPIO KW - CLIO Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77218 ER -