TY - THES A1 - Böhm, Jennifer T1 - Die Nährstoffresorption in den Fallen von Dionaea muscipula weist Parallelen zur Nährsalzaufnahme in Wurzeln auf T1 - Uptake of prey-derived nutrients in Dionaea muscipula traps displays similarities with the uptake of soil-derived nutrients into roots of non-carnivorous plants N2 - Die Venusfliegenfalle, Dionaea muscipula, weckte aufgrund ihrer karnivoren Lebensweise schon sehr früh das Interesse vieler Wissenschaftler. Für karnivore Pflanzen, die auf Nährstoff-armen Böden wachsen, spielen Insekten als Beute und somit als Nährstofflieferant eine entscheidende Rolle. So können die Pflanzen durch die Verdauung der Beute mit wichtigen Makro- und Mikronährstoffen, wie Stickstoff, Phosphat, Kalium oder Natrium versorgt werden. Aus diesem Grund sollte im Rahmen meiner Arbeit ein besonderes Augenmerk auf die molekularen Mechanismen der Kationenaufnahme während der Nährstoffresorption gerichtet werden. Insbesondere die aus dem Insekt stammenden Nährstoffe Kalium und Natrium waren dabei von großem Interesse. Im Allgemeinen sind Kaliumionen für Pflanzen eine essentielle anorganische Substanz und von großer physiologischer Bedeutung für die Entwicklung, den Metabolismus, die Osmoregulation, das Membranpotential und viele zelluläre Prozesse. Analysen der Kaliumaufnahme an Wurzeln von Modellpflanzen wie Arabidopsis thaliana und Reis zeigten, dass die Aufnahme von K+ ein Zusammenspiel von hoch-affinen K+-Transportern der HAK5-Familie und nieder-affinen Kaliumkanälen (AKT1/AtKC1) erfordert, die in ein komplexes (De-)Phosphorylierungsnetzwerk eingebunden sind. In der vorliegenden Arbeit war es mir möglich das Netzwerk zur Kaliumaufnahme in den Drüsen der Venusfliegenfalle zu entschlüsseln. Es konnten Orthologe zum Kaliumtransporter HAK5 aus Arabidopsis (DmHAK5) und zum Kaliumkanal AKT1 (DmKT1) identifiziert und im heterologen Expressionssystem der Xenopus laevis Oozyten elektrophysiologisch charakterisiert werden. Dabei zeigte sich, das DmKT1 durch einen Ca2+-Sensor/Kinase-Komplex aus der CBL/CIPK-Familie phosphoryliert und somit aktiviert wird. Phylogenetische Analysen von DmKT1 bestätigten die Eingruppierung dieses Kaliumkanals in die Gruppe der pflanzlichen Shaker-Kaliumkanäle des AKT1-Typs. Die Transporteigenschaften zeigten zudem, dass DmKT1 bei hyperpolarisierenden Membranpotentialen aktiviert wird und einen K+-selektiven Einwärtsstrom vermittelt. In Oozyten konnte eine Kaliumaufnahme bis zu einer externen Konzentration von ≥1 mM beobachtet werden. DmKT1 repräsentiert also einen Kaliumkanal mit einer hohen Transportkapazität, der die nieder-affine Kaliumaufnahme in die Drüsenzellen der Venusfliegenfalle vermitteln kann. Unterhalb einer externen Kaliumkonzentration von 1 mM würde der anliegende elektrochemische Kaliumgradient einen Kaliumausstrom und somit einen Verlust von Kalium favorisieren. Hoch-affine K+/H+-Symporter können durch die Ausnutzung des Protonengradienten eine Kaliumaufnahme im mikromolaren Bereich gewährleisten. In Wurzelhaaren von Arabidopsis vermittelt der Transporter AtHAK5 die Kaliumaufnahme unter Kaliummangelbedingungen. DmHAK5, ein Ortholog zu AtHAK5, ist in Dionaea Drüsen exprimiert und konnte zum ersten Mal im heterologen Expressionssystem der Xenopus Oozyten im Detail charakterisiert werden. Interessanterweise zeigte sich, dass DmHAK5 wie der K+-Kanal DmKT1 durch denselben CBL/CIPK-Komplex posttranslational reguliert und aktiviert wird. Die Transporteigenschaften von DmHAK5 wiesen auf einen Transporter mit einer breiten Substratspezifität hin, sodass sich DmHAK5 neben Kalium auch für Ammonium permeabel zeigte. Affinitätsuntersuchungen von DmHAK5 zu seinem Substrat Kalium klassifizierten das Protein als einen hoch-affinen Kaliumtransporter, der im Symport mit Protonen die Kaliumaufnahme im mikromolaren Konzentrationsbereich vermitteln kann. Das Kaliumtransportmodul besteht also aus dem K+-selektiven Kanal DmKT1 und dem K+/H+-Symporter DmHAK5, die die hoch- und nieder-affine Kaliumaufnahme in den Drüsenzellen während der Beuteverdauung in Dionaea muscipula Fallen ermöglichen. Beide Transportmodule werden Kalzium-abhängig durch die Kinase CIPK23 und den Ca2+-Sensor CBL9 auf posttranslationaler Ebene reguliert. Zusammenfassend gelang es in dieser Arbeit Einblicke in die Kationenaufnahme während der Nährstoffresorptionsphase der Venusfliegenfalle, Dionaea muscipula, zu gewinnen. Dabei wurde klar, dass Dionaea muscipula im Laufe ihrer Evolution zu einer karnivoren Pflanze, nicht neue Transportmodule zur Nährstoffresorption aus der Beute entwickelte, sondern bekannte aus Wurzeln stammende Transportmodule umfunktionierte. Auf molekularer Ebene konnten die biophysikalischen Charakteristika der K+- und Na+-Transportproteine, sowie ihre Regulation entschlüsselt werden. Diese Erkenntnisse wurden schließlich in den Kontext des Beutefangs der Venusfliegenfalle gebracht und diskutiert. N2 - The Venus flytrap, Dionaea muscipula, is one of the most exciting carnivorous plants. Since the time of Charles Darwin, scientists are interested in the highly specialized mechanisms, which enable Dionaea plants to grow on nutrient-poor habitats. These Dionaea plants have the possibility to catch insects and to purchase the necessary nutrients from their prey. For catching the prey, the Venus flytrap evolved morphological adaptions in form of bilobed leaf traps. Trigger hairs are arranged inside the traps and by touching these mechano-sensory organs an electrical signal spreading over the lobes leads to the fast trap-closure. By continual mechanical stimulation of the trigger hairs by the caught insect, the edges of the lobes are sealed hermetically and an “external stomach” is formed. The prey digestion starts with the secretion of lytic enzymes from the glands. These glands, which are covering the inner surface of the trap-lobes, are also responsible for the nutrient-uptake. Insects represent an important nutrient-provider for carnivorous plants. The capture of prey mainly contributes to the nutrient-supply like nitrogen, phosphorous, potassium and sodium. Within the scope of this work, my focus was on the molecular uptake mechanism of prey-derived cations, such as potassium and sodium. Potassium is an essential macronutrient for plants in general. Studies on the K+ uptake systems in roots revealed a complex potassium uptake network consisting of high-affinity uptake carriers such as HAK5 and low-affinity potassium channels such as the AKT1/AtKC1 module. In glands of Dionaea muscipula a HAK5-like potassium transporter (DmHAK5) and an orthologue of AKT1 (DmKT1) were identified within the framework of my Ph.D.-thesis. Following the heterologous expression in Xenopus laevis oocytes, electrophysiological measurements revealed that DmKT1 is activated by phosphorylation through a Ca2+-sensor-protein kinase complex of the CBL/CIPK family. Its transport properties and structural homology to the Arabidopsis AKT1 K+ channel classified DmKT1 as a member of the hyperpolarisation-activated, inwardly rectifying plant Shaker potassium channel family. Due to the electrochemical gradient for K+ ions across the gland plasma membrane, the K+ selective channel DmKT1 can acquire external K+ down to concentrations of 1 mM. Thus, the peculiar electrophysiological properties assigned the low-affinity high-capacity potassium uptake system in Dionaea gland to DmKT1. Below 1 mM, K+ fluxes reverse their direction and the plant would lose the essential macronutrient. In root hairs of Arabidopsis high-affinity transporters (HAK5) are expressed which are believed to facilitate K+ accumulation from potassium depleted soils. Interestingly an orthologue of HAK5 was shown to be expressed also in the trap lobes of Dionaea. Thus, DmHAK5 was cloned and for the first time a HAK5-like protein could be analysed in Xenopus oocytes. Interestingly, DmHAK5 K+/H+-co-transporter was post translationally activated by the same CBL/CIPK complex just like the DmKT1 Shaker channel. Compared to DmKT1, DmHAK5 is of low selectivity and against all assumptions, the transporter is permeable for and not inhibited by NH4+. A Km value of 127 μM, describes DmHAK5 as a high-affinity transporter that is apparently the only system capable of operating at micromolar K+ concentrations. To overcome the outward-directed chemical gradient at low external K+ concentrations, DmHAK5 utilises the electrochemical gradient of protons and acts as a K+/H+-co-transporter. The reported findings demonstrate the contribution of DmKT1 and DmHAK5 in the highly regulated potassium uptake network utilizing K+ from captured insects. The high-capacity of DmKT1 and the high-affinity of DmHAK5 enable Dionaea glands to acquire potassium from high to very low levels during the digestion and resorption process. Taken together, these studies elucidated the molecular origin and regulation of cation uptake during prey digestion and nutrient resorption of the Venus flytrap. For efficient potassium and sodium uptake into gland cells Dionaea muscipula co-opted root-derived transport modules and the associated regulatory components rather than inventing new uptake systems during its evolution to a carnivorous plant. KW - Venusfliegenfalle KW - Dionaea muscipula KW - HAK5-like KW - AKT1-like KW - HKT1-like KW - Falle KW - Nährstoffaufnahme KW - Molekularbiologie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123958 ER - TY - THES A1 - Stange, Annette T1 - Beziehung zwischen Ca2+-Homöostase und Aktivität der S-Typ Anionenkanäle in Schließzellen T1 - Relation of Ca2+-homeostasis and activity of S-type anion channels in guard cells N2 - Pflanzen regulieren ihren Gasaustausch mit der Atmosphäre, indem sie die Öffnungsweite von Poren in der Epidermis von Blättern, sog. Stomata, verändern. Bei Wassermangel werden die stomatären Poren geschlossen, um den Verlust von Wasser zu minimieren. Dieser Vorgang wird durch das Phytohormon ABA ausgelöst, welches eine Aktivierung von Anionenkanälen in der Plasmamembran der Schließzellen induziert. Obwohl die Aktivierung der Anionenkanäle ein zentrales Element in der ABA-Antwort darstellt, ist der Signalweg, der zu der Aktivierung der Anionenkanäle führt, nur lückenhaft verstanden. Im Rahmen dieser Arbeit wurde die Rolle von Signalintermediaten wie Proteinkinasen, -phosphatasen, Lipid-abgeleiteten Botenstoffen und Ca2+ bei der Aktivierung der Anionenkanäle untersucht. Hinsichtlich Ca2+ lag ein spezieller Fokus auf der Generierung von Ca2+-Signalen und auf der Frage, inwieweit ein Anstieg in der cytosolischen freien Ca2+-Konzentration für eine Aktivierung der Anionenkanäle ausreicht. Für diese Studien wurde hauptsächlich die Zwei-Elektroden-Spannungsklemm- (DEVC) Technik in Kombination mit Ca2+-Konzentrationsmessungen durch den Ca2+-sensitiven Farbstoff FURA-2 angewendet. Die Möglichkeit Anionenkanäle durch Ca2+ zu aktivieren wurde getestet, indem Ca2+-Signale in intakten Schließzellen von Nicotiana tabacum durch hyper- und depolarisierte Spannungen ausgelöst wurden und gleichzeitig die Ströme, die über die Plasmamembran flossen, gemessen wurden. Dabei führte eine Hyperpolarisation zu einer transienten Erhöhung der cytosolischen freien Ca2+-Konzentration während des Spannungssprunges, wohingegen eine Depolarisation zunächst eine Erniedrigung der cytosolischen freien Ca2+-Konzentration auslöste und das Ca2+-Signal bei Repolarisation der Plasmamembran auftrat. Dies weist darauf hin, dass in beiden Fällen hyperpolarisations-aktivierte Ca2+-Kanäle beteiligt sind, wobei das Schwellenpotential der Schließzellen, bei dem ein Ca2+-Signal ausgelöst wird, nach einer langen Depolarisation zu positiveren Spannungen verschoben ist. Die Modulation der Spannungssensitivität der Schließzellen während einer langen Depolarisation findet möglicherweise durch eine Aktivierung der Ca2+-Kanäle und/oder eine Inhibierung verschiedener Ca2+-Transportproteine durch eine niedrige cytosolische freie Ca2+-Konzentration statt. Der durch Hyperpolarisation bzw. durch lange Depolarisation induzierte transiente Anstieg in der cytosolischen freien Ca2+-Konzentration korrelierte mit einer transienten Aktivierung von S-Typ Anionenkanälen. Die Analyse der Ca2+-Konzentrations- und Zeitabhängigkeit ergab, dass die S-Typ Anionenkanäle durch Ca2+ in einem schnellen Signalweg mit einer halbmaximalen cytosolischen freien Ca2+-Konzentration von 515 nM (SE=235, n=33) aktiviert werden. Der durchschnittliche maximale S-Typ Anionenstrom lag bei -349 pA (SE=107, n=33) bei einer Spannung von -100 mV. Die Wirkung von Ca2+ auf Transportvorgänge über die Plasmamembran wurde auch in Drüsenzellen von Dionaea muscipula untersucht. In diesem Zelltyp induzierte eine mechanische Stimulierung der Triggerhaare ein Ca2+-Signal, wobei mehr als zwei Aktionspotentiale nötig waren, um einen transienten Ca2+-Anstieg auszulösen. Diese Daten zeigen, dass die Depolarisationsphase des Aktionspotentials in den Drüsen nicht direkt mit Ca2+-Flüssen assoziiert ist. Anstelle einer Ca2+-abhängigen Aktivierung scheinen Anionenkanäle in Drüsen von Dionaea muscipula also in einem Ca2+-unabhängigen Signalweg aktiviert zu werden. Diesen Aktivierungsmechanismus gibt es auch im ABA-Signalweg in Schließzellen. Dort findet eine Ca2+-unabhängige Aktivierung der S-Typ Anionenkanäle durch Proteinkinasen wie OST1 und CPK23 statt, wobei die Proteinphosphatase ABI1 als negativer Regulator diskutiert wird. In dieser Arbeit konnte die Redundanz von OST1 und CPK23 sowie Komponenten des Ca2+-abhängigen Weges in DEVC-Experimenten mit ost1-2- und cpk23-Mutanten von Arabidopsis thaliana beobachtet werden, die beide S-Typ Anionenkanalaktivität zeigten. Die Aktivität von S-Typ Anionenkanälen in Arabidopsis thaliana Mutanten, denen der S-Typ Anionenkanal SLAC1 fehlt, deutet außerdem an, dass redundante S-Typ Anionenkanäle vorhanden sind, die auch durch andere Proteinkinasen aktiviert werden könnten. ABA-induzierte S-Typ Anionenströme waren auch in abi1-Transformanten von Nicotiana tabacum messbar, wobei eine geringere Sensitivität gegenüber ABA als im Wildtyp auftrat, was auf eine unvollständige Inhibierung des ABA-Signalweges hindeutet. Die Redundanz der Intermediate im ABA-Signalweg war auch in Studien mit dem Lipid-abgeleiteten Botenstoff Phosphatidsäure sichtbar, der nur einen langsamen und unvollständigen Stomaschluss induzierte, was allerdings auch auf eine untergeordnete Rolle von Phosphatidsäure im ABA-Signalweg hinweisen könnte. N2 - Plants regulate gas exchange with the atmosphere by changing the aperture of pores in the epidermis of leaves, which are called stomata. Upon water deficiency, stomatal pores close to minimize water loss. This process is initiated by the phytohormone ABA, which induces activation of anion channels in the plasma membrane of guard cells. Even though activation of anion channels is a central element in the response to ABA, the signalling pathway, leading to the activation of anion channels, is still not understood. This work focuses on the role of signalling intermediates like protein kinases, protein phosphatases, lipid-based messengers and Ca2+ in the activation of anion channels. With regard to Ca2+, the generation of Ca2+-signals and the extent to which a rise in the cytosolic free Ca2+-concentration is sufficient for the activation of anion channels was studied. For this purpose, especially the double electrode voltage clamp (DEVC) technique was used in combination with FURA-2 based Ca2+-imaging. The ability of Ca2+ to activate anion channels was tested by evoking Ca2+-signals in guard cells of intact Nicotiana tabacum plants by either clamping the plasma membrane to hyperpolarized or depolarized voltages and simultaneously measuring plasma membrane currents. Thereby a transient elevation of the cytosolic free Ca2+-concentration directly followed the hyperpolarization, whereas depolarization initially induced lowering of the cytosolic free Ca2+-concentration, followed by a transient Ca2+-increase after returning to the holding potential. This suggests that hyperpolarization-activated Ca2+-channels are involved in both Ca2+-responses and that the threshold potential of the guard cell at which a Ca2+-signal is generated shifts to more positive values after a prolonged depolarization. Modulation of the voltage sensitivity of the guard cell during a prolonged depolarization might be due to activation of Ca2+-channels and/or inhibition of Ca2+-transport proteins by a low cytosolic free Ca2+-concentration. The transient elevation of the cytosolic free Ca2+-concentration, induced by hyperpolarization or prolonged depolarization, correlated with a transient activation of S-type anion channels. Analysis of the Ca2+-concentration and time dependence showed that S-type anion channels are activated by Ca2+ in a fast signalling pathway with a half maximal cytosolic free Ca2+-concentration of 515 nM (SE=235, n=33). The mean saturated S-type anion current was -349 pA (SE=107, n=33) at -100 mV. The effect of Ca2+ on plasma membrane transport processes was also studied in gland cells of Dionaea muscipula. In this cell type, a mechanical stimulation of trigger hairs induced a Ca2+-signal, whereby more than two action potentials were needed for a transient increase in the cytosolic free Ca2+-concentration. This data indicates that that the depolarization-phase of the action potential is not directly coupled to Ca2+-fluxes. Instead of a Ca2+-dependent activation, anion channels in glands of Dionaea muscipula thus seem to be activated by a Ca2+-independent signalling pathway. This type of activation mechanism can also be found in ABA-signalling in guard cells. There, a Ca2+-independent activation of S-type anion channels involves protein kinases like OST1 and CPK23, a process that is negatively regulated by the protein phosphatase ABI1. In this work, the redundancy between OST1 and CPK23 as well as components of the Ca2+-dependent signalling pathway could be shown in DEVC experiments with ost1-2 and cpk23-mutants of Arabidopsis thaliana, which still showed S-type anion channel activity. Furthermore, the activity of S-type anion channels in Arabidopsis thaliana mutants lacking the S-type anion channel SLAC1 indicates that redundant S-type anion channels exist, which might be activated by other protein kinases as well. ABA-induced S-type anion currents could also be measured in abi1-transformed Nicotiana tabacum plants, although these plants showed a reduced sensitivity to ABA compared to wildtype plants, suggesting an incomplete inhibition of the ABA-signalling pathway. The redundancy of intermediates in the ABA-signalling pathway could also be seen in studies with the lipid-based messenger phosphatidic acid, which only induced a slow and incomplete stomatal closure. However, this could point at a minor role for phosphatidic acid in the ABA-signalling pathway, as well. KW - Schließzelle KW - Plasmamembran KW - Schmalwand KW - Abscisinsäure KW - Venusfliegenfalle KW - Aktionspotenzial KW - S-Typ Anionenkanal KW - Ca2+-Signal KW - FURA KW - Tabak KW - S-typ anionchannel KW - Ca2+-signal KW - FURA Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-52131 ER -