TY - THES A1 - Endlein, Thomas T1 - Haftung und Fortbewegung: Kontrollmechanismen von Adhäsionskräften bei Ameisen T1 - Locomotion and Adhesion: Control Mechanisms of Attachment in Ants N2 - Natürliche Haftsysteme übertreffen technische Kleber in mehreren Aspekten: Sie haften auf nahezu allen Oberflächen, sind selbstreinigend und sind in ihrer Haftstärke dynamisch kontrollierbar. Für Tiere mit Haftorganen ist deren Kontrolle eine Grundvoraussetzung für effiziente Lokomotion. Wie können Tiere gut an Oberflächen haften und gleichzeitig schnell laufen? Wie werden Haftorgane kontrolliert, um auf rauen oder glatten Oberflächen senkrecht oder kopfüber zu haften und wieder loszulassen? Die vorliegende Arbeit untersucht am Beispiel vonWeberameisen (Oecophylla smaragdina), welche Kontrollmechanismen Insekten verwenden, um den Konflikt zwischen Haftung und Fortbewegung zu bewältigen. Weberameisen besitzen an ihren Füßen zwischen den Krallen ein entfaltbares Haftorgan (Arolium), welches im Vergleich zu anderen Hymenopteren stark vergrößert ist. Ihre enormen Haftkräfte (mehr als das 100-fache ihres Körpergewichtes) werden hauptsächlich eingesetzt, um Blätter für ihren Nestbau in den Baumkronen zusammenzuziehen. Sie sind Meister der Haftung und gute Läufer zugleich und eigneten sich daher sehr gut als Modellsystem. In der Arbeit wurde dieWechselwirkung von Haftung und Bewegung auf mehreren hierarchischen Ebenen untersucht, vom gesamten Körper über die Beine bis zum Haftorgan selbst. Es zeigte sich, dass Kontrollmechanismen auf allen drei Ebenen vorliegen. Im ersten Teil der Arbeit wurde durch Manipulationen an der Krallenziehersehne die komplexe innere Mechanik des Prätarsus aufgeklärt. Es zeigte sich, dass die Bewegungen von Tarsus, Krallen und Arolium in einer koordinierten Reihenfolge erfolgten. Durch Amputationen der Krallenspitzen an lebenden Ameisen konnte bestätigt werden, dass die Entfaltung des Aroliums durch das Verhaken der Krallen auf rauen Oberflächen mechanisch eingeschränkt wird. Der Einsatz des Aroliums war auch abhängig von der Oberflächenorientierung. Weberameisen setzten ihr Haftorgan beim aufrechten Laufen überhaupt nicht ein, beim Kopfüberlaufen auf glatten Oberflächen wurde dagegen nur ein Bruchteil der maximal möglichen Haftkontaktfläche entfaltet. Die Versuche zeigten, dass Ameisen die Entfaltung des Aroliums entweder aktiv, d. h. durch Kontraktion des Krallenziehermuskels, oder passiv durch Zugbewegungen des Tarsus graduell variieren. Beide Mechanismen werden von den Ameisen verwendet, um die ansonsten klein gehaltene Haftkontaktfläche bei Bedarf (z. B. bei Zusatzbeladungen) zu vergrößern. Die passive Entfaltung ist von der neuromuskulären Kontrolle entkoppelt und unterliegt somit nicht den Zeitverzögerungen von Reflexreaktionen. Durch plötzliche laterale Verschiebung der Laufoberfläche durch einen Stoß konnte eine schlagartige Ausfaltung der Arolien ausgelöst werden, die wesentlich schneller ablief als alle bekannten Reflexreaktionen. Dies kann als Sicherheitsmechanismus interpretiert werden, womit sich die Ameisen bei starken Erschütterungen der natürlichen Laufsubstrate (Blätter) durchWindstöße oder Regentropfen festhalten können. Sowohl Kraftmessungen an der Krallenziehersehne, welche die Kontraktion des Krallenziehermuskels nachahmten als auch Reibungskraftmessungen zur passiven Entfaltung des Aroliums zeigten, dassWeberameisen im Vergleich zu einer bodenlebenden Ameise ihre Haftorgane leichter entfalten konnten. Dies erleichtert es ihnen, ihre Haftorgane über lange Zeit im entfalteten Zustand zu halten, wie es beispielsweise beim Nestbau erforderlich ist. Mit Hilfe von dreidimensionalen Kinematikstudien konnte gezeigt werden, dass Weberameisen durch Änderungen des Beinwinkels zur Oberfläche das Schälverhalten der Haftorgane beeinflussen. Ein flacherer Winkel verhinderte das Abschälen der Haftorgane während der Standphase oder beim Tragen von Zusatzlasten; ein steilerer Tarsus hingegen erleichterte das Abschälen während der Ablösephase. Dieses Verhalten wurde mit dem Modell eines Klebebandes verglichen. Allerdings veränderten sich die Haftkräfte in einem bestimmten Winkelbereich deutlich stärker, als die Schältheorie es vorhersagen würde. Die starken Unterschiede in der Haftkraft an dieser Schwelle sind jedoch biologisch sinnvoll und werden wahrscheinlich von den Ameisen verwendet, um schnell zwischen Haften und Lösen zu wechseln. Messungen der Bodenreaktionskräfte zeigten einen weiteren Ablösemechanismus: Während der Ablösephase wird durch distales Schieben des Beines das Haftorgan entlastet und so eine passive Rückfaltung des Aroliums erlaubt. Beide Ablösemechanismen (Schälen und Entlasten) wurden für einzelne Beinpaare im unterschiedlichen Ausmaß von den Ameisen verwendet. Eine Umorientierung zur Schwerkraftrichtung, z. B. beim Kopfüberlaufen, hatte auch Einfluss auf das Laufmuster und die Beinstellung relativ zum Körperschwerpunkt. Die Ameisen passten beim Kopfx überlaufen ihren Gang so an, dass sie mehrere Beine gleichzeitig in Bodenkontakt hielten und langsamere und kürzere Schritte machten. Entstandene Drehmomente beim Tragen von Zusatzlasten wurden durch gezielte Änderungen der Beinpositionen ausgeglichen. Meine Arbeit zeigt, dass Insekten die Oberflächenhaftung auf verschiedenen hierarchischen Ebenen mit Hilfe verschiedener Anpassungen kontrollieren und dabei elegant neuromuskuläre Steuerungen mit rein passiven Mechanismen vereinigen. Die hier für Weberameisen exemplarisch untersuchten Effekte sind von allgemeiner Bedeutung für alle Tiere, die sich mit Hilfe von Haftorganen fortbewegen. Ein Verständnis der Mechanismen, mit denen Insekten Haftung dynamisch kontrollieren, könnte wichtige Anregungen für die Entwicklung von kletterfähigen Laufrobotern liefern. N2 - Natural adhesive pads outperform technical adhesives in many aspects: they can stick to almost every surface, they have self-cleaning capabilities and are highly dynamic and versatile in their adhesive strength. Animals walking with adhesive pads have to vary their adhesion with each step in order to adhere safely yet have to detach their feet quickly and effortlessly. How can these animals control their attachment whilst walking upright or upside down, on different surface roughnesses or when carrying additional loads? Weaver ants (Oecophylla smaragdina) have foldable adhesive pads (arolia) at the tip of their feet, which are relatively large compared to other Hymenoptera. They use their pads to adhere to slippery leaf surfaces when they construct their nests in the tree canopy. Since these ants are both good runners and are capable of generating adhesive forces of more than 100 times their own body weight, they form a good model to study the conflict between locomotion and adhesion. In my thesis I have focused on the control mechanisms of adhesion at several hierarchical levels, from body kinematics to leg posture to the mechanics of the adhesive pad itself. In the first part of my studies, manipulation experiments on the claw flexor tendon revealed the complex inner mechanics of the pretarsus. A pull on the tendon elicited a coordinated sequence of movements where the arolium moved after the flexion of the claws. When ants run on rough surfaces the contraction of the muscle is stopped mechanically by the interlocking of the claws and prevents the unfolding of the arolium. Claw amputation experiments on walking ants confirmed that the mechanical control of the arolium depended on surface roughness. The unfolding of the arolium also varied with the load acting on the ants. When ants walked upright their pads were never engaged. When they walked in an upside down manner they used only a fraction of their possible contact area and increased their pad contact area when they carried additional loads. Ants adapted the pad contact size acitvely by a contraction of the claw flexor muscle and/or passively by a proximal pull on the leg. The passive unfolding mechanism of the pads is decoupled from a neuronal control and therefore can be very fast. In experiments where the substrate were displaced rapidly it caused a sudden unfolding of the arolium. The arboreal Weaver ants may use this as a safety mechanism to cling onto the leaves when heavy raindrops or wind gusts shake the substrate. Despite the large size of the arolium in Weaver ants, both the active and passive unfolding required less force than the measured for the smaller pads of a ground living species. The economical unfolding might help the ants to keep the pads unfolded over longer periods, for instance when they keep prey insects down, carry them or when they hold leaves in place for their nest contruction. Kinematic studies revealed that movements of the legs can influence the attachment and detachment of the pads in normal walking and when they carried loads. Ants prevented peeling of their pads by reducing the angle of the tarsus to the surface. Like peeling off an adhesive tape, the pull-off forces depend on the angle of pulling. However, experiments showed that ants quickly detach from a surface when the angle of their tarsus reaches an upper range of angles. By varying the tarsus angle slightly, ants may switch easily between attachment and detachment. Recording of ground reaction forces revealed another detachment mechanism. Walking ants unloaded their feet by distally pushing the leg in order to allow a passive recoil of the tarsus and the self-elastic arolium. Both mechanisms (peeling and unloading) were used in the three leg pairs to a different extend. Running upside down also changed the walking pattern. Ants kept more feet in simultaneous surface contact and walked more slowly. When ants carried loads upside down they compensated for tipping moments of the body, by varying the footfall positions. In summary,Weaver ants can control their attachment on different hierarchical levels and combine neuronal and passive mechanisms in an elegant way. The results shown here forWeaver ants are exemplary for all animals walking with adhesive pads and may provide insights for equipping climbing robots with artificial pads. KW - Ameisen KW - Laufen KW - Haftung KW - Biomechanik KW - Kontrolle KW - Adhäsion KW - Kontrollmechanismen KW - Biomechanik KW - Weberameisen KW - Oecophylla smaragdina KW - Adhesion KW - controll mechanism KW - biomechanics KW - weaver ants Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28985 ER - TY - THES A1 - Klein, Jörg T1 - Verwendung von Gene-Targeting-Techniken zur Etablierung neuer Mauslinien mit Mutationen in B-Zell-Signalwegen T1 - Usage of Gene Targeting techniques for establishing new mouse lines with mutations in B-cell signaling N2 - Das Hauptthema der hier vorliegenden Arbeit befaßt sich mit dem B-Zell spezifischen Oberflächenprotein CD22, einem Mitglied der Siglec (Sialinsäure bindende Igähnliche Lektine) Proteinfamilie. Dieses Transmembranprotein besitzt sieben extrazelluläre Immunoglobulin-ähnliche Domänen und kann über die äußerste V-set Domäne seine Liganden: α2,6 verknüpfte Sialinsäuren binden. CD22 hat eine Transmembrandomäne und eine cytoplasmatische Domäne mit sechs potentiellen Tyrosin Phosphorylierungsstellen, von denen drei eine ITIM-Sequenz (engl. immunoreceptor tyrosine-based inhibitory motif) aufweisen. CD22 defiziente Mäuse zeigten eindeutig, daß das Siglec CD22 ein negativer Regulator des BCR-Signals ist. Durch BCR-Kreuzvernetzung wird CD22 tyrosinphosphoryliert, die inhibitorische Tyrosinphosphatase SHP-1 gebunden, aktiviert, und ist nun in der Lage das BCR Ca2+ Signal zu inhibieren. Um die Rolle der CD22Ligandenbindungsdomäne, in vivo zu untersuchen, sollte in dieser Arbeit eine CD22 knock -in Maus erzeugt werden (CD22R130E Maus), in der die Ligandenbindungsdomäne von CD22 durch eine Punktmutation funktionell ausgeschaltet ist. In der hieraus resultierenden Mauslinie sollte dann die BZellentwicklung, Signaltransduktion und der Immunstatus analysiert werden. Der Vergleich des Phänotyps der CD22R130E Maus und der CD22 defizienten Maus sollte dann zeigen, wie die Adhäsions- und Signalleitungseigenschaften von CD22 zusammenhängen. Der „Targeting“ Vektor für die „Gene Targeting“ Experimente wurde von der Arbeitsgruppe Dr. Anton van der Merwe (von Christina Piperi) angefertigt. Ursprünglich wurde ein „Targeting“ Vektor aus genomischer C57BL/6-DNA verwendet, um den genetischen Hintergrund der CD22-defizienten Maus beizubehalten. Dieser Vektor wurde von mir für ES-Zell Transfektionen in der C57Bl/6 ES-Zellline verwendet. Aus den Gene Targeting Experimenten mit der C57Bl/6-III ES-Zelllinie konnten zwei ES-Zellklone isoliert werden, die eine korrekte homologe Integration des Targetvektors trugen. Aus einem Blastozysteninjektions- Experiment mit einem Cre-deletierten C57BL/6-III Subklon wurden sechs hochchimäre Mäuse erhalten, mit denen allerdings keine Keimbahntransmission erzielt werden konnte. Nach Problemen mit Keimbahntransmission von Klonen aus der C57BL/6-III ESZelllinie, wurden noch die BALB/c und die E14Tg2a ES-Zelllinie für neue Gene Targeting Experimente verwendet. Die Experimente mit der BALB/c ES-Zelllinie ergaben keine ES-Zellklone mit korrekter homologer Integration, dies beruhte wahrscheinlich auf dem nicht isogenen Hintergrund. Alle folgenden Experimente mit der E14Tg2a ES-Zelllinie (genetischer Hintergrund: 129/ola) wurden mit dem verlängerten R130E-Targetvektor (Targetvektor 2), der mit 129/ola DNA um 2,3 Kb in 5’-Richtung verlängert wurde, um den isogenetischen Anteil des Targetvektors zu erhöhen, durchgeführt. Aus diesen Experimenten resultierten wiederum zwei ESZellklone, deren korrekte homologen Rekombination durch Southern Blot bestätigt werden konnten. Bei den darauffolgenden Blastozysten-Injektionsexperimenten mit diesen zwei E14Tg2a Klonen konnten fünf chimäre Tiere gewonnen werden. Ein 80 %ig chimäres Männchen erzeugte eine hohe Anzahl von Nachkommen mit Keimbahntransmission. Bei der Analyse dieser Tiere trat das Resultat zutage, daß alle diese Tiere mit Keimbahntransmission einen wildtypischen Genotyp besaßen. Ein weiteres Mitglied der Siglecproteinfamilie, das murine SiglecG (ein Ortholog zu humanem Siglec10), wurde in dieser Arbeit untersucht. In Zusammenarbeit mit dem Labor von Dr. Paul Crocker sollte eine SiglecG knock out Maus hergestellt werden. Die Strategie für die Gene Targeting Experimente für einen SiglecG knock out basierten auf der Verwendung der BalbI ES-Zelllinie (aus BALB/c Mäusen), da hiermit sehr gute Erfahrungen vorlagen, was die Stabilität ihrer Pluripotenz und des Keimbahntransmissionspotenzials angeht. Daher wurde im Labor von Paul Crocker (von Sheena Kerr) ein Kontroll- und ein Targetvektor kloniert, mit dem große Teile der ersten und zweiten Ig-Domäne von SiglecG ausgeschaltet werden sollte. Mit diesem Vektor führte ich mehrere ES-Zell Transfektionsexperimente durch. Innerhalb der Zeitspanne meiner Doktorarbeit konnten keine ES-Zellklone mit einem korrekten homologen Integrationsereignis gewonnen werden. Mittels der ursprünglichen Strategie konnte die mir nachfolgende Doktorandin jedoch ES-Zell Klone isolieren, nach Blastozysteninjektion Keimbahntransmission erzielen und somit eine SiglecGdefiziente Maus generieren. Eine andere Zusammenarbeit kam mit Dr. Burkhard Kneitz (Physiologisches Chemie I, Biozentrum, Universität Würzburg) zustande. Seine Intention war es, die Rolle des TGF-β Signalmediators SMAD2 auf B-Zellebene näher zu untersuchen. Von Erwin Böttinger bekamen wir eine Mauslinie, in der das Smad2-Gen gefloxt ist, die mit der CD19-Cre Maus gekreuzt wurde. So wurde eine B-Zell spezifische SMAD2 knock out Maus (bSmad2-/-) erzeugt. Meine Aufgabe bestand darin, die B-Zellkompartmente und die Immunantworten der B-Zell spezifischen Smad2-defizienten Maus zu analysieren. Faßt man alle gewonnenen Daten aus den hier generierten B-Zell spezifischen Smad2 knock out Tieren zusammen, so kann man zu dem klaren Ergebnis kommen, daß der TGF-β Signalmediator Smad2 eine entscheidende Rolle bei der Weiterleitung von TGF-β Signalen in das Zellinnere von B-Zellen spielt. Hierbei zeigten sich klare Veränderungen, im Vergleich zu Kontrolltieren, eine Erhöhung der Zellzahl in den Peyerschen Plaques (PP), und der B1-Zellen im Peritoneum. Die IgA-Immunantwort war in bSmad-/- Tieren stark erniedrigt. Der für TGF-β beschriebene Effekt der Proliferationshemmung von aktivierten B-Zellen war bei aktivierten B-Zellen der bSmad2-/- Mäuse hingegen nicht beeinträchtigt. N2 - The main topic of this thesis dealt with the B cell-specific transmembrane protein CD22, a member of the Siglec (Sialic-acid binding Ig-like lectin) protein family. This transmembrane protein posseses seven extracellular domains and is capable to bind α2,6 sialic acids via its most outer V-set domain. Furthermore there are one transmembrane domain and six potential tyrosine-based phosphorylation motifs, three of which match ITIM (immunoreceptor tyrosine-based inhibitory motif) consensus sequences. CD22 deficient mice clearly showed that the Siglec CD22 is a negativ modulator of BCR signalling. BCR engagement causes tyrosine phosphorylation of CD22, now the inhibitory tyrosine phosphatase SHP-1 is able to bind, is then getting activated and is thus inhibiting the BCR Ca2+ signal. To elucidate the function of the CD22 adhesion domain in vivo, especially concerning the connection with CD22 signalling, one main topic of this work was to generate a CD22 knock in mouse (CD22R130E), in order to functionally eliminate the CD22 adhesion domain through a point mutation. The resulting new mouse line should give the opportunity to investigate B-cell development, signal transduction and the immune status ot the CD22R130E mouse. The comparison between the phenotypes of the CD22R130E mouse and the CD22 deficient mouse should resolve the interplay of adhesion and signalling of CD22. The cloning of the targeting vector for the gene targeting experiments was done in the laboratory of Dr. Anton van der Merwe (by Christina Piperi). Basically, the idea was to keep the C57BL/6 genetic background, which was already used to generate the CD22 deficient mouse by Dr. Lars Nitschke (Nitschke et al. 1997). This vector was used by me for the ES cell transfection experiments with the C57Bl/6-III ES cell line. Finally, two ES-cell clones could be identified from gene targeting experiments with the C57BL/6 ES-cell line, which carried a correct homologous integrated target vector. With one Cre-deleted C57BL/6 subclone it was possible to generate six chimaeric animals from one injection experiment, although none of these animals could give rise to germline transmission. Since occurence of crucial problems with the germline transmission of C57BL/6-III ES-cell clones, the BALB/c and E14Tg2a ES-cell lines were used for new gene targeting experiments. With the following gene targeting experiments using the BALB/c ES-cell line no homologous recombinants were obtained. This was probably due to the non-isogenic background. All following experiments performed with the E14Tg2a ES-cell line (genetic background: 129/ola) were carried out with the elongated R130E-targeting vector (targeting vector 2). This vector was created by using a genomic 129/ola template, in order to gain a new isogenetic 2.3 kb 5’- fragment. These experiments gave rise to two ES-cell clones with a correct homologous recombination event confirmed by southern blot. It was now possible to generate five chimaeric animals out of three injection experiments with these two EScell clones. One male animal, with 80 % chimaerism, produced offspring with germline transmission. The analysis of these animals with germline transmission showed that all of them possessed a wildtype like genotype. This thesis dealt with a further member of the Siglec protein family, the murine SiglecG (an ortholog to human Siglec10). In collaboration with the laboratory of Dr. Paul Crocker a SiglecG knock out mouse was to be generated. The strategy to do the gene targeting experiments was based on the usage of the BalbI ES-cell line (from BALB/c mice), since it possesses well known stability concerning pluripotential and germline transmission potential. In the laboratory of Paul Crocker (by Sheena Kerr) a control and target vector was cloned, which should eliminate a large part of the first and second Ig-domain of SiglecG. I performed different ES-cell transfection experiments with this vector. Within the timecourse of my work it was not possible to gain any ES-cell clones with correct homologous integration events. Later on ES-cell clones, germline transmission and generation of the SiglecG deficient mouse was achieved with the original strategy by the following Phd student. Another collaboration was evolved by Dr. Burkhard Kneitz (Department of Physiological Chemistry I, Würzburg). His intention was to investigate the meaning of the TGF-β signalmediator SMAD2 in a B-cell specific manner. From Erwin Böttinger we received a mouse line with a floxed Smad2 gene, which was crossed with a CD19-Cre mouse line (Rickert et al. 1997). Thus a B-cell specific SMAD2 knock out mouse (bSmad2-/-) was generated. I had to analyse the B-cell compartments and the immune responses of the B-cell specific SMAD2 knock out mouse. Taking together all data gained with the newly generated B-cell specific SMAD2 knock out mouse showed that the signalmediator SMAD2 is a crucial downstream component of TGF-β signalling in B-cell biology. The crucial differences of bSmad2-/- animals in comparison to control animals were given in an increase of cells of Payers Patches (PP) and B1 cells of peritoneal lavages. The IgA immune response was strongly reduced in bSmad2-/- animals. The well known effect of TGF-β concerning inhibition of proliferation with activated B-cells (Kehrl et al. 1986; 1989; 1991) was not impaired with activated B-cells of bSmad2-/- animals. KW - B-Lymphozyt KW - Signaltransduktion KW - Antigen CD22 KW - CD22 KW - Maus KW - B-Zellen KW - Homologe Rekombination KW - Signaltransduktion KW - Zelladhesion KW - Gene Targeting KW - B-cell signaling KW - Siglecs KW - CD22 KW - Adhesion Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13615 ER -