TY - THES A1 - Mühlbacher, Dominik T1 - Die Pulksimulation als Methode zur Untersuchung verkehrspsychologischer Fragestellungen T1 - The multi-driver simulation as a method to investigate research issues in traffic psychology N2 - Fahr- und Verkehrssimulation sind neben Studien mit realen Fahrzeugen die gängigen Methoden der empirischen Verkehrswissenschaft. Während sich die Fahrsimulation mit dem Erleben und Verhalten von Fahrern beschäftigt, untersucht die Verkehrssimulation das gesamte Verkehrssystem. Der Bereich zwischen diesen Polen „Fahrer“ und „Verkehr“, in dem Fahrer aufeinander treffen und miteinander interagieren, ist angesichts der Bedeutung sozialer Prozesse für das Erleben und Verhalten ein wichtiger Aspekt. Allerdings wurde dieser Bereich in der Verkehrswissenschaft bisher nur unzureichend abgebildet. Auch in der Fahr- und Verkehrssimulation wurde dieser Aspekt bislang weitgehend vernachlässigt. Um diese Lücke zu schließen, wurde mit der Pulksimulation eine neue Versuchsumgebung entwickelt. Sie besteht aus miteinander vernetzten Fahrsimulatoren und ermöglicht es, Interaktionsfragestellungen zu untersuchen. Jedoch bringt die Anwendung der Pulksimulation neue Anforderungen an den Untersucher mit sich, die bei der Fahr- bzw. Verkehrssimulation nicht notwendig sind und für die Pulksimulation neu entwickelt werden müssen. Das Ziel der vorliegenden Arbeit ist, diese Methode zur Untersuchung verkehrspsychologischer Fragestellungen weiterzuentwickeln, zu prüfen und zu etablieren. In ersten Untersuchungsansätzen werden in acht Teilstudien die grundlegenden methodischen Besonderheiten der Pulksimulation am Beispiel des Folgefahrens und des Kreuzens betrachtet. Hierbei wird auch stets der Vergleich zu den bisher genutzten Versuchsumgebungen Einzelfahrsimulation und Verkehrssimulation gezogen. Folgende Fragstellungen wurden im Rahmen dessen beantwortet: (1) Wie unterscheidet sich eine Pulkfahrt von einer Einzelfahrt? (2) Welchen Einfluss haben nachfolgende Fahrzeuge im Pulk? (3) Welche Effekte haben Positionierungen im Pulk? (4) Wie unterscheiden sich reale Fahrer und Modelle im Pulk? (5) Wie wirkt sich die Einführung einer Nebenaufgabe auf den Pulk aus? (6) Wie wirken sich verschiedene Abstandsinstruktionen aus? (7) Mit welchen Parametern kann der Pulk beschrieben werden? (8) Wie kann das Verhalten des Pulks an Kreuzungen untersucht werden? Schließlich werden zwei Anwendungsbeispiele der Pulksimulation zu aktuell relevanten Themen aufgezeigt. In der ersten Untersuchung wird ein Gefahrenwarner evaluiert, der vor Bremsungen vorausfahrender Fahrzeuge warnt. Während Fahrer direkt hinter dem bremsenden Fahrzeug vom System nicht profitieren, steigt der Nutzen des Systems mit zunehmender Positionierung im Pulk an. In einer zweiten Studie wird ein Ampelphasenassistent untersucht. Dieser informiert den Fahrer während der Annäherung an eine Ampel über die optimale Geschwindigkeit, mit der diese Ampel ohne Halt bei Grün durchfahren werden kann. Um die Auswirkungen des Systems auf den nicht-assistierten Umgebungsverkehr bestimmen zu können, werden verschiedene Ausstattungsraten innerhalb des Pulks eingeführt. Mit diesem Untersuchungsansatz können gleichzeitig Effekte des Systems auf die assistierten Fahrer (z. B. Befolgungsverhalten), die nicht-assistierten Fahrer (z. B. Ärger) sowie das Verkehrssystem (z. B. Verkehrsfluss) bestimmt werden. Der Ampelphasenassistent resultiert in einem ökonomischeren Fahrverhalten der assistierten Fahrer, erhöht aber gleichzeitig in gemischten Ausstattungsraten den Ärger der nicht-assistierten Fahrer im Verkehrssystem. Erst bei Vollausstattung entwickelt sich dieser negative Effekt zurück. Die in den Anwendungsbeispielen berichteten Phänomene sind durch Untersuchungen in einer Einzelfahrsimulation oder Verkehrssimulation nicht beobachtbar. Insbesondere für die Untersuchung von Fragen, in denen soziale Interaktionen mit anderen Fahrern eine Rolle spielen, zeichnet sich die Pulksimulation in besonderer Weise aus. Hierfür liefert die Anwendung in der Pulksimulation zusätzliche Informationen und zeigt somit, dass die Pulksimulation das Methodeninventar in der Verkehrswissenschaft effektiv ergänzt. Sie stellt zum einen eine Erweiterung der Fahrsimulation um den Faktor „Verkehr“ und zum anderen eine Erweiterung der Verkehrssimulation um den Faktor „Mensch“ dar und wird so zu einem zentralen Bindeglied beider Versuchsumgebungen. Darüber hinaus erlaubt die Pulksimulation die Modellierung von Interaktionsverhalten im Straßenverkehr, was bisher nicht bzw. nur unter größtem Aufwand realisierbar war. Hierdurch können die Modelle der Fahr- und Verkehrssimulation weiterentwickelt werden. Mit den in dieser Arbeit neu entworfenen Parametern werden Kenngrößen zur Verfügung gestellt, die Variationen bezüglich Quer- und Längsführung auch auf Ebene des Pulks abbilden können. Weitere neu entwickelte Parameter sind in der Lage, Interaktionen über den Zeitverlauf zu beschreiben. Diese Parameter sind notwendig für den Einsatz der Pulksimulation in zukünftigen Untersuchungen. Zusammenfassend wurde in der vorliegenden Arbeit die Methodik der Pulksimulation für den gesamten Anwendungsprozess von der Fragestellung bis hin zur Interpretation der Ergebnisse weiterentwickelt. Der Mehrwert dieser Methode wurde an aktuellen und bisher nicht untersuchbaren Fragestellungen belegt und somit die Validität der Pulksimulation gestärkt. Die vorgestellten Untersuchungen zeigen das große Potenzial der Pulksimulation zur Bearbeitung von Fragen, die auf der Interaktion verschiedener Verkehrsteilnehmer basieren. Hierdurch wird erstmals die Möglichkeit geschaffen, soziale Interaktionen über den Zeitverlauf in die Fahrermodelle der Verkehrssimulation zu integrieren. Damit ist der Brückenschlag von der Fahr- zur Verkehrssimulation gelungen. N2 - Beside studies in real traffic, driving simulation and traffic simulation are the most common methods in traffic sciences. Driving simulation deals with mental functions and behavior of drivers. Traffic simulation analyzes the whole traffic system. Between these poles “driver” and “traffic”, several drivers meet each other and interact. These interactions are a significant aspect due to the importance of social effects regarding mental functions and behavior. However, interactions are displayed insufficiently in driving simulation and traffic simulation. The multi-driver simulation is a new tool to fill in this gap. It consists of several driving simulators which are connected. The connection enables to investigate interactions in traffic. However, using a multi-driver simulation emerges new requirements which are not necessary in driving simulation or traffic simulation. Therefore, this work aims at developing and testing a new methodology for the multi-driver simulation. First, eight studies investigate the basic methodological specialties of the multi-driver simulation on the example of car following (i.e. driving in a platoon) and intersecting. These results are compared always with driving simulation and traffic simulation. In this section, the following issues are addressed: (1) What are the differences between driving alone and driving in a platoon? (2) What is the effect of succeeding vehicles while driving in a platoon? (3) What is the effect of the position in a platoon? (4) What are the differences between real drivers and models in driving in a platoon? (5) What is the effect of a secondary task while driving in a platoon? (6) What is the effect of different car following instructions? (7) What are parameters to describe a platoon? (8) How it is possible to analyze driving behavior at intersections? The next chapter of the work shows two application examples for the multi-driver simulation. The first study evaluates a hazard warning system which warns of braking maneuvers of preceding drivers. Drivers straight behind the braking vehicle do not benefit from the system. Instead, the gain of the system increases with the position of the driver in the platoon. The second study investigates a traffic light assistant. While approaching a traffic light, this system informs the driver about the optimal speed to pass while the lights are green. Various penetration rates are realized to analyze the effect of the system on the non-equipped surrounding traffic. By means of this study design, system effects can be determined on assisted drivers (e.g. system usage), on non-assisted drivers (e.g. annoyance) and on the whole traffic system (e.g. traffic flow). On the one hand, assisted drivers show a higher economic driving behavior. One the other hand, non-assisted drivers are annoyed in a higher extent in mixed penetration rates. This negative effect decreases in a 100% penetration rate. The application examples show effects which cannot be investigated with driving simulation or traffic simulation. In particular, research questions concerning social interactions between drivers can be investigated in the multi-driver simulation. Therefore, the multi-driver simulation is a useful supplement for the methodology in traffic psychology: On the one hand, it enhances driving simulation with the factor “traffic”. On the other side, it enhances the traffic simulation with the factor “human”. Therefore, the multi-driver simulation becomes the link between these methods. Additionally, the multi-driver simulation enables modelling of interactions in traffic which is not possible with other methods. These new interaction models are able to enhance driving simulation and traffic simulation. In this work, several parameters were developed to describe lateral and longitudinal control of a group of drivers. Further parameters can describe interactions between drivers. These parameters are necessary for the application of the multi-driver simulation in future research. To sum up, this work developed a methodology for the multi-driver simulation. The added value was demonstrated in relevant application examples which cannot be investigated with other methods. The studies show a high potential of the multi-driver simulation in research issues which address interactions between several drivers. By means of this method, social interactions can be integrated in the driver models of traffic simulation. This enables the link between driving simulation and traffic simulation. KW - Verkehrspsychologie KW - Fahrsimulation KW - Methodik KW - traffic psychology KW - driving simulation KW - methodology KW - Fahrsimulator Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-90051 ER - TY - THES A1 - Schmitz, Marcus T1 - Simulationsgestützte Kompetenzfeststellung von Triebfahrzeugführern - Entwicklung und Anwendung eines Verhaltensmarkersystems T1 - Simulation-based competence assessment of train drivers - Development and application of a behavioural marker system N2 - Diese Arbeit beschreibt die Entwicklung und Anwendung einer simulationsgestützten Methode zur Kompetenzfeststellung von Triebfahrzeugführern (Tf) der Deutschen Bahn AG unter Anwendung eines Verhaltensmarkersystems. Diese Methode wurde als ein erweitertes Konzept zur Bewertung eines Tf im Rahmen einer jährlich stattfindenden Überwachungsfahrt entwickelt. Diese Überwachungsfahrt besteht aus einer etwa 45-minütigen Prüfungsfahrt, mit deren Hilfe die Handlungssicherheit eines Tf erhöht sowie dessen Leistung und Leistungsfähigkeit beschrieben und bewertet wird. Die Überwachungsfahrt wird von geschulten Instruktoren durchgeführt. Während der Simulatorfahrt werden unregelmäßige Ereignisse eingespielt, die der Tf unter Anwendung der vorgeschriebenen Sollverhaltensweisen bewältigen muss. Ziel ist es, keinen sicherheitsrelevanten Mangel zu verursachen. Grundlage des eingeführten Verhaltensmarkersystems ist ein Datenkonzept, das auf den in den Regelwerken beschriebenen Fahrtereignissen und den entsprechenden Sollverhaltensweisen beruht. Die Überwachungsfahrt wird aus diesen Einzelereignissen zusammengestellt und somit entspricht auch das während der Überwachung zu zeigende Verhalten dem in den Regelwerken beschriebenen Sollverhalten. Um Abweichungen vom vorgeschriebenen Verhalten besser erkennen und bewerten zu können, werden sog. Verhaltensmarker eingeführt. Hierbei handelt es sich um objektive und nachprüfbare Indikatoren, die etwas über den Grad der Erfüllung des Sollverhaltens Auskunft geben. Zentral für die Bewertung sind somit die Erfassung möglicher Sollverhaltensabweichungen und die Frage nach der Festlegung der Schwere dieser Abweichung im Sinne eines Fehlers. Um Art und Stärke der Abweichungen vom Sollverhalten wurden objektive Fahrdaten aus dem Simulator herangezogen. Zusätzlich wurde ein standardisiertes Beobachtungsverfahren für die Instruktoren entwickelt. In einem zweiten Schritt wurden die über beide Verfahren erfassten Abweichungen vom Sollverhalten auf der Basis von Expertenurteilen entsprechend der potentiellen Auswirkungen gewichtet. Diese Gewichtung reicht in drei Stufen von leichten Fehlern bis hin zu sicherheitsrelevanten Mängeln. Für alle in den Überwachungsfahrten vorkommenden Sollverhaltensweisen wurden mögliche Abweichungen erhoben und in einer Fehlertabelle den Fehlerkategorien „gering“, „mittelschwer“ und „sicherheitsrelevant“ zugeordnet. Die so gewichtete Fehlerbetrachtung führt zu einer Gesamtbewertung des Tf und zu einer detaillierten Analyse seiner Stärken und Schwächen. Insgesamt wurden 1033 Überwachungsfahrten von den Instruktoren auf einem projektspezifischen Bogen protokolliert. Über die an den Simulatoren vorhandenen Datenschnittstellen wurden 1314 Überwachungsfahrten aufgezeichnet. Diese Datenquellen wurden integriert und ausgewertet. Als übergeordnetes Ergebnis lässt sich festhalten, dass die Anwendung der in dieser Arbeit entwickelten Methode nachweislich die Qualität und Genauigkeit der Bewertung verbessern konnte. Die Verhaltensmarker ermöglichen eine differenziertere Bewertung des Leistungsstands eines Tf. So ist es nicht nur möglich, sicherheitskritisches Verhalten („roter Bereich“) und ein optimales, fehlerfreies Verhalten („grüner Bereich“) festzustellen, sondern auch Aussagen über den „gelben Bereich“ dazwischen zu treffen (z.B. Mängel, die in anderen Situationen sicherheitskritisch sein können). N2 - The thesis describes the development and application of a simulation-based method for the competence assessment of train drivers, using a behavioural marker system. This method was developed as an advanced concept for the competence check of a train driver in an existing annual monitoring trip. This trip consists of a 45-minute test drive that should help to increase the overall performance of the drivers. It is carried out by trained driving instructors. During the simulator ride irregular events occur which must be overcome by applying the dedicated regulations. The aim is to cause no safety-related error. Basis of the introduced behaviour marker system is a data concept, which is based on the driving events and the corresponding target behaviour described in the regulations. The monitoring trip is compiled from these individual events and thus also corresponds to the underlying regulations. To identify and assess deviations from the prescribed target behaviour, so-called behavioural markers are introduced. These are objective and verifiable indicators that provide information about the fulfilment of the target behaviour. Central to the evaluation are thus the detection of possible deviations from the target behaviour and the question of determining the severity of this deviation in terms of an error. To assess the nature and severity of the deviations from the desired behaviour, objective driving data from the simulator were used. In addition, a standardized observation method was developed for the instructors. In a second step, the measured deviations were weighted on the basis of expert judgments depending on the potential safety impact. This weighting ranges from minor and medium to safety- relevant errors. The weighted error analysis leads to an overall assessment of the drivers and to a detailed analysis of the strengths and weaknesses. A total of 1033 trips were logged by the instructors on a project-specific protocol sheet. In addition, the objective data from 1314 simulator rides were recorded. The data of both sources were integrated and analysed. As high level result, it can be stated that the application of the method developed in this work could significantly improve the quality and accuracy of the assessment. The behavioural markers enable a more nuanced assessment of the level of performance of an engine driver. So it is not only possible to detect safety-critical behaviour ("red zone") and an optimal, error-free behaviour ("green zone"), but also to take statements about the "yellow zone" in between. KW - Lokomotivführer KW - Ausbildung KW - Leistung KW - Kompetenz KW - Prüfung KW - Kompetenzfeststellung KW - Fahrsimulation KW - Verhaltensmarker KW - Überwachungsfahrt KW - competence check KW - behavioural marker KW - monitoring KW - driving simulation KW - Kompetenz KW - Arbeitsplatz KW - Überwachung KW - Simulator Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-82272 ER - TY - THES A1 - Kaußner, Yvonne T1 - Fahrtauglichkeit bei M. Parkinson T1 - Driving Ability in Parkinson's Disease N2 - Obwohl es keineswegs in allen empirischen Studien gelungen ist, einen Zusammenhang zur Krankheitsschwere nachzuweisen, ist die Diagnose der Fahrtauglichkeit bei M. Parkinson weitgehend auf die Schwere der motorischen Beeinträchtigung zentriert. Jüngst kam die Diskussion um „Schlafattacken“ hinzu. In diesem Problemfeld ist die vorliegende Arbeit angesiedelt. Dazu wurden zwei Studien durchgeführt: zum einen die dPV-Befragung 2000 mit über 6 000 beantworteten Fragebögen und fast 400 Telefoninterviews, zum anderen eine Fall-Kontroll-Studie im Würzburger Fahrsimulator. Bei der dPV-Befragung 2000 handelt es sich um eine deutschlandweite Fragebogen- und Interviewstudie, welche v.a. den Problemstand im Sinne eines Dilemmas zwischen Mobilitätsbedürfnis der Patienten und Sicherheitsanspruch der Gesellschaft belegte. Einerseits ließ allein die hervorragende Rücklaufquote von 63% (bei über 12 000 versandten Fragebögen) ein enormes Mobilitätsbedürfnis der Patienten erkennen, andererseits ergaben sich aber auch im Hinblick auf die Verkehrssicherheit kritische Befunde: So wurde für die Patienten ein erhöhter Verursacheranteil bei Verkehrsunfällen nachgewiesen. Zudem erwiesen sich neben der (subjektiven) Krankheitsschwere erstmalig auch Tagesmüdigkeit und plötzliche Einschlafereignisse als signifikante Risikofaktoren für ihre Unfallbelastung. Um den Einfluss von motorischen (Krankheitsschwere) und aktivationalen (Tagesmüdigkeit) Beeinträchtigungen prospektiv zu untersuchen, wurde anschließend eine Fall-Kontroll-Studie im Würzburger Fahrsimulator durchgeführt. Durch diese Studie sollte weiterhin der Einsatz und die Wirkung kompensatorischer Bemühungen untersucht werden. Insgesamt wurden dazu 24 Parkinson-Patienten mit 24 gesunden Personen verglichen (gematcht nach Alter, Geschlecht und Fahrerfahrung). Die Patientengruppe war geschichtet nach Krankheitsschwere (Hoehn&Yahr–Stadien 1-3) sowie nach Tagesmüdigkeit (ja–nein), so dass sich 3x2 Subgruppen ergaben. Jeder Proband absolvierte zwei Fahrten im Simulator. In Fahrt 1 war eine Serie von Verkehrssituationen mit variierender Schwierigkeit realisiert, Fahrt 2 stellte eine extrem monotone Nachtfahrt dar. Um den Einsatz und die Effektivität kompensatorischer Bemühungen abzuschätzen, wurde ein Teil der Fahrt 1 unter Zeitdruck wiederholt. In Fahrt 2 wurden kompensatorische Bemühungen durch die Inanspruchnahme optionaler 3-Minuten-Pausen erfasst. Zusätzlich zu den Fahrten im Simulator wurde eine ausführliche Diagnostik mit herkömmlichen Testverfahren der Fahreignungsdiagnostik am „Act-React-Testsystem“ (ART-2020) betrieben. Die Ergebnisse zeigten für Fahrt 1 eine signifikant erhöhte Fehlerzahl der Patienten. Diese war v.a. auf eine schlechte Spurführung zurückzuführen. Lediglich in den leichten Teilen der Fahrt waren diese Beeinträchtigungen signifikant mit dem Hoehn & Yahr-Stadium verknüpft. In Fahrt 2 wurden im Verlauf der Fahrt besonders starke Leistungsabfälle für Patienten des Stadiums 3 und für Patienten mit Tagesmüdigkeit nachgewiesen. Einschlafereignisse traten aber selbst bei tagesmüden Patienten nicht häufiger auf als bei den Kontrollen. Ein wesentlicher Befund war, dass sich die Patienten gegenüber den gesunden Fahrern durch deutlich stärkere Kompensationsbemühungen auszeichneten. In Fahrt 1 bewirkte der Zeitdruck bei ihnen einen höheren Zeitgewinn und einen höheren Fehlerzuwachs. Unter Monotonie nutzten sie signifikant häufiger die Möglichkeit einer Pause. Die Befunde am ART-2020 wiesen eher auf eine generelle Verlangsamung als auf qualitative kognitive Defizite hin, wobei motorische und kognitive Komponenten in einigen Tests nur unzureichend getrennt werden konnten. Insgesamt hatten aber nicht nur die Patienten, sondern auch die gesunden Probanden dieser Altersgruppe enorme Schwierigkeiten mit den Leistungstests. Nur eine Patientin und zwei gesunde Probanden erreichten in allen erhobenen Parametern einen Prozentrang von mindestens 16, was als Kriterium für das Bestehen einer solchen Testbatterie gilt. In Fahrt 1 attestierten die Testleiter jedoch nur fünf Patienten (und keinem gesunden Fahrer) so schwerwiegende Auffälligkeiten, dass ihre Fahrtauglichkeit in Frage gestellt wurde (2x Hoehn&Yahr 2, 3x Hoehn&Yahr 3). Auch diese Diskrepanz zwischen Test- und Fahrleistung spricht für eine moderierende Wirkung der Kompensationsfähigkeit. Alles in allem konnte durch die Fall-Kontroll-Studie zwar bestätigt werden, dass Krankheitsschwere und Tagesmüdigkeit auf einige Parameter der Fahrleistung einen signifikanten Einfluss haben, insgesamt konnten diese Merkmale die Fahrleistung aber nicht zufriedenstellend vorhersagen. Ab dem Hoehn & Yahr-Stadium 2 spielt die Fähigkeit, krankheitsbedingte Beeinträchtigungen zu kompensieren, eine wesentliche Rolle. Genau dies wird aber in den traditionellen Leistungstests nicht erfasst. Künftige Untersuchungen sollten sich daher auf die Diagnostik und v.a. die Trainierbarkeit von Kompensationsfähigkeit konzentrieren. N2 - Although studies differ as to its influence, motor impairment is still the main diagnostic criterion in evaluating the driving ability of patients with Parkinson’s disease (PD). Recently, the discussion about “sleep attacks” and daytime sleepiness added a new criterion. With regard to these problems two major studies were performed: the “dPV-survey 2000” with an analysis of more than 6,000 questionnaires and almost 400 telephone interviews and a case-control study in the Wuerzburg driving simulator. The dPV-survey was a German-wide questionnaire and interview study. An excellent response rate of 63% (from about 12,000 mailed questionnaires) reflects an enormous need of PD sufferers for mobility. However, the study also yielded important results with regard to traffic safety. PD patients had a heightened culpability rate for accidents in which they were involved. In addition to disease severity, daytime sleepiness and sudden onset of sleep turned out to be risk factors for traffic accidents. The case-control study which was performed afterwards aimed at determining the impact of both motor impairment and daytime sleepiness on PD patients’ driving performance prospectively. In addition, special attention was put on the use and benefit of compensatory behavior. 24 PD patients were compared to 24 healthy controls (matched for age, sex and driving experience). PD patients were allocated to 3x2 subgroups, according to disease severity (Hoehn&Yahr stages 1-3) and daytime sleepiness (yes-no). Driving performance was measured during two trips in the simulator. Trip 1 provided a series of traffic situations with varying difficulty. Trip 2 was a monotonous night-time trip. To measure compensation in trip 1, a part of it was repeated under time pressure. In trip 2 compensation was operationalized by the option of taking breaks. In addition to these trips, a traditional battery of psychometric tests using the “Act-React-Test-System” (ART-2020) was performed to compare the results with those of the simulator. Analyses showed that PD patients committed significantly more driving errors than controls in trip 1 (with and without time pressure) - mainly due to bad lane keeping performance. However, only in easy sections of the trip were their impairments in lane keeping significantly associated with the Hoehn&Yahr stages. Under monotony an extreme decrease of lane keeping performance was evident for PD patients in the Hoehn&Yahr stage 3 and for PD patients with daytime sleepiness. Surprisingly, even patients with daytime sleepiness did not fall asleep more often than controls. A crucial result was that PD patients showed significantly more compensatory behavior than controls. In trip 1, time pressure caused the time taken to decrease and the number of mistakes to increase more for PD patients than for the control group. In trip 2, patients took advantage of the option to take a break significantly more often. In the ART-2020 tests, PD patients generally displayed lower response. However, in some of the tests it was not possible to decide whether this slowdown was due to cognitive or motor impairment. At large, patients seemed not to be cognitively impaired. Basically, the tests were much too difficult for all persons of this age group. When applying commonly used criteria as regards the failure of the battery, almost none would have passed - neither patients nor controls: Just one patient and two controls reached a percent rank of at least 16 in all parameters. By contrast, in trip 1 only five patients (two in Hoehn&Yahr stage 2, three in stage 3) and none of the controls displayed questionable driving ability. This discrepancy also indicates that the ability to compensate for impairments is an important moderator of the association between the performance in the tests and the actual driving performance. In general, both disease severity and daytime sleepiness had significant impacts on some parameters of driving performance, but were insufficient for predicting driving ability. As from Hoehn&Yahr stage 2 the ability to compensate for disease related impairments became important. Critically, this is not captured by classical psychometric tests. Therefore, future studies should put special emphasis on the diagnosis of this ability and possibilities of training it. KW - Fahreignung KW - Parkinson-Krankheit KW - Fahrtüchtigkeit KW - Fahrsimulation KW - Schlafattacken KW - Dopamin-Agonisten KW - Kompensation KW - driving fitness KW - driving simulation KW - sleep attacks KW - dopamine agonists KW - compensatory behavior Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-22505 ER - TY - THES A1 - Kaußner, Armin T1 - Dynamische Szenerien in der Fahrsimulation T1 - Dynamic scenarios for driving simulation N2 - In der Arbeit wird ein neues Konzept für Fahrsimulator-Datenbasen vorgestellt. Der Anwender entwirft eine auf seine Fragestellung zugeschnittene Datenbasis mithilfe einer einfachen Skriptsprache. Das Straßennetzwerk wird auf einer topologischen Ebene repäsentiert. In jedem Simulationsschritt wird hieraus im Sichtbarkeitsbereich des Fahrers die geometrische Repäsentation berechnet. Die für den Fahrer unsichtbaren Teile des Straßenetzwerks können während der Simulation verändert werden. Diese Veränderungen können von der Route des Fahrers oder von den in der Simulation erhobenen Messerten abhängen. Zudem kann der Anwender das Straßennetzwerk interaktiv verändern. Das vorgestellte Konzept bietet zahlreiche Möglichkeiten zur Erzeugung reproduzierbarer Szenarien für Experimente in Fahrsimulatoren. N2 - This work presents a new concept for driving simulator databases. Using a simple scripting language the user defines a database tailored for his experiment. The road network is represented in a topological way. Through this the geometrical representation is computed during the simulation in a small area surrounding the driver, including all that is visible for the driver. The parts of the road network that are not visible for the driver can be changed during simulation. This modification can depend on the route the driver takes or on measures available in the simulation. Moreover, the user can change the road network interactively. The presented concept offers various advantages for the design of reproducible scenarios in driving simulators. KW - Straßenverkehr KW - Simulation KW - Fahrsimulator KW - Fahrsimulation KW - Datenbasis KW - Straßennetzwerk KW - Szenariogenerierung KW - driving simulation KW - database KW - road network KW - scenario creation Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8286 ER -