TY - THES A1 - Meisner, Anke Karla T1 - Alpha-Dioxygenase aus Erbsen - Studien zu Expression und Enzym-Substrat-Interaktion T1 - alpha-Dioxygenase from Pea - Studies on Expression and Interaction of Enzyme and Substrate N2 - Das Enzym alpha-Dioxygenase (alpha-DOX) aus Erbsen (Pisum sativum) wurde mit folgenden Zielsetzungen untersucht: Isolierung und Charakterisierung der für die P. sativum alpha-DOX codierenden cDNA, Überproduktion der P. sativum alpha-DOX in Escherichia coli und nachfolgende Isolierung, Untersuchung der Interaktion der P. sativum alpha-DOX mit Fettsäuresubstraten sowie systematische Studie der Expression der P. sativum alpha-DOX während der Keimung und Entwicklung von Erbsenpflanzen. alpha-Dioxygenasen katalysieren in Pflanzen den Initialschritt der alpha-Oxidation von langkettigen Fettsäuren, die über die intermediäre Bildung von (R)-2-Hydroperoxyfettsäuren führt. Folgeprodukte dieser Reaktion sind die entsprechende (R)-2-Hydroxysäure sowie der um ein C-Atom kettenverkürzte Aldehyd. Es wurde die für die alpha-Dioxygenase aus Erbsen codierende cDNA mit einer Gesamtlänge von 2132 bp isoliert, die ein offenes Leseraster von 1929 bp beinhaltet. Sie codiert für ein Protein mit 643 Aminosäuren und einem errechneten Molekulargewicht von ca. 73 kD. Die Pisum sativum alpha-Dioxygenase wurde in E. coli als Fusionsprotein mit einem 6 x His-tag überproduziert und mittels Metallaffinitätschromatographie an Ni-NTA-Agarose isoliert. Studien zur Interaktion der P. sativum alpha-Dioxygenase mit Fettsäuresubstraten umfassten sowohl Versuche zu Anforderungen auf Seiten des Substrats als auch zu potentiellen Interaktionspartnern auf Seiten des Enzym. Es wurde gezeigt, dass für die Reaktion von alpha-Dioxygenasen mit Fettsäuren die freie Carboxylgruppe des Substrats unerlässlich ist. Aufgrund eines Aminosäuresequenzvergleichs zwischen der alpha-Dioxygenase aus Erbsen und PGHS-1 aus O. aries wurden vier Aminosäuren als potentielle Interaktionspartner auf Seiten der alpha-Dioxygenase aus Erbsen ausgewählt. Es handelte sich um die Arginin-Reste Arg-87, Arg-391, Arg-569 und Arg-570. Mit Hilfe der ortsspezifischen Mutagenese wurde gezeigt, dass der Aminosäurerest Arg-570 für die katalytische Aktivität unerlässlich ist. Die Expression der P. sativum alpha-Dioxygenase in keimenden Erbsen und jungen Erbsenpflanzen wurde sowohl in ihrem zeitlichen Verlauf als auch hinsichtlich der Gewebespezifität betrachtet. Die Ergebnisse zeigten, dass Keimung zu einer deutlichen Akkumulation von alpha-Dioxygenase mRNA in Erbsen führte. Auch alpha-Dioxygenase Protein war in großer Menge in keimenden und jungen Erbsenpflanzen vorhanden. Ausgeprägte Gewebespezifität war festzustellen: alpha-DOX mRNA fand sich fast ausschließlich in Wurzeln von Erbsenpflanzen, in Sprossgewebe dagegen war sie kaum vorhanden. Im Gegensatz dazu lag alpha-DOX Protein gleichermaßen in Spross- und in Wurzelgewebe vor. Parallel zur Reifung der Pflanzen nahm die Menge an alpha-DOX mRNA und Protein ab. Alpha-Dioxygenase-Aktivität war bereits in trockenen Samen detektierbar, während der Keimung nahm sie deutlich zu. Im Vergleich von Spross- und Wurzelgewebe war die Aktivität in Wurzeln höher, bezogen sowohl auf das Frischgewicht der Pflanzen als auch auf die Menge an Gesamtprotein (spezifische Aktivität). Die Untersuchungen an Wurzeln zeigten, dass die Aktivität bezogen auf das Frischgewicht der Pflanzen über den betrachteten Zeitraum kaum variierte, während die spezifische Aktivität mit zunehmendem Alter der Pflanzen kontinuierlich zunahm. Dieses Ergebnis deutet darauf hin, dass in Erbsen mehrere alpha-Dioxygenase-Isoenzyme vorhanden sind, so wie man dies für andere höhere Pflanzen bereits postuliert hat. Ein zellprotektiver Effekt von alpha-Dioxygenasen auf Pflanzen während der Interaktion mit Pathogenen ist bekannt. Möglicherweise ist dies auch der Grund für eine verstärkte Expression während der Keimung von Pflanzen. Die bevorzugte Expression in Wurzeln könnte auf eine Funktion als permanentes Schutzsystem gegen Infektion hindeuten. N2 - The enzyme alpha-dioxygenase (alpha-DOX) from pea (Pisum sativum) has been examined with the following objectives: isolation and characterisation of the cDNA encoding the P. sativum alpha-DOX, expression of the P. sativum alpha-DOX in Escherichia coli and subsequent isolation, analysis of the interaction between the P. sativum alpha-DOX and fatty acid substrates, and systematic study of the expression of the P. sativum alpha-DOX during germination and development of pea plants. alpha-Dioxygenases catalyse the initial step of the alpha-oxidation of long chain fatty acids in plants, which leads via the intermediary formation of a (R)-2-hydroperoxy fatty acid to the formation of the corresponding (R)-2-hydroxy fatty acid and the one C atom chain-shortened aldehyde. The cDNA encoding the alpha-Dioxygenase from pea cDNA was isolated (2132 bp), comprising an open reading frame (orf) of 1929 bp. This cDNA encodes a polypeptide of 643 amino acids with a calculated molecular mass of about 73 kD. The Pisum sativum alpha-dioxygenase was expressed in E. coli as a fusion protein with a 6 x His tag and isolated by means of metal affinity chromatography using Ni-NTA agarose. The studies on the interaction of the P. sativum alpha-dioxygenase with fatty acid substrates comprised experiments regarding the necessary prerequisites of substrates, as well as a study on amino acid residues as potential interaction partners with substrates. It was shown that the free carboxyl group of substrates is indispensable for the reaction of alpha-dioxygenases with fatty acids. On the basis of an alignment of the amino acid sequences of alpha-dioxygenase from pea and PGHS-1 from O. aries, four amino acid residues were selected as potential interaction partners in the pea alpha-dioxygenase. These were the arginine residues Arg-87, Arg-391, Arg-569 and Arg-570. By means of site-directed mutagenesis, the arginine residue Arg-570 was identified as being indispensable for the catalytic activity. The expression of the P. sativum alpha-dioxygenase in germinating pea seeds and young pea plants was examined. The time course of expression and the tissue specificity were investigated. Germination leads to a pronounced accumulation of alpha-dioxygenase mRNA in peas. Alpha-Dioxygenase protein is also present in a significant amount in germinating and young pea plants. A pronounced tissue specificity was observed: alpha-DOX mRNA was almost exclusively found in roots of pea plants, whereas in shoots only small amounts were detected. In contrast, alpha-DOX protein was equally detected in shoot and root tissue. Paralleling growth, the amount of alpha-DOX mRNA and protein decreased. Alpha-dioxygenase activity is already detectable in dry seeds, during germination it increases markedly. When comparing shoot and root tissue, the activity in roots was found to be higher with respect to the samples’ fresh weight as well as to the amount of total protein (specific activity). In roots the activity with respect to the samples’ fresh weight varied scarcely during the time observed, whereas the specific activity increased continuously with proceeding maturation of the plants. This result indicates that further alpha-dioxygenase isoenzymes exist in pea plants, as had been postulated earlier for other higher plants. It is known that alpha-dioxygenases exert a cell protective effect on plants during the interaction of plants with pathogens. Possibly this could be a reason for the enhanced expression during plant germination. The predominant expression in roots might indicate a function as a permanent protection system against infections. KW - Erbse KW - Keimling KW - Dioxygenasen KW - Fettsäuren KW - Enzymatische Oxidation KW - alpha-Dioxygenase KW - alpha-Oxidation KW - Expression KW - Keimung KW - Fettsäuremetabolismus KW - alpha-dioxygenase KW - alpha-oxidation KW - expression KW - germination KW - fatty acid metabolism Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14692 ER - TY - THES A1 - Thoma, Ingeborg T1 - Cyclopentenon-Phytoprostane als Induktoren von pflanzlichen Abwehrreaktionen T1 - Cyclopentenone phytoprostanes as inducers of plant defense reactions N2 - Lipidperoxidation kann entweder durch Lipoxygenasen oder reaktive Sauerstoffspezies ausgelöst werden. Enzymatische Oxidation von alpha-Linolensäure kann zur Biosynthese von zyklischen Oxylipinen vom Typ der Jasmonate führen, wohingegen durch freie Radikal-katalysierte Oxidation von alpha-Linolensäure mehrerere Klassen zyklischer Oxylipine, den Phytoprostanen entstehen können. Eine dieser Phytoprostanklassen, Phytoprostane E1 (PPE1), kommen ubiquitär in Pflanzen vor. In der vorliegenden Arbeit wird gezeigt, dass PPE1 in planta in neuartige Cyclopentenon-Phytoprostane, die PPA1 und PPB1 umgewandelt werden. Eine gesteigerte Bildung von PPE1, PPA1 und PPB1 wurde sowohl nach Peroxid-Behandlung von Tabak-Zellkulturen als auch nach Behandlung von Tomatenpflanzen mit dem nekrotrophen Pilz Botrytis cinerea beobachtet. Darüberhinaus besitzen PPA1 und PPB1 biologische Wirkung. Sie stimulierten beispielsweise die Bildung von Phytoalexinen in mehreren Zellkulturen. Diese Daten implizieren, dass die Bildung von Phytoprostanen eine Folge von oxidativem Stress in Pflanzen ist und dass Phytoprostane pflanzliche Abwehrmechanismen induzieren können. N2 - Lipid peroxidation may be initiated by lipoxygenases or by reactive oxygen species. Enzymatic axidation of alpha-linolenic acid can result in the biosynthesis of cyclic oxylipins of the jasmoate type while free-radical-catalyzed oxidation of alpha-linolenate may yield several classes of cyclic oxylipins termed phytoprostanes in vivo. One of these classes, the E1-phytoprostanes (PPE1) occur ubiquitously in plants. In this work it is shown that PPE1 are converted to novel cyclopentenone A1- and B1-phytoprostanes in planta. Enhanced formation of PPE1, PPA1 and PPB1 is observed after peroxide stress in tobacco cell cultures as well as after infection of tomato plants with a necrotrophic fungus botrytis cinerea. Furthermore PPA and PPB1 display powerfull biological activity, i.e. they stimulate biosynthesis of phytoalexins in several cell cultures. Data collected so far infer that enhanced phytoprostane formation is a general consequence of oxidative stress in plants. Futhermore phytoprostanes are potent inducers of plant defens mechanisms. KW - Pflanzen KW - Oxidativer Stress KW - Abwehrreaktion KW - Phytoprostane KW - Abwehr KW - Fettsäuren KW - Jasmonsäure KW - ROS KW - phytoprostanes KW - plant defense KW - fatty acid KW - jasmonic acid KW - ROS Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-6857 ER - TY - THES A1 - Weil, Kerstin T1 - 3-(R)-Hydroxysäuren als Produkte selektiven Fettsäureabbaus T1 - -(R)-hydroxy acids as products of a selective degradation of fatty acids N2 - In der vorliegenden Arbeit werden Studien zur selektiven bakteriellen Hydroxylierung von Fettsäuren vorgestellt. Unter Verwendung von Linolsäure als Substrat wurden aus Bodenproben verschiedene Mikroorganismen isoliert, die polare Metabolite bildeten. Die phänotypische und genotypische Charakterisierung eines Stammes führte zu dessen Identifizierung als Stenotrophomonas maltophilia. Die Strukturaufklärung der drei Hauptreaktionsprodukte erfolgte mittels Hochleistungsflüssigchromatographie-Massenspektrometrie (HPLC-MS), Gaschromatographie-Massenspektrometrie (GC-MS) sowie ein- und zweidimensionalen NMR-Experimenten (1H-NMR, 13C-NMR, 13C-DEPT, H/H-COSY, HMQC, HMBC). Linolsäure wurde von Stenotrophomonas maltophilia zu 3-Hydroxy-Z6-dodecensäure, 3-Hydroxy-Z5,Z8-tetradecadiensäure und 3-Hydroxy-Z7,Z10-hexadecadiensäure umgesetzt. In einem anschließenden Substratscreening wurden 32 Verbindungen als Edukte für die Biotransformation eingesetzt und so die strukturellen Voraussetzungen ermittelt, die für eine effiziente Umsetzung von Fettsäuren durch Stenotrophomonas maltophilia notwendig sind. Zum Einsatz kamen Substrate mit unterschiedlicher Anzahl an C-Atomen sowie mit Variationen bezüglich Anzahl, Position und Konformation von Doppelbindungen. Weiterhin wurden Substanzen verwendet, die bereits funktionelle Gruppen im Molekül aufwiesen (z. B. Ricinolsäure). Die Bestimmung der Enantiomerenverteilung der bakteriell gebildeten 3-Hydroxysäuren mittels multidimensionaler Gaschromatographie (MDGC) ergab einen deutlichen Enantiomerenüberschuss (ee 84 – 98 Prozent). Die Aufklärung der Absolutkonfiguration erfolgte über die Synthese von Dodecan-1,3-diolen und deren anschließende Analytik mittels MDGC. Zusätzlich wurde die Konfiguration mit Hilfe der CD Exciton Chirality-Methode bestimmt. Weiterhin wurde untersucht, ob die bakteriell gebildeten 3-Hydroxysäuren als Substrate oder Inhibitoren des Enzyms Lipoxygenase L-1 aus Sojabohnen fungieren. Die im Rahmen dieser Arbeit durchgeführten Studien zur Darstellung von optisch aktiven 3-Hydroxysäuren belegen das Potential des Bodenbakteriums Stenotrophomonas maltophilia, exogen zugeführte Fettsäuren im Rahmen der b-Oxidation zu kettenverkürzten, an Position 3 hydroxylierten Metaboliten abzubauen. Dabei liegen jedoch deutliche Abweichungen zur b-Oxidation in anderen Organismen vor, die auf Unterschieden in der Enzymausstattung bzw. deren Aktivität beruhen. Durch die gewonnenen Erkenntnisse zum b-Oxidationsmechanismus in Stenotrophomonas maltophilia kann diese Aktivität durch geeignete Substratauswahl gezielt zur Synthese von optisch aktiven 3-Hydroxysäuren eingesetzt werden, deren chemische Synthese gegenüber dieser Biotransformation deutlich schwieriger zu realisieren ist. Für solche Verbindungen besteht in der organischen Synthese von Naturstoffen wie Pheromonen, Vitaminen und Antibiotika Bedarf. N2 - The available work presents studies on the selective bacterial hydroxylation of fatty acids. In a screening procedure using linoleic acid as substrate different microorganisms were isolated from soil samples and tested for their ability to form polar products. The phenotypic and genotypic characterisation of one of these strains led to its identification as Stenotrophomonas maltophilia. Structure elucidation of the three major reaction products was carried out by high performance liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry as well as one and two-dimensional NMR experiments (1H-NMR, 13C-NMR, 13C-DEPT, H/H COSY, HMQC, HMBC). Linoleic acid was converted by Stenotrophomonas maltophilia 3-hydroxy-Z6-dodecenoic acid, 3-hydroxy-Z5,Z8-tetradecadienoic acid and 3-hydroxy-Z7,Z10-hexadecadienoic acid. In a following screening 32 compounds were used as substrates for the biotransformation to determine the structural prerequisites, which are necessary for an efficient conversion of fatty acids by Stenotrophomonas maltophilia. On the basis of the results obtained with linoleic acid further fatty acids with 18 carbon atoms differing in number, position and configuration of available double bonds were used. Further compounds with differing chain length as well as substrates already containing functional groups were employed. Determination of the enantiomeric composition of the bacterially formed 3-hydroxy-acids by multidimensional gas chromatography (MDGC) resulted in a clear dominance of one of the enantiomers (ee 84 - 98 Prozent). Assigning the absolute configuration was carried out by syntheses of dodecane-1,3-diols and their analysis by MDGC. In addition, the CD exciton chirality method was applied to determine the absolute configuration of eight biotransformation products with different structural properties such as number and position of available double bonds. Kinetic studies using lipoxygenase L-1 from soy beans showed that the bacterial products neither act as substrates nor as inhibitors of this enzyme. The studies regarding the synthesis of optically active 3-hydroxy acids, executed in the context of this work, demonstrated the potential of the soil bacterium Stenotrophomonas maltophilia, to degrade exogenously supplied fatty acids to chain-shortened hydroxylated metabolites by b-oxidation. Clear deviations to the b-oxidation in other organisms are present, which are based on differences in the enzyme equipment or their activity. Based on the achieved results concerning the mechanism of b-oxidation in Stenotrophomonas maltophilia this activity can be used for the synthesis of optically active 3-hydroxy acids whose chemical synthesis is more difficult in relation to this biotransformation. For such compounds requirement exists in the organic synthesis of natural substances such as pheromones, vitamins and antibiotics. KW - Bodenbakterien KW - Hydroxycarbonsäuren KW - Fettabbau KW - 3-(R)-Hydroxysäuren KW - Fettsäuren KW - Fettsäureabbau KW - beta-Oxidation KW - Biotransformation KW - Mikroorganismen KW - Stenotrophomonas maltophilia KW - 3-(R)-hydroxy acids KW - fatty acids KW - degradation of fatty acids KW - beta-oxidation KW - biotransformation KW - mikroorganisms KW - Stenotrophomonas maltophilia Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1181440 ER -