TY - THES A1 - Meyer, Kathrin T1 - Nanomaterialien als Fließregulierungsmittel T1 - Nanomaterials as glidants N2 - Die Fließeigenschaften von Pulvern spielen nicht nur in der pharmazeutischen Industrie, sondern auch in verschiedenen anderen Industriezweigen wie z.B. der Lebensmittelindustrie eine bedeutende Rolle. So werden Abfüllvorgänge durch schlechte Fließeigenschaften erschwert. Um die Fließeigenschaften zu verbessern werden Fließregulierungsmittel zugesetzt. Obwohl ihr Gebrauch weit verbreitet ist, ist über ihren Wirkungsmechanismus wenig bekannt. Deshalb sind im Rahmen dieser Arbeit 14 beliebige Nanomaterialien aus verschiedensten Einsatzgebieten auf ihre fließregulierende Wirkung hin untersucht und bewertet worden. Dafür wurden im Turbulamischer binäre Pulvermischungen hergestellt und mittels Zugspannungstester und Analyse von REM-Aufnahmen ausgewertet. Dabei zeigte sich, dass die Fähigkeit eines Stoffes, als Fließregulierungsmittel zu wirken, in erster Linie unabhängig von seiner chemischen Natur ist. Auch seine Primärpartikelgröße erweist sich zur Bestimmung der fließregulierenden Wirkung als nicht aussagekräftig. Vielmehr werden die Agglomerate eines Nanomaterials wie künstliche Rauigkeiten an die Oberfläche des Trägermaterials adsorbiert. Die Arbeitshypothese konnte dadurch bestätigt werden: Die Reduktion der Zugspannung ist allein von zwei Faktoren abhängig: von der Größe der Agglomerate des Nanomaterials und von der Dichte, mit der diese Agglomerate die Oberfläche des Trägermaterials belegen. Ein Fließregulierungsmittel ist um so potenter, je kleiner seine Agglomerate sind und je dichter sie auf dem Trägermaterial angeordnet werden können. Theoretisch kann den Ergebnissen zufolge ein „freifließender“ Wirkstoff mit einem identischen Wirkstoff in Nanogröße als Fließverbesserer hergestellt werden. Die Auswirkungen der Einflussfaktoren wie die spezifische Oberfläche, die Oberflächenbeschaffenheit, die chemisch-physikalischen Eigenschaften wie Hydrophobie / Hydrophilie, die elektrostatische Aufladbarkeit und die Struktur können wie folgt zusammengefasst werden: Sie bestimmen die innerhalb eines Agglomerats wirksamen Kräfte (Van-der-Waals-Kräfte, Wasserstoffbrückenbindungen, formschlüssige Bindungen). Können diese schnell überwunden werden, lassen sich die Agglomerate leicht zerkleinern. Somit belegen sie die Oberfläche des Trägers dicht und senken die Zugspannung dementsprechend stark ab. Da in hydrophoben Produkten keine Wasserstoffbrückenbindungen ausgebildet werden, sondern nur Van-der-Waals-Kräfte die Agglomerate aufbauen, setzen diese Produkte die Zugspannung insgesamt schneller und stärker herab als hydrophile Produkte. Es hat sich herausgestellt, dass der Mischvorgang neben der homogenen Verteilung des Nanomaterials zusätzlich eine Zerkleinerung der Agglomerate der hochdispersen Substanzen bewirkt. Dabei agieren die groben Trägerpartikel wie Kugeln in einer Kugelmühle, die hochdispersen Substanzen wie das zu zerkleinernde Gut. Daher steigt die Belegung des Trägermaterials während des Mischvorgangs an. Die Zugspannung sinkt. Nach Rumpf reduzieren Rauigkeiten die interpartikulären Haftkräfte.[1] Mit der vorliegenden Arbeit wird nachgewiesen, dass dieser Ansatz auch auf den Wirkmechanismus von Fließverbesserern übertragbar ist. Fließregulierungsmittel bewirken als künstliche Oberflächenrauigkeiten eine Verringerung der Kontaktfläche und eine Vergrößerung des Abstands zwischen zwei Partikeln. Dies führt zur Abnahme der Van-der-Waals-Kräfte. Der Versuch, die Wirkungsweise eines Fließverbesserers über den Kugellager-Effekt zu erklären, ist daher abzulehnen. Da der Ansatz von Rumpf mit einer Rauigkeit mittig im Kontaktbereich für reale Systeme nicht umfassend genug ist, konzentriert sich die vorliegende Arbeit besonders auf die tatsächliche Dichte der Belegung des Trägermaterials mit fließregulierenden Partikeln. Rechnerisch kann mit dem 3-Rauigkeiten-Modell begründet werden, warum die Belegungsdichte von besonderer Bedeutung ist. Literatur: [1] H. Rumpf, Chemie-Ingenieur-Technik 1974, 1, 1-11 N2 - The flowability of powders plays an important role not only in the pharmaceutical industry, but also in various other industrial branches like the food-processing industry. Especially filling processes are rendered difficult by poor flow properties of powders. In order to improve them flow conditioners are added. Despite of their wide use only little is known about the mechanism of action of flow conditioners. Therefore in the context of this work 14 randomly chosen nanomaterials from different fields of application have been tested and evaluated according to their improvement of flow properties. In order to do so, binary powder mixtures were produced in a turbula mixer and evaluated by means of a tensile strength tester and the analysis of scanning electron micrographs. It has been shown that the ability of a material to act as a flow conditioner does not primarily depend on its chemical nature. Also its primary particle size does not offer relevant information for determining the effectiveness of a glidant. In fact the agglomerates of a nanomaterial are adsorbed on the surface of the carrier like artificial roughness. The working hypothesis could thus be validated: The reduction of tensile strength only depends on two factors: the size of the agglomerates of the nanomaterial and the density with which these agglomerates cover the surface of the carrier. A glidant is the more potent, the smaller its agglomerates are and the denser they cover the carrier. According to these results theoretically a “free flowing” active ingredient could be produced with the identical nano-sized active ingredient as a flow agent. The effects of the influencing factors like the specific surface, the surface properties, the chemical-physical properties like hydrophobia / hydrophilia, the electrostatic rechargability and the structure can be summarized as follows: they determine the forces within an agglomerate (Van-der-Waals-forces, hydrogen bonds, form-fitting bonds). If those can be overcome quickly the agglomerates can be broken up easily. Consequently they cover the surface of the carrier densely and correspondingly they reduce the tensile strength significantly. As no hydrogen bonds are formed in hydrophobic products, only Van-der-Waals-forces build up the agglomerates. On the whole these products lower the tensile strength faster than the hydrophilic products. It has been shown that the process of blending causes not only the homogeneous distribution of the nanomaterial, but also the breaking up of the agglomerates of the highly dispersive substances. Here the coarse carrier particles act like balls in a ball mill. The coverage of the carrier therefore rises during the blending process. The tensile strength decreases. According to Rumpf roughness reduces the interparticular forces.[1] In this work it will be demonstrated that this approach can also be transferred to the mechanism of glidants. Glidants acting as an artificial surface roughness cause a reduction of the contact area and an increase in the distance between two particles. This leads to a decrease of the Van-der-Waals-forces. The attempt to explain the mechanism of action of a flow conditioner by means of the ball bearing effect therefore has to be rejected. As Rumpf‘s concept of one roughness in the centre of the contact area of two particles is not extensive enough for real systems, this work focuses on the actual coverage density of the carrier with glidant’s particles. By means of the 3-roughness-model it could be demonstrated arithmetically why the density coverage is very important. Literatur: [1] H. Rumpf, Chemie-Ingenieur-Technik 1974, 1, 1-11 KW - Nanostrukturiertes Material KW - Fließverhalten KW - Fließregulierungsmittel KW - Fließeigenschaften KW - Maisstärke KW - interpartikuläre Haftkräfte KW - Zugpannung KW - glidants KW - flow properties KW - corn starch KW - interparticular forces KW - tensile strengths Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5594 ER - TY - THES A1 - Kretzler, Kai T1 - Eine neue Methode zur Bestimmung der Fließeigenschaften von Schüttgütern T1 - A new approach to characterize powder flow properties N2 - Die Fließeigenschaften von Schüttgütern spielen in vielen Industriezweigen eine entscheidende Rolle. Dies gilt speziell für die pharmazeutischen Industrie wo sie als Anfangs-, Zwischen- und Endprodukt vorkommen. Dort werden sie meist in Silos gelagert und müssen so durch Röhrensysteme fließen um verarbeitet zu werden. Dabei tritt das Problem der Brückenbildung häufig auf. Der Auslauftrichter stellt eine neue Methode dar, die Fließeigenschaften und speziell die Brückenbildung von Pulvern zu untersuchen. Das zu untersuchende Pulver wird in einen verschließbaren Trichter ohne angesetztes Rohr eingefüllt. Nach der Öffnung des Verschlusses fließt ein kohäsives Pulver wegen der Brückenbildung nicht aus dem Trichter. Dabei bestimmen die interpartikulären Kräfte die Stärke und die Dimensionen der Brücke. Es wird daher angenommen, dass eine Messung der zur Zerstörung der Brücken notwendigen Kräfte Rückschlüsse auf den Ort der Brückenbildung und der Fließeigenschaften des Schüttgutes erlaubt. Die Untersuchung der Brückenbildung mit dem modifizierten Auslauftrichter zeigte, dass die Brücken, die den Pulverfluss behindern, nur im unteren Viertel des Trichters auftreten. Diese Brücken können durch ein spezielles Rührwerkzeug zerstört werden und damit ein Pulver zum Ausfließen bringen. Die Messung des notwendigen Drehmoments lässt Rückschlüsse auf die Kohäsion des Pulvers zu. Während der Messung korrelieren der Drehmoment-Anstieg und -Abfall mit dem pulsierenden Ausflussverhalten der Pulver. Auch sehr langsame Rotationsgeschwindigkeiten können ein Pulver zum Ausfließen bringen. In einem Bereich von 0,5 bis 3 U/min ist ein fast linearer Zusammenhang zwischen Rotationsgeschwindigkeit und Ausflusszeit zu beobachten. Eine weitere Zunahme der Rotationsgeschwindigkeit führt aber nicht zu einer weiteren Verkürzung der Ausflusszeiten. Nach einer mathematischen Aufbereitung der Messkurven bei 10 bis 20 U/min konnte eine Korrelation zwischen der Umdrehungsgeschwindigkeit und dem Drehmoment gefunden werden. Ein bereits entwickelter Auslauftrichter war jedoch nicht in der Lage neue und für diese Arbeit relevante Fragen zu beantworten, da die Messtechnik und die Auflösung der Messsignale unzureichend war. Daher wurden zunächst einige technische Veränderungen vorgenommen. Am Ende jedoch musste der Auslauftrichter komplett neu aufgebaut werden. Um leichter reproduzierbare Ergebnisse zu erhalten war es notwendig die Messungen unter klimatisierten Bedingungen (relative Feuchte und Temperatur) durchzuführen. Speziell die Feuchtigkeit hat einen entscheidenden Einfluss auf das Ausflussverhalten. Es wurde überprüft, ob die Rotationsgeschwindigkeit einen Einfluss auf das maximale Drehmoment zur Brückenzerstörung hat. Versuche zeigten jedoch, dass ein derartiger Zusammenhang nicht besteht. Das lawinenartige Fließen des Pulvers bei langsamen Rotationsgeschwindigkeiten warf die Frage auf, ob die Höhe der Massepeaks vom Rührwerkzeug abhängt. Ein Experiment konnte jedoch zeigen, dass ein derartiger Zusammenhang nicht besteht, wenn die Rührer eine Mindestgröße besitzen. Bis zu dieser Höhe ist die entleerte Masse proportional zum Volumen welches der Rührer als Rotationskörper besitzt. Es wird daher angenommen, dass diese Höhe mit der Brückenbildungszone identisch ist. Abschießend sollte untersucht werden, wo genau und wie stark die Brücken sind. Nach dem mathematisch physikalischen Zusammenhang, der anhand einer idealviskosen Flüssigkeit überprüft wurde, ergibt sich eine Abhängigkeit des Drehmoments von der dritten Potenz der Länge der Rührelemente. In Bezug auf diesen Zusammenhang wurden die Ergebnisse der Messungen von Starch® 1500 und als weitere Substanz Prosolv® SMCC 50 untersucht. Betrachtet man hierbei die Drehmomentmaxima so ist der relative Anstieg des Drehmomentes in der Brückenzone am größten. Pulver oberhalb der Brückenzone zeigt dabei das Verhalten einer idealviskosen Flüssigkeit. N2 - Powder flow properties are very important for many industries. Especially in pharmaceutical technology where powders are used as starting, intermediate and final products. They are mostly stored in hoppers and have to flow through funnels or tubes when processed. In this case arching is the problem occurring most often. The outflow-funnel is a new method of examining powder flow properties and especially arching. The powder to be characterised is filled into a funnel with a closable outlet which has no attached tube. Owing to arching a cohesive powder will not flow out after opening the funnel. The interparticular forces determine the strength and the thickness of the arches. Therefore it is assumed that measuring the forces needed to destroy these structures should allow for a simple characterisation of the height of the arches as well as the flow properties of powders. The examination of arching with the outflow-funnel showed, that the arches, which inhibit the flow of powder, occur at the lower quarter of the funnel only. These arches can be destroyed by a special stirrer which allows the powder to flow out of the funnel. Measuring the necessary forces (torque) leads to information about the cohesion of the powder. During measuring increasing and later decreasing forces correlate with a pulsating flow of the powder out of the funnel. Even a very slow rotating stirrer is able to bring the powder to flow. At a range of 0.5 to 3 rpm an almost linear connection between rotation speed and time of outflow occurs. But a further increase of rotation speed must not lead to a shorter time of outflow. With a mathematical transformation of the resulting curves a correlation between torque and forced flow was shown at a rotation speed between 10 and 20 rpm. An afore investigated outflow funnel could not be used to answer the new and different questions of this work because it had several limitations as regards measuring techniques. Therefore some technical modifications were necessary at the beginning of the work. At last the outflow funnel had to be completely reconstructed. The ability to measure under humidity and temperature conditioned atmosphere was key to get results which can be reproduced easily. Especially humidity has a substantial influence on flow behaviour. The question was investigated, if the rotation speed has an influence on the maximum torque needed to destroy the arches. Experiments showed, that no such connection exists. The flow like an avalanche of the powder at slow rotation speeds brought up the question if the height of the mass peaks depends on the art of the stirrer. An experiment showed, that there is no difference in the mass peaks when the stirrers exceed a definite height. Up to this critical height the mass of powder that leaves the funnel is proportional to the volume of the stirrer considered as a rotation body which seems to corroborate the fact that this zone is identical with the zone of arching. The last question to answer was where exactly the arches build up and how strong they are. As to the mathematical and physical context, which was proved with a liquid of ideal viscosity, a dependence of the torque, on the third power of the length of the stirrer bars, was found. Referring to this connection, the results of measuring Starch® 1500 and Prosolv® SMCC 50, as an additional other substance, were evaluated. Looking at the torque maximums the relative increase of torque in the zone of arching was greater than elsewhere. Powder above the zone of arching behaves like a liquid of ideal viscosity. KW - Schüttgut KW - Pulver KW - Fließverhalten KW - Trichter KW - Messung KW - Pharmazeutische Technologie KW - Brückenbildung KW - Auslauftrichter KW - Fließeigenschaften KW - Schüttgüter KW - Pulver KW - Kohäsion KW - arching KW - outflow funnel KW - flow properies KW - powder KW - cohesion KW - bridge Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1182028 ER -