TY - THES A1 - Krebs, Roland T1 - Herstellung und Charakterisierung von kanten- und vertikalemittierenden (Ga)InAs/Ga(In)As-Quantenpunkt(laser)strukturen T1 - Fabrication and Characterization of edge and vertical emitting (Ga)InAs/Ga(In)As quantum dot (laser) structures N2 - Im Vergleich zu Quantenfilmlasern haben Quantenpunktlaser (unter anderem) die Vorteile, dass kleinere Schwellenströme zu erreichen sind und die Emissionswellenlänge über einen größeren Bereich abgestimmt werden kann, da diese aufgrund der Größenfluktuation im Quantenpunktensemble über ein breites Verstärkungsspektrum verfügen. Ziel des ersten Teils der Arbeit war es, monomodige 1.3 µm Quantenpunktlaser für Telekommunikationsanwendungen herzustellen und deren Eigenschaften zu optimieren. Es wurden sechs Quantenpunktschichten als aktive Zone in Laserstrukturen mit verbreitertem Wellenleiter eingebettet. Eine Messung der optischen Verstärkung einer solchen Laserstruktur mit sechs Quantenpunktschichten ergab einen Wert von 16.6 1/cm (für den Grundzustandsübergang) bei einer Stromdichte von 850 A/cm^2. Dadurch ist Laserbetrieb auf dem Grundzustand bis zu einer Resonatorlänge von 0.8 mm möglich. Für eine Laserstruktur mit sechs asymmetrischen DWELL-Schichten und optimierten Wachstumsparametern ergab sich eine Transparenzstromdichte von etwa 20 A/cm^2 pro Quantenpunktschicht und eine interne Quanteneffizienz von 0.47 bei einer internen Absorption von 1.0 1/cm. Aus den Laserproben wurden außerdem Stegwellenleiterlaser hergestellt. Mit einem 0.8 mm x 4 µm großen Bauteil konnte im gepulsten Betrieb Laseroszillation bis zu einer Rekordtemperatur von 156 °C gezeigt werden. 400 µm x 4 µm große Bauteile mit hochreflektierenden Spiegelvergütungen wiesen im Dauerstrichbetrieb Schwellenströme um 6 mA und externe Quanteneffizienzen an der Frontfacette von 0.23 W/A auf. Für Telekommunikationsanwendungen werden Bauteile benötigt, die lateral und longitudinal monomodig emittieren. Bei kantenemittierenden Lasern kann dies durch das DFB-Prinzip (DFB: distributed feedback) erreicht werden. Im Rahmen dieser Arbeit wurden die weltweit ersten DFB-Laser auf der Basis von 1.3 µm Quantenpunktlaserstrukturen hergestellt. Dazu wurden lateral zu den Stegen durch Elektronenstrahllithographie Metallgitter definiert, die durch Absorption die Modenselektion bewirken. Dank des etwa 100 nm breiten Verstärkungsspektrums der Laserstrukturen konnte eine Verstimmung der Emissionswellenlänge über einen Wellenlängenbereich von 80 nm ohne signifikante Verschlechterung der Bauteildaten erzielt werden. Anhand der 0.8 mm langen Bauteile wurden die weltweit ersten ochfrequenzmessungen an Lasern dieser Art durchgeführt. Für Quantenpunktlaser sind theoretisch aufgrund der hohen differentiellen Verstärkung kleine statische Linienbreiten und ein kleiner Chirp zu erwarten. Dies zeigte sich auch im Experiment. Der zweite Teil der Arbeit befasst sich mit vertikal emittierenden Quantenpunktstrukturen. Ziel dieses Teils der Arbeit war es, Quantenpunkt-VCSEL mit dotierten Spiegeln zunächst im Wellenlängenbereich um 1 µm herzustellen und auf dieser Basis die Realisierbarkeit von 1.3 µm Quantenpunkt-VCSELn zu untersuchen. Zunächst wurden undotierte Mikroresonatorstrukturen für Grundlagenuntersuchungen hergestellt, um die Qualität der Spiegelschichten zu testen und zu optimieren. Diese Strukturen bestanden aus 23.5 Perioden von Spiegelschichten aus AlAs und GaAs im unteren DBR (DBR: Distributed Bragg Reflector), einer lambda-dicken Kavität aus GaAs mit einer Quantenpunktschicht im Zentrum und einem oberen DBR mit 20 Perioden. Es konnten Resonatoren mit sehr hohen Güten über 8000 realisiert werden. Für die weiteren Arbeiten hinsichtlich der Herstellung von Quantenpunkt-VCSEL-Strukturen haben die Untersuchungen an den Mikroresonatorstrukturen gezeigt, dass es an der verwendeten MBE-Anlage möglich ist, qualitativ sehr hochwertige Spiegelstrukturen herzustellen. Aufbauend auf den Ergebnissen, die aus der Herstellung und Charakterisierung der Mikroresonatorstrukturen gewonnen worden waren, wurden nun Quantenpunkt-VCSEL-Strukturen hergestellt. Es wurden Strukturen mit 17.5 Perioden im unteren und 21 Perioden im oberen DBR sowie mit 20.5 Perioden im unteren und 30 Perioden im oberen DBR hergestellt. Erwartungsgemäß zeigten die VCSEL mit der höheren Spiegelanzahl auch die besseren Bauteildaten. Um VCSEL auch im Dauerstrich betreiben zu können, wurden Bauteile mit Oxidapertur hergestellt. Dazu wurden bei 30 µm großen Mesen die beiden Aperturschichten aus AlAs auf beiden Seiten der Kavität zur Strompfadbegrenzung bis auf 6 µm einoxidiert. Es konnte gezeigt werden, dass die Realisierung von Quantenpunkt-VCSELn im Wellenlängenbereich um 1 µm mit komplett dotierten Spiegeln ohne größere Abstriche bei den Bauteildaten möglich ist. Bei der Realisierung von 1.3 µm Quantenpunkt-VCSELn mit dotierten Spiegeln bereitet die im Vergleich zu den Absorptionsverlusten geringe optische Verstärkung Probleme. N2 - In comparison to quantum well lasers, quantum dot lasers provide (among others) the advantages that lower threshold currents are achievable and that the emission wavelength can be tuned over a larger range because the gain spectrum is wider due to the inhomogeneous broadening of the size distribution. The first part of the thesis deals with the theoretical basics and the preliminary investigations which were done before the fabrication of 1.3 µm quantum dot lasers as well as the characteristics of these lasers. The objective of this part of the thesis was the fabrication of single mode 1.3 µm quantum dot lasers for telecommunication applications and the optimization of their properties. Six quantum dot layers were included in the active region of a laser structure with a large optical cavity. The measurement of the optical gain of such a laser structure with six quantum dot layers yielded a value of 16.6 1/cm (for the ground state transition) at a current density of 850 A/cm^2. Thus, laser operation on the ground state is possible down to a cavity length of 0.8 mm. For a laser structure with six asymmetric DWELL layers and optimized growth parameters, a transparency current density of about 20 A/cm^2 per quantum dot layer and an internal quantum efficiency of 0.47 at an internal absorption as low as 1.0 1/cm could be obtained. Based on the laser structures ridge waveguide lasers were processed. With a 0.8 mm x 4 µm large device, laser operation in pulsed mode until 156 °C could be demonstrated. 400 µm x 4 µm large devices with highly reflective mirror coatings operated in continuous wave mode showed threshold currents as low as 6 mA and external quantum efficiencies at the front facet of 0.23 W/A. With these devices continuous wave operation up to 80 °C at an output power above 1 mW is possible. For telecommunication applications devices are needed that show lateral and longitudinal single mode emission. In the case of edge emitting lasers this can be realized with the DFB principle (DFB: distributed feedback). In the scope of this thesis the worldwide first DFB lasers on 1.3 µm quantum dot laser structures were fabricated. During the process, metal gratings lateral to the ridges were defined by electron beam lithography which cause the mode selection by absorption. Due to the 100 nm broad gain spectrum of the laser structures, the emission wavelength could be tuned over a range of about 80 nm without a significant degradation of the device properties. With 0.8 mm long DFB lasers the worldwide first high frequency measurements on lasers of this kind were performed. For quantum dot lasers one theoretically expects a small static linewidth and a small chirp because of the high differential gain. This was confirmed by the experiment. The second part of the thesis deals with vertical cavity surface emitting quantum dot structures. The main objective of this part of the thesis was to fabricate quantum dot VCSELs with doped mirrors in wavelength range around 1 µm and to examine on this basis the realizability of 1.3 µm quantum dot VCSELs. At first, undoped microresonator structures for fundamental studies were fabricated in order to test and to optimize the quality of the mirror layers. These structures consisted of 23.5 periods of AlAs and GaAs mirror layers in the lower DBR (DBR: Distributed Bragg Reflector), a lambda thick GaAs cavity with a single quantum dot layer in the center and an upper DBR with 20 periods. Resonators with high quality factors well above 8000 could be realized. For the further workings concerning the fabrication of quantum dot VCSEL structures the investigations on the microresonator samples have shown that with the MBE system used it is possible to fabricate high quality mirror structures. Based on the results from the fabrication and characterization of the microresonator structures, quantum dot VCSEL structures were fabricated. The VCSEL structures were designed as bottom emitters, which means that they emit from the substrate side. This design permits the epi-side down mounting of the samples on a heat sink. Samples with 17.5 periods in the lower and 21 periods in the upper DBR as well as samples with 20.5 periods in the lower and 30 periods in the upper DBR were fabricated. To be able to operate the VCSELs in continuous wave mode, devices with oxide aperture were processed. For that purpose, on 30 µm pillars both aperture layers consisting of AlAs adjacent to the cavity were oxidized down to a diameter of 6 µm to confine the current path. It could be demonstrated that the realization of quantum dot VCSELs in the 1 µm wavelength range with doped mirrors is possible without having to accept a trade-off as to the device performance. When trying to realize 1.3 µm quantum dot VCSELs with doped mirrors one runs into problems with the optical gain which is rather low as compared to the absorption losses. KW - Drei-Fünf-Halbleiter KW - Halbleiterlaser KW - Halbleiterlaser KW - GaAs KW - Quantenpunkte KW - VCSEL KW - DFB-Laser KW - semiconductor lasers KW - GaAs KW - quantum dots KW - VCSEL KW - DFB laser Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11328 ER - TY - THES A1 - Möller, Carsten T1 - Vertikal emittierende Sendedioden auf GaAs-Basis für den nahen Infrarotbereich T1 - Vertical light emitting devices based on GaAs for the near infrared wavelength region N2 - Design und Implementierung überragender vertikaler Sendedioden sowie Tunnelkontakte auf GaAs-Basis. N2 - Design and implementation of record vertical light emitting devices and tunnel junctions based on GaAs. KW - Vertikalresonator KW - Galliumarsenid KW - GaAs KW - Sendedioden KW - vertikal KW - GaAs KW - point emitters KW - vertical Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16728 ER - TY - THES A1 - Pfenning, Andreas Theo T1 - Optoelektronische Transportspektroskopie an Resonanztunneldioden-Fotodetektoren T1 - Optoelectronic Transport Spectroscopy on Resonant Tunneling Diode Photodetectors N2 - Die vorliegende Arbeit beschäftigt sich mit optoelektronischer Transportspektroskopie verschiedener Resonanztunneldioden (RTDs). Die Arbeit ist thematisch in zwei Schwerpunktee untergliedert. Im ersten Schwerpunkt werden anhand GaAs-basierter RTD-Fotosensoren für den Telekommunikationswellenlängenbereich um 1,3 µm die Akkumulationsdynamiken photogenerierter Minoritätsladungsträger und deren Wirkung auf den RTD-Tunnelstrom untersucht. Im zweiten Schwerpunkt werden GaSb-basierte Al(As)Sb/GaSb-Doppelbarrieren-Quantentrog-RTDs in Hinblick auf ihren Raumtemperaturbetrieb entwickelt und erforscht. Diese legen den Grundstein für die spätere Realisation von RTD-Fotodetektoren im mittleren infraroten (MIR) Spektralbereich. Im Folgenden ist eine kurze inhaltliche Zusammenfassung der einzelnen Kapitel gegeben. Kapitel 1 leitet vor dem Hintergrund eines stark steigenden Bedarfs an verlässlichen und sensitiven Fotodetektoren für Telekommunikationsanwendungen sowie für die optische Molekül- und Gasspektroskopie in das übergeordnete Thema der RTD-Fotodetektoren ein. Kapitel 2 erläutert ausgewählte physikalische und technische Grundlagen zu RTD-Fotodetektoren. Ausgehend von einem kurzem Überblick zu RTDs, werden aktuelle Anwendungsgebiete aufgezeigt und die physikalischen Grundlagen elektrischen Transports in RTDs diskutiert. Anschließend werden Grundlagen, Definitionen und charakteristische Kenngrößen optischer Detektoren und Sensoren definiert. Abschließend werden die physikalischen Grundlagen zum Fotostrom in RTDs beschrieben. In Kapitel 3 RTD-Fotosensor zur Lichtdetektion bei 1,3 µm werden AlGaAs/GaAs-Doppelbarrieren-Quantentrog-Resonanztunneldioden (DBQW-RTDs) mit gitterangepasster, quaternärer GaInNAs-Absorptionsschicht als Raumtemperatur-Fotodetektoren für den nahen infraroten (NIR) Spektralbereich bei der Telekommunikationswellenlänge von λ=1,3 µm untersucht. RTDs sind photosensitive Halbleiterbauteile, die innerhalb der vergangenen Jahre aufgrund ihrer hohen Fotosensitivität und Fähigkeit selbst einzelne Photonen zu detektieren, ein beachtliches Interesse geweckt haben. Die RTD-Fotosensitivität basiert auf einer Coulomb-Wechselwirkung photogenerierter und akkumulierter Ladungsträger. Diese verändern das lokale elektrostatische Potential und steuern so einen empfindlichen Resonanztunnelstrom. Die Kenntnis der zugrundeliegenden physikalischen Parameter und deren Spannungsabhängigkeit ist essentiell, um optimale Arbeitspunkte und Bauelementdesigns zu identifizieren. Unterkapitel 3.1 gibt einen Überblick über das Probendesign der untersuchten RTD-Fotodetektoren, deren Fabrikationsprozess sowie eine Erläuterung des Fotodetektionsmechanismus. Über Tieftemperatur-Elektrolumineszenz-Spektroskopie wird die effektive RTD-Quantentrog-Breite zu d_DBQW≃3,4 nm bestimmt. Die Quantisierungsenergien der Elektron- und Schwerloch-Grundzustände ergeben sich zu E_Γ1≈144 meV und E_hh1≈39 meV. Abschließend wird der in der Arbeit verwendeten Messaufbau skizziert. In Unterkapitel 3.2 werden die physikalischen Parameter, die die RTD-Fotosensitivität bestimmen, auf ihre Spannungsabhängigkeit untersucht. Die Fotostrom-Spannungs-Kennlinie des RTD-Fotodetektors ist nichtlinear und über drei spannungsabhängige Parametern gegeben: der RTD-Quanteneffizienz η(V), der mittleren Lebensdauer photogenerierter und akkumulierter Minoritätsladungsträger (Löcher) τ(V) und der RTD-I(V)-Kennlinie im Dunkeln I_dark (V). Die RTD Quanteneffizienz η(V) kann über eine Gaußsche-Fehlerfunktion modelliert werden, welche beschreibt, dass Lochakkumulation erst nach Überschreiten einer Schwellspannung stattfindet. Die mittlere Lebensdauer τ(V) fällt exponentiell mit zunehmender Spannung V ab. Über einen Vergleich mit thermisch limitierten Lebensdauern in Quantentrögen können Leitungsband- und Valenzband-Offset zu Q_C \≈0,55 und Q_V≈0,45 abgeschätzt werden. Basierend auf diesen Ergebnissen wird ein Modell für die Fotostrom-Spannungs-Kennlinie erstellt, das eine elementare Grundlage für die Charakterisierung von RTD-Photodetektoren bildet. In Unterkapitel 3.3 werden die physikalischen Parameter, die die RTD-Fotosensitivität beschränken, detailliert auf ihre Abhängigkeit gegenüber der einfallenden Lichtleistung untersucht. Nur für kleine Lichtleistungen wird eine konstante Sensitivität von S_I=5,82×〖10〗^3 A W-1 beobachtet, was einem Multiplikationsfaktor von M=3,30×〖10〗^5 entspricht. Für steigende Lichtleistungen fällt die Sensitivität um mehrere Größenordnungen ab. Die abfallende, nichtkonstante Sensitivität ist maßgeblich einer Reduktion der mittleren Lebensdauer τ zuzuschreiben, die mit steigender Lochpopulation exponentiell abfällt. In Kombination mit den Ergebnissen aus Unterkapitel 3.2 wird ein Modell der RTD-Fotosensitivität vorgestellt, das die Grundlage einer Charakterisierung von RTD-Fotodetektoren bildet. Die Ergebnisse können genutzt werden, um die kritische Lichtleistung zu bestimmen, bis zu der der RTD-Fotodetektor mit konstanter Sensitivität betrieben werden kann, oder um den idealen Arbeitspunkt für eine minimale rauschäquivalente Leistung (NEP) zu identifizieren. Dieser liegt für eine durch theoretisches Schrotrauschen limitierte RTD bei einem Wert von NEP=1,41×〖10〗^(-16) W Hz-1/2 bei V=1,5 V. In Kapitel 4 GaSb-basierte Doppelbarrieren-RTDs werden unterschiedliche Al(As)Sb/GaSb-DBQW-RTDs auf ihre elektrische Transporteigenschaften untersucht und erstmalig resonantes Tunneln von Elektronen bei Raumtemperatur in solchen Resonanztunnelstrukturen demonstriert. Unterkapitel 4.1 beschreibt den Wachstums- und der Fabrikationsprozess der untersuchten AlAsSb/GaSb-DBQW-RTDs. In Unterkapitel 4.2 wird Elektronentransport durch eine AlSb/GaSb-DBQW-Resonanztunnelstruktur untersucht. Bei einer Temperatur von T=4,2 K konnte resonantes Tunneln mit bisher unerreicht hohen Resonanz-zu-Talstrom-Verhältnisse von PVCR=20,4 beobachtet werden. Dies wird auf die exzellente Qualität des Halbleiterkristallwachstums und des Fabrikationsprozesses zurückgeführt. Resonantes Tunneln bei Raumtemperatur konnte hingegen nicht beobachtet werden. Dies wird einer Besonderheit des Halbleiters GaSb zugeschrieben, welche dafür sorgt, dass bei Raumtemperatur die Mehrheit der Elektronen Zustände am L-Punkt anstelle des Γ Punktes besetzt. Resonantes Tunneln über den klassischen Γ Γ Γ-Tunnelpfad ist so unterbunden. In Unterkapitel 4.3 werden die elektrischen Transporteigenschaften von AlAsSb/GaSb DBQW RTDs mit pseudomorph gewachsenen ternären Vorquantentopfemittern untersucht. Der primäre Zweck der Vorquantentopfstrukturen liegt in der Erhöhung der Energieseparation zwischen Γ- und L-Punkt. So kann Elektronentransport über L- Kanäle unterdrückt und Elektronenzustände am Γ-Punkt wiederbevölkert werden. Zudem ist bei genügend tiefen Vorquantentopfstrukturen aufgrund von Quantisierungseffekten eine Verbesserung der RTD-Transporteigenschaften möglich. Strukturen ohne Vorquantentopf-Emitter zeigen ein Tieftemperatur- (T=77 K) Resonanz-zu-Talstrom-Verhältnis von PVCR=8,2, während bei Raumtemperatur kein resonantes Tunneln beobachtet werden kann. Die Integration von Ga0,84In0,16Sb- beziehungsweise GaAs0,05Sb0,95-Vorquantentopfstrukturen führt zu resonantem Tunneln bei Raumtemperatur mit Resonanz-zu-Talstrom-Verhältnissen von PVCR=1,45 und 1,36. In Unterkapitel 4.4 wird die Abhängigkeit der elektrischen Transporteigenschaften von AlAsSb/GaSb RTDs vom As-Stoffmengenanteil des GaAsSb-Emitter-Vorquantentopfs und der AlAsSb-Tunnelbarriere untersucht. Eine Erhöhung der As-Stoffmengenkonzentration führt zu einem erhöhten Raumtemperatur-PVCR mit Werten von bis zu 2,36 bei gleichzeitig reduziertem Tieftemperatur-PVCR. Das reduzierte Tieftemperatur-Transportvermögen wird auf eine mit steigendem As-Stoffmengenanteil zunehmend degradierende Kristallqualität zurückgeführt. In Kapitel 5 AlAsSb/GaSb-RTD-Fotosensoren zur MIR-Lichtdetektion werden erstmalig RTD-Fotodetektoren für den MIR-Spektralbereich vorgestellt und auf ihre optoelektronischen Transporteigenschaften hin untersucht. Zudem wird erstmalig ein p-dotierter RTD-Fotodetektor demonstriert. In Unterkapitel 5.1 wird das Probendesign GaSb-basierter RTD-Fotodetektoren für den mittleren infraroten Spektralbereich vorgestellt. Im Speziellen werden Strukturen mit umgekehrter Ladungsträgerpolarität (p- statt n-Dotierung, Löcher als Majoritätsladungsträger) vorgestellt. In Unterkapitel 5.2 werden die optischen Eigenschaften der gitterangepassten quaternären GaInAsSb-Absorptionsschicht mittels Fourier-Transformations-Infrarot-Spektroskopie untersucht. Über das Photolumineszenz-Spektrum wird die Bandlückenenergie zu E_Gap≅(447±5) meV bestimmt. Das entspricht einer Grenzwellenlänge von λ_G≅(2,77±0,04) µm. Aus dem niederenergetischen monoexponentiellem Abfall der Linienform wird eine Urbach-Energie von E_U=10 meV bestimmt. Der hochenergetische Abfall folgt der Boltzmann-Verteilungsfunktion mit einem Abfall von k_B T=25 meV. In Unterkapitel 5.3 werden die elektrischen Transporteigenschaften der RTD-Fotodetektoren untersucht und mit denen einer n-dotierten Referenzprobe verglichen. Erstmalig wird resonantes Tunneln von Löchern in AlAsSb/GaSb-DBQW-RTDs bei Raumtemperatur demonstriert. Dabei ist PVCR=1,58. Bei T=4,2 K zeigen resonantes Loch- und Elektrontunneln vergleichbare Kenngrößen mit PVCR=10,1 und PVCR=11,4. Die symmetrische I(V)-Kennlinie der p-dotierten RTD-Fotodetektoren deutet auf eine geringe Valenzbanddiskontinuität zwischen GaSb und der GaInAsSb-Absorptionsschicht hin. Zudem sind die p-dotierten RTDs besonders geeignet für eine spätere Integration mit Typ-II-Übergittern. In Unterkapitel 5.4 werden die optoelektronischen Transporteigenschaften p-dotierter RTD-Fotodetektoren untersucht. Das vorgestellte neuartige RTD-Fotodetektorkonzept, welches auf resonanten Lochtransport als Majoritätsladungsträger setzt, bietet speziell im für den MIR-Spektralbereich verwendeten GaSb-Materialsystem Vorteile, lässt sich aber auch auf das InP- oder GaAs- Materialsystem übertragen. Die untersuchten p-dotierten Fotodetektoren zeigen eine ausgeprägte Fotosensitivität im MIR-Spektralbereich. Fotostromuntersuchungen werden für optische Anregung mittels eines Halbleiterlasers der Wellenlänge λ=2,61 µm durchgeführt. Bei dieser Wellenlänge liegen fundamentale Absorptionslinien atmosphärischen Wasserdampfs. Die Fotostrom-Spannungs-Charakteristik bestätigt, dass die Fotosensitivität auf einer Modulation des resonanten Lochstroms über Coulomb-Wechselwirkung akkumulierter photogenerierter Minoritätsladungsträger (Elektronen) beruht. Es werden Sensitivitäten von S_I=0,13 A W-1 ermittelt. Durch eine verbesserte RTD-Quanteneffizienz aufgrund eines optimierten Dotierprofils der Absorptionsschicht lässt sich die Sensitivität auf S_I=2,71 A W-1 erhöhen, was einem Multiplikationsfaktor von in etwa M\≈8,6 entspricht. Gleichzeitig wird jedoch der RTD-Hebelfaktor verringert, sodass n_(RTD p2)=0,42⋅n_(RTD p1). Erstmalig wurde damit erfolgreich Gas-Absorptionsspektroskopie anhand von H2O-Dampf mittels MIR-RTD-Fotodetektor an drei beieinanderliegenden Absorptionslinien demonstriert. N2 - The present thesis addresses the optoelectronic transport spectroscopy of different resonant tunneling diodes (RTDs). The thesis comprises two main topics. Firstly, the accumulation dynamics of photogenerated minority charge carriers and their impact on the RTD tunneling current is investigated for GaAs based RTD photosensors for the telecommunication wavelength region at 1.3 µm. Secondly, Al(As)Sb/GaSb double barrier quantum well RTDs are proposed and investigated with regard to their room temperature functionality. These works finally lead to the realization of RTD photodetectors in the mid infrared (MIR) spectral region. A brief summary of the content of the individual chapters is given below. Chapter 1 introduces the topic of RTD photodetectors in the context of a rapidly increasing demand for reliable and sensitive photodetectors for telecommunication applications as well as for optical molecular and gas spectroscopy. Chapter 2 explains some selected physical and technological basics of RTD photodetectors. Starting from a short overview depicting the development of RTDs, current areas of application are presented, and a concise introduction into electronic transport of RTDs is given. Subsequently, basic principles, definitions and characteristic parameters of optical detectors and sensors are defined. Finally, the physical fundamentals of light-induced effects on electronic transport in RTDs are described. In Chapter 3 an investigation on AlGaAs/GaAs double barrier quantum well resonant tunneling diodes (DBQW-RTDs) with a lattice-matched quaternary absorption layer as room temperature photodetectors for the near-infrared (NIR) spectral region at the telecommunication wavelength of λ=1.3 µm is presented. RTDs are photosensitive semiconductor devices that have inspired considerable interest in recent years due to their remarkable photosensitivity and ability to detect even individual photons. The RTD photosensitivity is based on Coulomb-interaction of photogenerated and accumulated charge carriers. These modulate the local electrostatic potential, and thus control a resonant tunneling current. Knowledge of the underlying physical parameters and their voltage dependence is essential to identify optimal operating points and device-design. In Subchapter 3.1 an overview of the sample design of the investigated RTD photodetectors, their fabrication process and a description of the photodetection mechanism is given. Low-temperature electroluminescence spectroscopy is used to determine the effective RTD quantum well width to d_DBQW⋍3.4 nm. The quantization energies of the electron and heavy hole ground states are found to be E_Γ1≈144 meV and E_hh1≈39 meV. Finally, the experimental setup used in this work is presented. In Subchapter 3.2 the physical parameters that limit the RTD photosensitivity are investigated with regard to their voltage dependence. The photocurrent-voltage characteristics of the RTD photodetector is nonlinear and determined by three voltage-dependent parameters: the RTD quantum efficiency η(V), the mean lifetime of photogenerated and accumulated minority charge carriers (holes) τ(V), and the RTD I(V)-characteristics in the dark I_dark (V). The RTD quantum efficiency η(V) can be modeled by a Gaussian error function, which describes that hole accumulation can only occur after surpassing a critical threshold voltage. The mean lifetime τ(V) decreases exponentially with increasing bias voltage V. Through a comparison with thermionically limited lifetimes in quantum wells, conduction and valence band offsets can be estimated to be Q_C≈0.55 and Q_V≈0.45, respectively. Based on these results, a model for the photocurrent-voltage characteristics is developed, which provides a framework for the characterization of RTD photodetectors. In Subchapter 3.3 the physical parameters limiting the RTD photosensitivity are investigated with regard to their dependence on the incident light power. Only for low light powers P<50 pW, a constant sensitivity S_I= 5.82×〖10〗^3 A W 1 is observed, which corresponds to a multiplication factor of M=3.30×〖10〗^5. For increasing light powers, the sensitivity decreases by several orders of magnitude. The decreasing, non-constant sensitivity is mainly due to a reduction of the average lifetime τ, which decreases exponentially with increasing hole population. In combination with the results from Subchapter 3.2, a model of the RTD photosensitivity is provided, which gives the basis for the complete characterization of RTD photodetectors. The results can be used to determine the critical light power up to which the RTD photodetector can be operated with constant sensitivity, or to identify the ideal operation point in terms of a minimum noise equivalent power (NEP). For an RTD limited by (theoretical) shot noise, the optimal working point is located at V=1.5 V with a noise-equivalent power of NEP=1.41×〖10〗^(-16) W Hz-1/2. In Chapter 4 different Al(As)Sb/GaSb DBQW RTDs are described via their electronic transport properties and for the first time resonant tunneling of electrons at room temperature is demonstrated in such structures. Subchapter 4.1 describes the growth and manufacturing process of the studied Al(As)Sb/GaSb-DBQW-RTDs. In Subchapter 4.2 electron transport through an AlSb/GaSb DBQW resonance tunneling structure is investigated. At low temperatures of T=4.2 K, resonant tunneling with unprecedented high peak-to-valley current ratios (PVCRs) of up to PVCR=20.4 can be observed. This is ascribed to the excellent quality of the semiconductor crystal growth and manufacturing process. Resonant tunneling at room temperature cannot be observed. This is attributed to a characteristic material property of the semiconductor GaSb, which results in the majority of electrons occupying states at the L-point instead of the Γ-point, at room temperature. Resonant tunneling via the typical Γ- Γ- Γ tunneling path is suppressed. In Subchapter 4.3 the electronic transport properties of AlAsSb/GaSb DBQW-RTDs with pseudomorphically grown ternary prewell emitters are investigated. The primary purpose of the prewell structures is to increase the energy separation between Γ- and L-point. Thus, electron transport via L-channels can be depopulated, which in turn leads to a repopulation of electron states at the Γ-point. In addition, an improvement of the RTD transport properties is possible with sufficiently deep prewell structures due to quantization effects. Structures without prewell emitters show a low-temperature (T=77 K) peak-to-valley current ratio of PVCR=8.2, while at room temperature, no resonant tunneling can be observed. The integration of Ga0.84In0.16Sb and GaAs0.05Sb0.95 prewell structures, leads to resonant tunneling at room temperature with peak-to-valley current ratios of PVCR=1.45 and 1.36, respectively. In Subchapter 4.4 the dependence of the electronic transport properties of Al(As)Sb/GaSb RTDs on the As mole fraction of the GaAsSb emitter prewell and the AlAsSb tunneling barriers is investigated. An increase in the As mole fraction leads to an increased room temperature PVCR with values of up to PVCR=2.36 with a simultaneously reduced PVCR at cryogenic temperatures. The reduced low-temperature transport properties are attributed to a decreasing semiconductor crystal quality with an increasing As concentration. In Chapter 5 RTD photodetectors for the MIR spectral region are presented for the first time and their optoelectronic transport properties are studied. In addition, a p-type doped RTD photodetector is demonstrated for the first time. In Subchapter 5.1 the sample design of the studied GaSb-based RTD photodetectors for the MIR spectral region are provided. In particular, structures with inverted charge carrier polarity (p-type instead of n-type doping, holes as majority charge carriers) are presented. In Subchapter 5.2 the optical properties of the lattice-matched quaternary GaInAsSb absorption layer are investigated by Fourier transform infrared spectroscopy. From the spectrum a bandgap energy of E_Gap≅(447±5) meV is determined. This corresponds to a cut-off wavelength of λ_G≅(2.77±0.04) µm. An Urbach energy of E_U=10 meV is extracted from the mono-exponential decline of the line shape at the low-energy side. At the high-energy side, the exponential decline follows the Boltzmann distribution function with k_B T=25 meV. In Subchapter 5.3, the electronic transport properties of the studied RTD photodetectors are presented and compared with an n-type doped reference sample. For the first time, room temperature resonant tunneling of holes in Al(As)Sb/GaSb DBQW-RTDs is demonstrated, with PVCR=1.58. At T=4.2 K, resonant tunneling of holes and electrons show comparable peak-to-valley current ratios of PVCR=10.1 and PVCR=11.4, respectively. The symmetrical I(V)-characteristics of the p-doped RTD photodetectors indicate a low valence band discontinuity between GaSb and the GaInAsSb absorption layer. In addition, they are particularly suitable for later integration with Type II superlattices. In Subchapter 5.4, the optoelectronic transport properties of p-type doped RTD photodetectors are described. The presented RTD photodetector concept, which relies on resonant tunneling transport of holes as majority charge carriers, offers advantages in particular for the GaSb material system that is used to cover the MIR spectral region. The concept of p-type doping may also be applied to the InP or GaAs material system. The examined RTD photodetectors show a pronounced photosensitivity in the MIR spectral range. Photocurrent investigations are performed under optical excitation with a semiconductor laser with wavelength λ=2.61 µm. Fundamental absorption lines of atmospheric water vapor are located at this wavelength. The photocurrent-voltage characteristics confirms that the photosensitivity is based on a modulation of the resonant hole current via the Coulomb interaction of accumulated photogenerated minority charge carriers (electrons). Sensitivities of S_I=0.13 A W-1 are determined. An improved RTD quantum efficiency due to an optimized doping profile of the absorption layer increases the sensitivity up to S_I=2.71 A W-1, which corresponds to a multiplication factor M≈8.6. At the same time, however, the RTD leverage factor is reduced so that n_(RTD p2)=0.42⋅n_(RTD p1). For the first time, gas absorption spectroscopy by an MIR RTD photodetector is demonstrated by means of H2O vapor on three adjacent absorption lines. KW - Resonanz-Tunneldiode KW - Photodetektor KW - AlGaAs KW - Elektronischer Transport KW - RTD KW - Resonanztunneldiode KW - GaAs KW - GaSb KW - Fotodetektor KW - Transportspektroskopie KW - Antimonide KW - Optoelektronik Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-163205 ER - TY - THES A1 - Scheibner, Michael T1 - Über die Dynamik lokal wechselwirkender Spinträger T1 - About the dynamics of locally interacting spin carriers N2 - In dieser Arbeit wurde die Dynamik spintragender Teilchen (Elektronen, Löcher, Exzitonen) in selbstorganisierten Cd(Mn)Se/ZnSe Quantenpunkten sowie leicht dotiertem GaAs untersucht. Die unterschiedlichen Materialgruppen boten die Möglichkeit verschiedene Einflüsse auf Spinzustände zu studieren. Die Injektion definierter Spinzustände in die Halbleiterstrukturen erfolgte ausschließlich auf optischem Weg. Ebenfalls optisch wurde auch die zeitliche Entwicklung der Spinzustände detektiert. Die Anwendung von zeitaufgelöster Photolumineszenzspektroskopie sowie zeitaufgelöster Kerr-Rotation, ermöglichte den Zugriff sowohl auf longitudinale wie auch transversale Spinrelaxationsprozesse. Desweiteren wurde eine Kopplung der Quantenpunkten über ihr Strahlungsfeld diskutiert. N2 - In this thesis the dynamics of spin carrying particles like electrons, holes and excitons in self-organized Cd(Mn)Se/ZnSe quantum dots and lightly doped GaAs has been studied. The different materials offered the possibility to investigate various influences on spin states. The injection of defined spin states into the semiconductor structures was achieved exclusively by optical means. Likewise, the temporal evolution of the spin states was detected optically. The application of time resolved photoluminescence spectroscopy and time resolved Kerr rotation gave access to longitudinal as well as transverse spin relaxation processes. In addition a coupling of the quantum dots through their radiation field was discussed. KW - Quantenpunkt KW - Spindynamik KW - Quantenpunkte KW - Spindynamik KW - Magneto-optik KW - semimagnetisch KW - Halbleiter KW - zeitafgelöst KW - Strahlungskopplung KW - CdSe KW - GaAs KW - Quantum dots KW - spindynamics KW - magneto optics KW - semi-magnetic KW - semiconductor KW - time resolved KW - radiative coupling KW - CdSe KW - GaAs Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20127 ER - TY - THES A1 - Scherer, Helmut T1 - Integration von aktiven und passiven optischen Bauelementen auf Basis photonischer Kristalle bei 1,3 und 1,5 μm Wellenlänge T1 - Integration of active and passive optical elements based on photonic crystals at 1.3 and 1.5 µm wavelength N2 - Im Rahmen der Arbeit wurden Halbleiterlaser aus photonischen Kristallen (PK) im Wellenlängenbereich von 1,3 und 1,5 µm untersucht. Insbesondere die Integration der Laser mit weiteren Bauelementen für die optische Telekommunikation stand im Vordergrund der Untersuchungen. Neben den versch. Anwendungen unterscheidet sich auch das Grundmaterial. Der kurzwellige Bereich um 1,3 µm wurde auf GaAs-basierten Material bearbeitet, die langwelligen Laser wurden auf InP-Basis bearbeitet. Photonische Kristalle bestehen aus einer periodisch angeordneten Brechungsindexvariation zwischen Luftlöchern in einer Halbleitermatrixstruktur. Die Ausbreitung elektromagnetischer Wellen wird durch das periodische Potential beeinflusst und es können z. B. Spiegel hergestellt werden. Die Reflektivität kann durch Variation der PK-Struktur angepasst werden. Weiterhin können Liniendefekte als effektive Wellenleiter benutzt werden. Es wurden mehrstufige Y-Kombinierer zur Zusammenführung der Emission mehrerer Laser auf der komplett aktiven Laserstruktur hergestellt. Die Definition der Bauteile erfolgte durch optische bzw. Elektronenstrahllithographie, die Strukturierung wurde mittels nass- und trockenchemischer Ätzverfahren sichergestellt. Weiterhin wurden Stegwellenleiter basierte Mikrolaser auf GaInNAs-Material hergestellt. Um abstimmbare Laser mit einem möglichst grossen Abstimmbereich herzustellen, wurden zwei Resonatoren mit unterschiedlicher Länge hergestellt. Zwischen beide Resonatoren wurde ein PK-Spiegel aus 2 bzw. 3 Lochreihen prozessiert. Dies ermöglicht das Abstimmen der Laser von 1307 bis 1340 nm. Im weiteren Verlauf wurden aktive und passive PK-Strukturen auf GaAs-Basis integriert. Hierzu wurden DWELL-Strukturen auf Basis von InGaAs/GaAs Quantenpunkten verwendet. Durch das Ankoppeln der Glasfaser an die Frontfacette des Lasers ist der laterale Abstand der Laserstrukturen durch die Dicke der Glasfaser auf 250 µm festgelegt. Durch die verlustarme Kopplung mehrerer Laser in einen Auskoppelwellenleiter kann die Flächenausnutzung deutlich gesteigert werden. Im Rahmen der Arbeit wurden vier Halbleiterlaser über PK Wellenleiter miteinander verbunden. Die gezeigten Laserstrukturen weisen eine Länge von unter 1,5 mm bei einer Gesamtbreite von 160 µm auf. Dies bedeutet, dass ein komplettes Modul schmaler als eine Glasfaser realisiert werden kann. Es konnte gezeigt werden, dass alle 4 Laser unabhängig von einander wellenlängenstabil ansteuerbar und abstimmbar sind. Die Seitenmodenunterdrückung im parallelen cw-Betrieb aller vier Laser liegt für den Laser mit der geringsten Seitenmodenunterdrückung immer noch bei mehr als 20 dB und der Leistungsunterschied zwischen den vier Lasern ist unter 2,5 dB. Weiterhin wurden PK-Strukturen bei einer Wellenlänge von 1,5 µm auf einem InP-Basis untersucht. Im Bereich der passiven Charakterisierung wurden W3-Wellenleiter spektral vermessen. Zu Beginn wurde das sog. Ministopband (MSB) des W3-Wellenleiters untersucht, um im Anschluss die Kopplung von zwei Wellenleitern mit Hilfe des Übersprechens im Bereich des MSB´s zu analysieren. Hierzu wurden zwei W3-Wellenleiter parallel zueinander strukturiert. Im Wellenlängenbereich des MSB erfolgt eine Übertragung vom Referenz- in den Monitorkanal. Durch die geometrischen Parameter der PK-Strukturen kann die spektrale Lage und Breite des Filters eingestellt werden. Die Filterung durch Übersprechen vom Referenz- in den Monitorkanal ist mit einer spektralen Breite von mehr als 10 nm noch relativ breitbandig. Daher wurden PK-Resonatoren hergestellt. Hierzu wurden Spiegel in die Wellenleiter prozessiert. Es wurden Filter mit einer spektralen Breite von weniger als 0,5 nm und Güten von über 9000 erreicht. Im Anschluss wurden die aktiven und passiven Bauteile auf einem Chip integriert. Die Laser erreichten eine max. Leistung von 28 mW. Die Integration zusätzlicher Funktionen hinter den Laser bedeutet eine Erhöhung der Komplexität und des Funktionsumfangs, ohne die Emissionsleistung des Lasers zu senken. Zusätzlich vereinfacht sich der Aufbau zur Charakterisierung und zum Betrieb der Laser. In den gezeigten Bauteilen wurde die durch den Laserrückspiegel transmittierte Lichtmode mittels eines Tapers in einen PK Wellenleiter geführt. Seitlich und am Ende des Wellenleiters wurde die erreichte Intensität mittels zweier getrennter Photodioden (PD) gemessen. Damit wird das Konzept der passiv untersuchten Wellenleiter zusammen mit den Lasern integriert. Bei konstanter Leistung und Wellenlänge müssen die beiden Photoströme konstant sein. Durch die sehr kompakte Bauform am Ende des Lasers mit einer zusätzlichen Länge von weniger als 100 µm ist das Bauelement sehr Verlustarm. Ändert sich die Wellenlänge ungewollt, so ändert sich das Verhältnis der Ströme in den PD. Für die Charakterisierung des Wellenlängenmonitors beträgt der Abstimmbereich 30 nm. N2 - This work presents fabricated and characterized semiconductor lasers with photonic crystal (PhC) structures in the wavelength ranges of 1.3 and 1.5 µm. Especially the integration of lasers with optical components, based on PhC-structures, relevant for future telecommunication applications have been investigated. Lasers at 1.3 µm wavelength have been fabricated on GaAs-substrates. Photonic Crystals consist of a periodic variation of the refractive index between air holes in a semiconductor matrix. The propagation of electromagnetic waves can be affected by the periodic potential and e. g. mirrors for electromagnetic waves can be fabricated. The reflectivity of PhC-structures used as mirrors for lasers can be adapted by varying the geometry. Line defects, designed into the triangular, periodic structure can be further used as effective, low loss waveguides. This work shows the integration of multi-level Y-coupler on all active material. The patterning of the elements is done by optical- or electron-beam-lithography. Etching into the semiconductor is done by using wet- and dry-etching processes. The fabrication and characterization of ridge waveguide based microlasers on GaInNAs-material together with high reflectivity PhC mirrors at the front and rear end of a ridge-waveguide was also investigated. Two resonators with different lengths were defined for the realization of widely tunable semiconductor lasers. PhC-mirrors with 2 or 3 rows of holes are fabricated between both resonators. The reflectivity is between 40 and 60%. The coupling between both resonators ensures effective lasing in cw-mode with a tuning range from 1307 to 1340 nm. The following part describes the integration of active and passive PhC-structures, based on GaAs-material. The laser emission is generated by InGaAs/GaAs-quantum dots embedded in a DWELL-structure. The semiconductor chip is coupled to an optical fiber with a lateral distance of about 250 µm (the fiber diameter). Semiconductor lasers are much smaller than that. The efficient coupling of multiple lasers into one waveguide increases the yield of the semiconductor without additional process complexity. To increase the yield of the semiconductor, four lasers are coupled into one waveguide by use of PhC Y-couplers. The lasers have a length of less than 1.5 mm and a width which is less than 160 µm. This means that one complete laser module with four independently tunable lasers, can be coupled into one optical fiber. It was possible to operate and tune all four lasers independent from each other. The SMSR of the parallel operated lasers in cw-mode is above 20 dB for the laser with the smallest SMSR and the difference in the output power between all four lasers is below 2,5 dB. In addition to the integration of active and passive components based on GaAs semiconductors further components were integrated to one functional module on InP. First, the passive components were characterized. The so called mini-stop-band (msb) of a W3-waveguide was measured. After that, two waveguides were processed parallel and the coupling from one into the other waveguide was analyzed. With use of the coupling effect a wavelength selective filter can simply be realized. The wavelength range and the position can be selected by the geometrical parameters of the PhC structures. The wavelength selectivity is too wide for a practical use in the optical telecommunication with a width of about 10 nm. Further effort was made to increase the spectral resolution of the filter by the investigation of resonators that were fabricated as mirrors in PhC-waveguides. With the approach, the resolution of the characterized resonators is better than 0,5 nm and the Q-factor which was measured being better than 9000. After that the passive components were integrated with active components. The laser structures were completely fabricated wit PhC structures. The maximum output power is up to 28 mW. After the characterization of the laser structure was completed, the described passive components were fabricated behind the rear mirror of the laser. The fabrication of additional components behind the rear mirror of the laser leads to a higher functionality of the module. The laser power which is transmitted through the rear mirror of the laser is collected by a PhC-taper-structure and guided into a PhC-waveguide. Two separate photodiodes (PD) measure the laser intensity. The already characterized passive component is integrated with lasers. A constant power of the laser at a constant wavelengths leads to a constant current relation of both PDs. The coupling relation is only defined by the geometry. The passive component is less than 100 µm long and less than 80 µm wide. Therefore the component has only low losses inside the waveguide. Changes of the laser wavelength change the relation between the two PDs. Lasers with a tuning range of 30 nm were made. KW - Halbleiterlaser KW - Lithographie KW - photonische Kristalle KW - Optoelektronik KW - Halbleiterlaser KW - Elektronenstrahllithografie KW - InP KW - GaAs KW - photonic crystal KW - optoelectronics KW - semiconductor laser KW - electron beam lithography KW - InP KW - GaAs Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-52150 ER -