TY - THES A1 - Theis, Bastian Markus T1 - Beiträge zur Chemie des höherkoordinierten Siliciums und Germaniums: Synthese, Struktur und Eigenschaften neuer penta- und hexakoordinierter Silicium(IV)-Komplexe sowie pentakoordinierter Germanium(IV)-Komplexe T1 - Contributions to the Chemistry of Higher-Coordinate Silicon and Germanium: Synthesis, Structure, and Properties of New Penta- and Hexacoordinate Silicon(IV) Complexes and Pentacoordinate Germanium(IV) Complexes N2 - Die vorliegende Dissertation stellt einen Beitrag zur Chemie des höherkoordinierten Siliciums dar. Im Rahmen dieser Untersuchungen wurden neuartige zwitterionische spirocyclische lambda5Si,lambda5Si'-Disilicate, zwitterionische spirocyclische lambda5Si-Silicate und neutrale pentakoordinierte Silicium(IV)-Komplexe dargestellt. Weiterhin wurden neutrale hexakoordinierte Silicium(IV)-Komplexe sowie neutrale pentakoordinierte Germanium(IV)-Komplexe synthetisiert. Die Charakterisierung dieser Verbindungen erfolgte durch Elementaranalysen, Festkörper-NMR-Spektroskopie (13C-, 15N-, 29Si- und 77Se-VACP/MAS-NMR) und Kristallstrukturanalysen. Ergänzend wurden einige Verbindungen durch NMR-Spektroskopie in Lösung (1H, 13C, 19F, 29Si, 31P und 77Se) charakterisiert. N2 - This dissertation deals with the chemistry of higher-coordinate silicon. In the course of these studies, novel zwitterionic spirocyclic lambda5Si,lambda5Si'-disilicates, zwitterionic spirocyclic lambda5Si-silicates, and neutral pentacoordinate silicon(IV) complexes were prepared. Furthermore, neutral hexacoordinate silicon(IV) complexes and neutral pentacoordinate germanium(IV) complexes were synthesized. These compounds were characterized by elemental analyses, solid-state NMR spectroscopy (13C, 15N, 29Si, and 77Se VACP/MAS NMR), and single-crystal X-ray diffraction. In addition, some of these compounds were characterized by NMR spectroscopy in solution (1H, 13C, 19F, 29Si, 31P, and 77Se). KW - Silicium KW - Hypervalentes Molekül KW - Koordinationslehre KW - Germanium KW - Selen KW - Zwitterion KW - Siliciumkomplexe KW - Germaniumkomplexe KW - Pentakoordination KW - Hexakoordination KW - Koordinationschemie KW - Höherkoordination KW - Silicat KW - Pentacoordination KW - Hexacoordination KW - Coordination Chemistry KW - higher-coordinate KW - Silicate Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40737 ER - TY - THES A1 - Seiler, Oliver T1 - Beiträge zur Chemie des höherkoordinierten Siliciums und Germaniums : Synthese, Struktur und Eigenschaften dianionischer lambda-6-Si-Silicate und lambda-6-Ge-Germanate sowie neutraler penta- und hexakoordinierter Silicium-Verbindungen T1 - Contributions to the Chemistry of Higher-coordinate Silicon and Germanium: Synthesis, Structure, and Properties of Dianionic lambda-6-Si-Silicates and lambda-6-Ge-Germanates, as well as of Neutral Penta- and Hexacoordinate Silicon Compounds N2 - Im Rahmen der vorliegenden Arbeit wurden Beiträge zur Chemie des höherkoordinierten Siliciums und Germaniums geleistet. Neben der Synthese zwitterionischer lambda-5-Si-Silicate sowie hexakoordinierter Silicium- und Germanium-Verbindungen mit SiO6- oder GeO6-Gerüst stellt die Synthese neutraler höherkoordinierter Silicium-Verbindungen ausgehend von Tetra(cyanato-N)silan und Tetra(thiocyanato-N)silan sowie deren umfassende Charakterisierung einen Schwerpunkt dieser Arbeit dar. N2 - This thesis deals with the chemistry of higher-coordinate silicon and germanium. Besides the synthesis of zwitterionic lambda-5-Si-silicates and hexacoordinate silicon and germanium compounds with SiO6 and GeO6 skeletons, the synthesis of neutral higher-coordinate silicon compounds starting from tetra(cyanato-N)silane or tetra(thiocyanato-N)silane and their complete characterization is the major topic of this thesis. KW - Silicium KW - Hypervalentes Molekül KW - Koordinationslehre KW - Germanium KW - Silicium KW - Germanium KW - Pentakoordination KW - Hexakoordination KW - Koordinationschemie KW - Silicon KW - Germanium KW - Pentacoordination KW - Hexacoordination KW - Coordination Chemistry Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14784 ER - TY - THES A1 - Richter, Rolf Ingo T1 - Beiträge zur Chemie des höherkoordinierten Siliciums: Synthese, Struktur und Eigenschaften neuer Silicate mit SiO 3 C 2 -, SiO 4 C -, SiO 5 - und SiO 6 -Gerüst, Beiträge zur Chemie des tetrakoordinierten Siliciiums: Synthese, Struktur und Eigenschaften von Silanen, Silanolen und Siloxanen T1 - Contributions to the field of penta- and hexacoordinate silicon chemistry: syntheses, structures, and properties of new silicates with SiO3C2-, SiO4C-, SiO5-, and SiO6-skeletons N2 - Die vorliegende Arbeit stellt einen Beitrag zur Siliciumchemie dar — mit einem Schwerpunkt in der Chemie des penta- und hexakoordinierten Siliciums. Die Ergebnisse werden im Folgenden aufgegliedert in vier Themenkomplexe vorgestellt. 7.1 Synthese und Charakterisierung zwitterionischer l5Si-Silicate Im Rahmen der hier vorgestellten Untersuchungen wurden die bisher unbekannten zwitterionischen l5Si-Silicate 3–8 — lösungsmittelfrei oder in Form wohldefinierter Solvate — dargestellt. Erstmals konnte für die Substanzklasse der zwitterionischen l5Si-Spirosilicate an dem bereits bekannten l5Si-Silicat 1 durch 1H-VT-NMR-Experimente die Energiebarriere für die Enantiomerisierung im Sinne einer Berry-Pseudorotation in Lösung bestimmt werden. Durch Hydrolyse von 1 — gefolgt von Kondensationsreaktionen — wurde das neuartige Oktasilsesquioxan 2 dargestellt. Die Charakterisierung aller Verbindungen erfolgte durch Elementaranalysen, 1H-, 13C- und 29Si-NMR-Spektroskopie an Lösungen (außer 2), 29Si-VACP/MAS-NMR-Spektroskopie an Feststoffen und im Fall der Verbindungen 2, 3×½HO(CH2)2OH, 4×HO(CH2)2OH, 6, 7×3/2C4H8O2 und 8×2CH2Cl2 durch Einkristall-Röntgenstrukturanalysen. Anhand der Synthese von 1 durch Umsetzung von Dimethoxy(methyl)[(2,2,6,6-tetramethylpiperidino)methyl]silan mit Ethan-1,2-diol wurde gezeigt, das Ethan-1,2-diol zu einer selektiven Si–C-Spaltungsreaktion (Abspaltung eines Moläquivalents Methan) in der Synthese zwitterionischer l5Si-Spirosilicate in der Lage ist. Durch 1H-VT-NMR-Experimente wurde die Barriere des Enantiomerisierungsprozesses am Silicium-Zentrum von 1 zu 35.3(5) kJ mol–1 bestimmt. Durch Umsetzung von 1 mit Wasser in Methylenchlorid bei Raumtemperatur gelang die Synthese des Aminomethylsubstituierten Octasilsesquioxans 2. Die Synthese der Verbindungen 3–5 erfolgte durch Umsetzung der entsprechenden Trialkoxy[(amino)alkyl]silane mit Ethan-1,2-diol in Substanz (3) oder in Acetonitril (4 und 5). Die bereits bekannte Verbindung 6 wurde zwecks struktureller Charakterisierung resynthetisiert. Durch Umsetzung von Trimethoxy[(2,2,6,6-tetramethylpiperidino)methyl]-silan mit Benzoin gelang die Synthese von 7. Mit Verbindung 8 — dargestellt durch Umsetzung von Dimethoxy(methyl)[(2,2,6,6-tetramethylpiperidino)methyl]silan mit Brenzkatechin — gelang erstmals die Synthese eines zwitterionischen l5Si-Silicates mit SiO3C2-Gerüst. In siedendem Acetonitril konnte 8 unter Methan-Abspaltung zum bekannten zwitterionischen l5Si-Spirosilicat 9 umgesetzt werden. 7.2 Synthese und Charakterisierung anionischer l5Si-Silicate und dianionischer l5Si,l5Si’-Disilicate mit SiO5-Gerüst Im Rahmen der hier vorgestellten Untersuchungen wurden erstmals die anionischen l5Si-Silicate 11 und 13–15 sowie die dianionischen l5Si,l5Si’-Disilicate 10, 12 und 16 mit SiO5-Gerüst — lösungsmittelfrei oder in Form wohldefinierter Solvate — dargestellt. Die Charakterisierung dieser Verbindungen erfolgte durch Elementaranalysen, 1H-, 13C- und 29Si-NMR-Spektroskopie an Lösungen, 29Si-VACP/MAS-NMR-Spektroskopie am Festkörper sowie durch Kristallstrukturanalysen [(Δ,Δ/Λ,Λ)-10×2CH3CN, (Λ)-11×THF, meso-12×2CHCl3, 13, 14, 15×2THF und meso-16]. Die Synthesen der l5Si-Silicate 10–13 und 16 erfolgten in aprotischen organischen Lösungsmitteln durch Umsetzung von Tetramethoxysilan mit Benzilsäure, dem entsprechenden Amin und Wasser in dem erforderlichen stöchiometrischen Verhältnis. Das l5Si-[Trimethylsilanolato(1–)]silicat 14 wurde ausgehend von dem Hydroxosilicat 13, Chlortrimethylsilan und Triethylamin in Acetonitril erhalten. Das l5Si-[Methanolato- (1–)]silicat 15 wurde durch die Umsetzung von Tetramethoxysilan mit Benzilsäure und Lithiummethanolat in Tetrahydrofuran dargestellt. Die l5Si,l5Si’-μ-Oxo-disilicate 10, 12 und 16 sind die ersten strukturell charakterisierten Verbindungen, in denen zwei pentakoordinierte Silicium-Atome mit SiO5-Skelett über ein gemeinsames Sauerstoff-Atom miteinander verbrückt sind. Sowohl ihre Reaktivität gegenüber Wasser, als auch ihr stereodynamisches Verhalten in Lösung, das mit 1H- und 13C-VT-NMR-Experimenten untersucht werden konnte, machen diese Verbindungen zu sehr lohnenden Studienobjekten für das Verständnis der Chemie des pentakoordinierten Siliciums. Mit den Verbindungen 11 und 13 wurden erstmals l5Si-Hydroxosilicate zugänglich gemacht und strukturell charakterisiert (unabhängig von einem kürzlich von P. Klüfers et al. veröffentlichten l5Si-Hydroxosilicat). Das l5Si-[Trimethylsilanolato(1–)]silicat 14 ist das erste Beispiel für die Verknüpfung eines pentakoordinierten und tetrakoordinierten Silicium-Atoms durch ein Sauerstoff-Atom und demonstriert die Zugänglichkeit der HO-Funktionaliät des l5Si-Hydroxosilicates 13 für Derivatisierungen. Das l5Si-[Methanolato(1–)]silicat 15 ist als Modellverbindung für die Bildung der l5Si-Hydroxosilicate 11 und 13 von mechanistischem und auch präparativem Interesse. 7.3 Synthese und Charakterisierung dianionischer l6Si-Silicate mit SiO6-Gerüst Im Rahmen der hier vorgestellten Untersuchungen wurden die bisher unbekannten dianionischen l6Si-Silicate 19–21 mit SiO6-Gerüst — lösungsmittelfrei oder in Form wohldefinierter Solvate — dargestellt. Die bereits bekannte Verbindung 18 wurde zwecks Kristallstrukturanalyse resynthetisiert. Die Charakterisierung aller synthetisierten Verbindungen erfolgte durch Elementaranalysen 1H-, 13C- und 29Si-NMR-Spektroskopie an Lösungen (mit Ausnahme von 19 und 21 [nur 1H- und 13C-NMR-Messungen]), 29Si-VACP/MAS-NMR-Spektroskopie am Festkörper sowie durch Röntgenbeugungs-Experimente an Einkristallen [18·2NH3·2H2O , mer-19, fac-20·½C4H8O2, (R,R/S,S)-21]. Die l6Si-Silicate 19–21 wurden durch Umsetzung von Tetramethoxysilan bzw. Tetrachlorsilan mit drei bzw. zwei Moläquivalenten des entsprechenden Amins dargestellt. Diese Verbindungen stellen die ersten l6Si-Silicate mit deprotonierten α-Hydroxycarbonsäuren als Liganden dar. Verbindung 21 ist darüber hinaus die erste Silicium-Verbindung mit dreizähnigen Citrato(3–)-Liganden. Neben einem allgemein erweiterten Verständnis der Chemie von l6Si-Silicaten mit SiO6-Gerüst geben die untersuchten Verbindungen insbesondere auch neue stereochemische Einblicke in die Koordinationschemie des Siliciums. In wieweit diese hier genannten l6Si-Silicate einen Beitrag zum Verständnis der Siliciumdioxid-Biomineralisation leisten können, bleibt abzuwarten. 7.4 Synthese und Charakterisierung von Verbindungen des tetrakoordinierten Siliciums Im Rahmen der hier vorgestellten Untersuchungen wurden erstmals die Silane 25 und 27 dargestellt, und die Synthesen der bereits bekannten Silicium-Verbindungen 22–24 konnten verbessert werden. Die Charakterisierung von 22–27 erfolgte durch Elementaranalysen 1H-, 13C- und 29Si-NMR-Spektroskopie an Lösungen, 29Si-VACP/MAS-NMR-Spektroskopie am Festkörper (nur 23×EtOAc), sowie durch Röntgenbeugung an Einkristallen (23×EtOAc, 25–27). Eine Verbesserung der Synthese von 22 gelang durch die Umsetzung von 1,2-Bis(diethylamino)-1,1,2,2-tetraphenyldisilan mit Acetylchlorid zum 1,2-Dichlor-1,1,2,2-tetraphenyldisilan und dessen nachfolgende Hydrolyse. Die Kristallisation des macrocyclischen Siloxans 23 konnte verbessert und das Solvat 23×EtOAc durch Röntgenbeugung strukturell charakterisiert werden. Bei der Umkristallisation von 22 wurden auch einzelne Kristalle des entsprechenden Disiloxans 26 erhalten, welches erstmals durch Kristallstrukturanalyse charakterisiert werden konnte. Das Silan 24 wurde auf zwei neuen Synthesewegen dargestellt: zum einen durch Umsetzung von Bis(chlormethyl)diphenylsilan mit Trifuormethansulfonsäure und anschließende Aufarbeitung mit Triethylammoniumchlorid, zum anderen durch Chlormethylierung von Chlor(chlormethyl)bis(diethylamino)silan mittels der Reagenzkombination BrCH2Cl/n-BuLi und anschließende Umsetzung mit Benzoylchlorid. Das Silan 25 wurde ausgehend von Trimethoxy[(2,2,6,6-tetramethylpiperidino)methyl]silan durch wiederholte Umsetzung mit Tetrachlorsilan erhalten, und das Silan 27 wurde ausgehend von Tetrachlorsilan durch vierfache Chlormethylierung mittels der Reagenzkombination BrCH2Cl/n-BuLi erhalten. N2 - This Thesis contributes to the field of silicon chemistry, with a special emphasis on the chemistry of penta- and hexacoordinate silicon. The results are summarized in the following four chapters. 8.1 Synthesis and characterization of zwitterionic l5Si-silicates In the course of these investigations, the hitherto unknown zwitterionic l5Si-silicates 3–8 were synthesized — solvent-free or as well-defined solvates. For the first time, the energy barrier for the enantiomerization of zwitterionic l5Si-spirosilicates in terms of a Berry-pseudorotation process could be determined by VT 1H NMR experiments using the already known l5Si-silicate 1. The hydrolysis of 1, followed by condensation reactions, yielded the novel octasilsesquioxane 2. The identities of all compounds were established by elemental analyses (C, H, N), solution NMR studies (1H, 13C, and 29Si; except for 2), and solid-state 29Si VACP/MAS NMR experiments. In addition, compounds 2, 3×½HO(CH2)2OH, 4×HO(CH2)2OH, 6, 7×3/2C4H8O2, and 8×2CH2Cl2 were structurally characterized by single-crystal X-ray diffraction. By means of the synthesis of 1 [obtained by treatment of dimethoxy(methyl)[(2,2,6,6-tetramethylpiperidino)methyl]silane with ethane-1,2-diol] it was demonstrated that ethane-1,2-diol can be used for the synthesis of zwitterionic l5Si-silicates via selective Si–C cleavage reactions (elimination of one molar equivalent of methane). For compound 1 the energy barrier for the enantiomerization process at the silicon atom was determined to be 35.3(5) kJ mol–1 (VT 1H NMR experiments). Treatment of 1 with water in dichloromethane at room temperature gave the aminomethyl-substituted octasilsesquioxane 2. Compounds 3–5 were synthesized by reaction of the respective trialkoxy[(amino)alkyl]silane with ethane-1,2-diol using no solvent (3) or using acetonitrile as solvent (4 and 5). The already known compound 6 was resynthesized to characterize it by single-crystal X-ray diffraction. Treatment of trimethoxy[(2,2,6,6-tetramethylpiperidino)methyl]silane with benzoin yielded compound 7. Treatment of dimethoxy(methyl)[(2,2,6,6-tetramethylpiperidino)methyl]silan with pyrocatechol gave the first zwitterionic l5Si-silicate with an SiO3C2 skeleton, compound 8. In boiling acetonitrile, 8 undergoes an elimination reaction (formation of methane) to yield the known l5Si-spirosilicate 9. 8.2 Synthesis and characterization of anionic l5Si-silicates and dianionic l5Si,l5Si’-disilicates with SiO5 skeletons In the course of these investigations, the anionic l5Si-silicates 11 and 13–15 and the dianionic l5Si,l5Si’-disilicates 10, 12, and 16 with SiO5 skeletons were synthesized for the first time — solvent-free or as well-defined solvates. The identities of these compounds were established by elemental analyses (C, H, N), solution NMR studies (1H, 13C, and 29Si), and solid-state 29Si VACP/MAS NMR experiments. In addition, compounds (Δ,Δ/Λ,Λ)-10×2CH3CN, (Λ)-11×THF, meso-12×2CHCl3, 13, 14, 15×2THF, und meso-16 were structurally characterized by single-crystal X-ray diffraction. The syntheses of the l5Si-silicates 10–13 and 16 were performed in aprotic organic solvents by treatment of tetramethoxysilane with, benzilic acid, the respective amine, and water, using the required stoichiometry. The [trimethylsilanolato(1–)]silicate 14 was obtained from the hydroxosilicate 13, chlorotrimethylsilane, and triethylamine in acetonitrile. The [methanolato(1–)]silicate 15 was synthesized by treatment of tetramethoxysilane with benzilic acid and lithium methanolate in tetrahydrofuran. The μ-oxo-disilicates 10, 12, and 16 are the first compounds, with two pentacoordinate oxygen-bridged silicon atoms with SiO5 skeletons that could be structurally characterized by single-crystal X-ray diffraction. Both their reactivity toward water and their stereodynamics in solution (studied by VT 1H and 13C NMR experiments) make these compounds unique objects in the study of pentacoordinate silicon compounds. Compounds 11 and 13 are the first pentacoordinate l5Si-hydroxosilicates that have been synthesized and structurally characterized (independently from a l5Si-hydroxosilicate recently published by Klüfers et al.). The l5Si-[trimethylsilanolato(1–)]silicate 14 represents the first example of a compound containing an oxygen-bridged pentacoordinate and tetracoordinate silicon atom. With respect to mechanistic and preparative aspects, the l5Si-[methanolato(1–)]silicate 15 is a model system for the formation of the l5Si-hydroxosilicates 11 and 13. 8.3 Synthesis and characterization of dianionic l6Si-silicates with SiO6 skeletons In the course of these investigations, the dianionic l6Si-silicates 19–21 with SiO6 skeletons were synthesized for the first time — solvent-free or as well-defined solvates. The already known compound 18 was resynthesized for its characterization by crystal structure analysis. The identities of all compounds were established by elemental analyses (C, H, N), solution NMR studies (1H, 13C, and 29Si except for 18, only 29Si NMR for 20), and solid-state 29Si VACP/MAS NMR experiments. In addition, compounds 18·2NH3·2H2O, mer-19, fac-20·½C4H8O2, and (R,R/S,S)-21 were structurally characterized by single-crystal X-ray diffraction. The l6Si-silicates 19–21 were synthesized by reaction of tetramethoxysilane or tetrachlorosilane with two or three molar equivalents of the respective α-hydroxy carboxylic acid and two molar equivalents of the respective amine. Compounds 19–21 represent the first l6Si-silicates with ligands derived from α-hydroxycarboxylic acids. In addition, 21 is the first silicon compound containing tridentate citrato(3–) ligands. Apart from the expanded knowledge about l6Si-silicates with SiO6 skeletons, the compounds studied allow some insight into the stereochemistry of such compounds. It remains an open question as to whether or not l6Si-silicates of this particular formula type have any potential relevance for silicon biochemistry (SiO2 biomineralization). 8.4 Synthesis and characterization of tetracoordinate silicon compounds In the course of these investigations, the silanes 25 and 27 were synthesized for the first time, and the syntheses of the already known compounds 22–24 could be improved. The identities of all compounds were established by elemental analyses (C, H, N), solution NMR studies (1H, 13C, and 29Si), and solid-state 29Si VACP/MAS NMR experiments (23×EtOAc only). In addition, compounds 23×EtOAc and 25–27 were structurally characterized by single-crystal X-ray diffraction. The improved synthesis of 22 was achieved by the reaction of 1,2-bis(diethylamino)-1,1,2,2-tetraphenyldisilane with acetyl chloride to give 1,2-dichloro-1,1,2,2-tetraphenyldisilane, followed by its hydrolysis. The crystallization of the macrocyclic siloxane 23 could be improved, and the solvate 23×EtOAc was structurally characterized by X-ray diffraction. In the course of the crystallization of 22, also crystals of the corresponding disiloxane 26 were obtained that allowed a structural characterization by single-crystal X-ray diffraction. The silane 24 was synthesized by using two novel strategies, (i) the reaction of bis(chloromethyl)diphenylsilane with trifluoromethanesulfonic acid, followed by triethylammonium chloride, and (ii) the chloromethylation of chloro(chloromethyl)bis(diethylamino)silane with BrCH2Cl/n-BuLi, followed by reaction with benzoyl chloride. The silane 27 was synthesized from tetrachlorosilane by a four-fold chloromethylation with BrCH2Cl/n-BuLi. The silane 25 was synthesized from trimethoxy[(2,2,6,6-tetramethylpiperidino)methyl]silane by repeated treatment with tetrachlorosilane. KW - Silicate KW - Silicium KW - Pentakoordination KW - Tetrakoordinierte Verbindungen KW - Chemische Synthese KW - Silicium KW - Pentakoordination KW - Hexakoordination KW - Silane KW - Siloxane KW - silicon KW - pentacoordination KW - hexacoordination KW - silanes KW - siloxanes Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-2972 ER -