TY - THES A1 - Langlhofer, Georg T1 - Über die Bedeutung intrazellulärer Subdomänen des Glycinrezeptors für die Kanalfunktion T1 - Investigations into the relevance of glycine receptor intracellular subdomains to receptor channel function N2 - Der zur Familie der pentameren ligandengesteuerten Ionenkanäle zugehörige Glycinrezeptor (GlyR) ist ein wichtiger Vermittler synaptischer Inhibition im Zentralnervensystem von Säugetieren. GlyR-Mutationen führen zur neurologischen Bewegungsstörung Hyperekplexie. Aufgrund fehlender struktureller Daten ist die intrazelluläre Loop-Struktur zwischen den Transmembransegmenten 3 und 4 (TM3-4 Loop) eine weitgehend unerforschte Domäne des GlyR. Innerhalb dieser Domäne wurden Rezeptortrunkierungen sowie Punktmutationen identifiziert. Rezeptortrunkierung geht mit Funktionslosigkeit einher, welche jedoch durch Koexpression des fehlenden Sequenzabschnitts zum Teil wiederhergestellt werden kann. Innerhalb dieser Arbeit wurde die Interaktion zwischen trunkierten, funktionslosen GlyR und sukzessiv verkürzten Komplementationskonstrukten untersucht. Dabei wurden als Minimaldomänen für die Interaktion das C-terminalen basische Motive des TM3-4 Loops, die TM4 sowie der extrazelluläre C-Terminus identifiziert. Die Rückkreuzung transgener Mäuse, die das Komplementationskonstrukt iD-TM4 unter Kontrolle des GlyR-Promotors exprimierten, mit der oscillator-Maus spdot, die einen trunkierten GlyR exprimiert und 3 Wochen nach der Geburt verstirbt, hatte aufgrund fehlender Proteinexpression keinen Effekt auf die Letalität der Mutation. Des Weiteren wurde die Bedeutsamkeit der Integrität beider basischer Motive 316RFRRKRR322 und 385KKIDKISR392 im TM3-4 Loop in Kombination mit der Loop-Länge für die Funktionalität und das Desensitisierungsverhalten des humanen GlyRα1 anhand von chimären Rezeptoren identifiziert. Eine bisher unbekannte Patientenmutation P366L innerhalb des TM3-4 Loops wurde mit molekularbiologischen, biochemischen und elektrophysiologischen Methoden charakterisiert. Es wurde gezeigt, dass die mutierten Rezeptorkomplexe in vitro deutlich reduzierte Glycin-induzierte Maximalströme sowie eine beschleunigte Schließkinetik aufweisen. P366L hat im Gegensatz zu bereits charakterisierten Hyperekplexiemutationen innerhalb des TM3-4 Loops keinen Einfluss auf die Biogenese des Rezeptors. P366 ist Teil einer möglichen Poly-Prolin-Helix, die eine Erkennungssequenz für SH3-Domänen darstellt. Ein potenzieller Interaktionspartner des TM3-4 Loops des GlyRα1 ist Collybistin, welches eine wichtige Rolle bei der synaptischen Rezeptorintegration spielt und die Verbindung zum Zytoskelett vermittelt. An der inhibitorischen Synapse verursacht P366L durch die Reduzierung postsynaptischer Chloridströme, das beschleunigte Desensitisierungsverhalten des GlyRα1 sowie ein verändertes Interaktionsmotiv Störungen der glycinergen Transmission, die zur Ausprägung phänotypischer Symptome der Hyperekplexie führen. N2 - The glycine receptor (GlyR) belongs to the superfamily of pentameric ligand-gated ion channels and mediates synaptic inhibition in the central nervous system of mammals. GlyR mutations lead to the neuromotor disorder hyperekplexia. Due to the lack of structural data, the intracellular loop between transmembrane segments 3 and 4 (TM3-4 Loop) is considered as the most unexplored domain of the GlyR. Within this domain receptor truncations as well as point mutations have been identified. Receptor truncation correlates with non-functionality that can be partially restored by coexpression of the missing sequence. In this work, the interaction between a truncated non-functional GlyR and successively truncated complementation constructs was investigated. The C-terminal basic motif of the TM3-4 loop, the TM4 and the C-Terminus were identified as the minimal domain required for interaction. Backcrossing of a transgenic mouse line expressing the complementation construct iD-TM4 under the control of the GlyR promotor, with the oscillator mouse spdot expressing a truncated GlyR leading to death 3 weeks after birth, was unsuccessful and did not influence the lethality of the mutation, most probably due to the lack of transgene protein expression. In addition the importance of the integrity of both basic motifs 316RFRRKRR322 and 385KKIDKISR392 within the TM3-4 loop in combination with loop length were shown to be essential for functionality and desensitization behavior of the human GlyRα1 using chimeric receptors. An unknown TM3-4 loop mutation P366L was characterized using biomolecular, biochemical and electrophysiological approaches. It was demonstrated that mutated receptor complexes display remarkably reduced glycine-induced maximal currents in addition to accelerated channel closing kinetics in vitro. In contrast to previously analyzed hyperekplexia mutations within the TM3-4 loop, P366L exhibits no influence on receptor biogenesis. P366 is located in a sequence probably forming a poly-proline helix, which serves as a recognition sequence for SH3 domains. One prospective interaction partner is collybistin, which plays a major role in the process of synaptic receptor integration and connects the receptor complex to the cytoskeleton. At the site of the inhibitory synapse, P366L causes reduced chloride currents, accelerated desensitization behavior of the GlyRα1 and an altered interaction motif leading to disturbed glycinergic neurotransmission that result in formation of phenotypic symptoms of hyperekplexia. KW - Glycinrezeptor KW - intrazelluläre Domäne KW - Hyperekplexie KW - intracellular domain KW - hyperekplexia KW - Bewegungsstörung KW - Synapse KW - Ionenkanal Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140249 ER - TY - THES A1 - Fuhl, Isabell T1 - Untersuchung der synaptischen Lokalisation des heteromeren Glycin-Rezeptors in einem neuen Mausmodell der \(Startle\) Erkrankung - mit Fokus auf die GlyR-β-Untereinheit - T1 - Investigation of the synaptic localisation of the heteromeric glycine receptor in a new mouse model of startle disease - with a focus on the GlyR-β subunit N2 - Der Glycin-Rezeptor ist Teil der inhibitorischen liganden-gesteuerten Ionenkanäle im ZNS und wird am stärksten im adulten Rückenmark sowie im Hirnstamm exprimiert. In der Nerv-Muskel-Synapse sind GlyR für die rekurrente Hemmung der Motoneuronen wichtig und steuern das Gleichgewicht zwischen Erregung und Hemmung der Muskelzellen. Für die glycinerge Neurotransmission sind neben den präsynaptischen GlyR 𝛼1 insbesondere postsynaptische GlyR 𝛼1/𝛽 verantwortlich. Durch Mutationen des GlyR entsteht das Erkrankungsbild der Hyperekplexie mit übersteigerter Schreckhaftigkeit, Muskelsteifheit und Apnoe. Hauptursächlich dafür sind Mutationen im GLRA1-Gen. Die shaky Maus stellt ein gutes Modell zur Erforschung dieser seltenen Erkrankung dar. Die shaky Missense-Mutation Q177K in der extrazellulären 𝛽8-𝛽9 Schleife der Glycin- Rezeptor-𝛼1-Untereinheit zeigte strukturell ein gestörtes Wasserstoffbrückennetzwerk. Funktionell konnten eingeschränkt leitfähige Ionenkanäle identifiziert werden. Der letale Phänotyp äußert sich beim homozygoten shaky Tier durch Schrecksymptome mit einem einhergehenden zunehmenden Gewichtsverlust. Die Quantifizierung der Oberflächenexpression deutete auf einen Verlust synaptischer GlyR 𝛼1/𝛽 hin. Aussagen bezüglich der GlyR-𝛽-Untereinheit, die Teil des synaptischen GlyR Komplexes ist, waren aufgrund fehlender stabiler Antikörper bisher nicht möglich. Das neuartige KI- Mausmodell Glrb eos exprimiert endogen fluoreszierende 𝛽 -Untereinheiten und ermöglicht damit erstmalig eine Betrachtung der GlyR- 𝛽-Expression in Tiermodellen der Startle Erkrankung. Ziel dieser Arbeit war es, die Auswirkungen der shaky Mutation auf die Interaktion mit der 𝛽 -Untereinheit und Gephyrin zu erforschen. Dafür wurden Markerproteine der glycinergen Synapse in Rückenmarksneuronen der Kreuzung Glrb eos x Glra1 sh gefärbt und quantifiziert. Die durchgeführte Gewichtsbestimmung der Nachkommen im zeitlichen Verlauf zeigte keinen Einfluss der eingefügten mEos4b-Sequenz auf das Körpergewicht der Tiere und schließt damit funktionelle Einschränkungen bedingt durch die mEos4b-Sequenz aus. Zur Verstärkung des 𝛽 eos-Signals wurde ein Antikörper verwendet. Die Quantifizierung der GlyR- 𝛽- Untereinheit an Rückenmarksneuronen zeigte für homozygote shaky Tiere im Vergleich zum Wildtyp signifikant reduzierte 𝛽eos Oberflächenexpressionen in Gephyrin Clustern sowie signifikant erniedrigte Kolokalisationen von Gephyrin/𝛼1, 𝛽eos/𝛼1 und 𝛽eos/Gephyrin. Die mutierte GlyR-𝛼1- Untereinheit wurde hingegen vermehrt an der Oberfläche in shaky Tieren exprimiert. Die Ergebnisse der Rückenmarksschnitte unterstützen diese Befunde aus den Primärneuronen. Die Untersuchung der Präsynapse erbrachte für Glrb eos/eos x Glra1 sh/sh eine signifikant verminderte Synapsin und Synapsin/𝛼1 Expression. Die Ergebnisse dieser Arbeit erweitern die Daten früherer Arbeiten zur shaky Maus und zeigen einen starken Verlust synaptischer GlyR 𝛼 1/ 𝛽 an der Oberfläche von Motoneuronen. Ein möglicher kompensatorischer Versuch durch erhöhte 𝛼1 Expression bleibt infolge der Funktionsbeeinträchtigung dieser mutierten GlyR- 𝛼 1 Rezeptoren erfolglos mit letalem Ausgang. In vorherigen Arbeiten wurde vermutet, dass die Mutation in der extrazellulären Bindungsstelle in der Lage ist, Konformationsänderungen in die TM3-TM4-Schleifenstruktur zu übertragen und dadurch die Gephyrin Bindung und synaptische Verankerung zu stören. Die Daten dieser Arbeit stützen diese Annahme und weisen darüber hinaus auf eine gestörte Rezeptorkomplexbindung hin. Die vorliegende Arbeit trägt somit zum besseren Verständnis der Startle Erkrankung auf synaptischer Ebene bei. N2 - The glycine receptor belongs to the inhibitory ligand-gated ion channels in the CNS and is most strongly expressed in the adult spinal cord and brainstem. In the nerve-muscle synapse, GlyR are important for recurrent inhibition of motor neurons and control the balance between excitation and inhibition of muscle cells. In addition to the presynaptic GlyR 𝛼1, postsynaptic GlyR 𝛼1/ 𝛽 in particular are responsible for glycinergic neurotransmission. Mutations of the GlyR lead to the clinical symptoms of hyperekplexia with excessive startle responses, muscle stiffness and apnea. The main causes are mutations in the GLRA1 gene. The shaky mouse is a good model for studying this rare disease. The shaky missense mutation Q177K, located in the extracellular 𝛽8-𝛽9 loop of the glycine receptor 𝛼1 subunit, showed a disrupted hydrogen bond network at the structural level. Functionally restricted conductive ion channels could be identified. The lethal phenotype in the homozygous shaky mouse is manifested by startle symptoms with accompanied increasing weight loss. Quantification of surface expression indicated a loss of synaptic GlyR 𝛼1/𝛽. So far, statements regarding the GlyR-𝛽-subunit which is part of the synaptic receptor complex had not been possible due to the lack of stable antibodies. The novel KI mouse model Glrb eos endogenously expresses fluorescent β-subunits and thus allows an observation of GlyR 𝛽-expression in animal models of startle disease for the first time. The aim of this study was to explore the effects of the shaky mutation on the interaction with the 𝛽-subunit and gephyrin. To this aim, marker proteins of the glycinergic synapse were stained and quantified in spinal cord neurons of Glrb eos x Glra1 sh. The performed weight determination of the littermates over time showed no influence of the inserted mEos4b-sequence on the bodyweight of the animals, thus ruling out functional limitations caused by the mEos4b-sequence. An antibody was used to amplify the 𝛽eos signal. Quantification of the GlyR-𝛽- subunit at spinal cord neurons demonstrated significantly reduced 𝛽eos surface expressions in gephyrin clusters as well as significantly decreased colocalisations of gephyrin/α1, 𝛽eos/𝛼1 and 𝛽eos/gephyrin for homozygous shaky animals compared to wild type. The mutant GlyR- 𝛼1 subunit exhibited enhanced expression at the surface in isolated spinal cord neurons from shaky animals. Results from spinal cord tissues supported these findings from primary neurons. Examination of presynapses revealed significantly decreased synapsin and synapsin/ 𝛼1 expression for Glrb eos/eos x Glra1 sh/sh. The results of this study extend the data of previous studies on the shaky mouse, showing a severe loss of synaptic GlyR 𝛼1/𝛽 at the surface of motor neurons. A potential compensatory attempt through increased α1 expression remains unsuccessful with a lethal outcome due to the functional impairment of these mutated GlyR 𝛼1 receptors. Previous studies have suggested that the mutation in the extracellular binding site is able to transduce conformational changes in the TM3-TM4 loop structure, thereby disrupting gephyrin binding and synaptic integration. The data in this study support this hypothesis and furthermore indicate a disrupted receptor complex binding. The present study thus contributes to a better understanding of Startle disease at the synaptic level. KW - Glycinrezeptor KW - glycine receptor KW - shaky mouse KW - startle disease KW - Hyperekplexie KW - Mausmodell KW - inhibitory snapse Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-348328 ER - TY - THES A1 - Drehmann, Paul T1 - SLC7A10 als neues Gen für humane Hyperekplexie T1 - SLC7A10 - a novel candidate gene for human hyperekplexia N2 - Neuste Studien haben ergeben, dass Asc-1 Knock-out Mäuse aufgrund einer verminderten intrazellulären Glycinkonzentration in synaptischen Boutons im Gehirn, einen Hyperekplexie-ähnlichen Phänotyp entwickeln. Aufgrund nicht vollständig geklärter Ursachen für die Entstehung des Krankheitsbildes der Hyperekplexie beim Menschen, wurde eine Kohorte von 51 Patienten zusammengetragen, um vor dem Hintergrund der Forschungsergebnisse zu Asc-1 im Tiermodell, das kodierende Gen beim Menschen SLC7A10 als mögliches Kandidatengen auf Sequenzalterationen zu untersuchen. Hierfür wurde aus Vollblut der an Hyperekplexie erkrankten Patienten genomische DNA isoliert, um mittels PCR und anschließendem Screening der Sequenzen, Mutationen innerhalb funktionell wichtiger Bereiche des Gens zu eruieren. Neben weiteren Sequenzunterschieden, die meist in Introns gefunden wurden, wurde die codierende Mutation G307R innerhalb von Exon 7 identifiziert, die letztendlich der Grund für eine Versuchsreihe war, um zu hinterfragen, ob dieser Aminosäureaustausch in der Proteinsequenz funktionelle Konsequenzen zur Folge hat. HEK293-Zellen wurden mit dem zuvor hergestellten Klon G307R transfiziert, um über Biotinylierung, immuncytochemische Färbungen und funktionelle Untersuchungen die Aktivität des Transporters zu beurteilen. Hier zeigte sich ein Funktionsverlust von über 95 %, bei uneingeschränkter Oberflächenexpression. ASC-1 bestätigt sich damit als neue Ursache in der Ausprägung von Hyperekplexie. Ferner können Zusammenhänge mit geistiger Retardierung und eingeschränkter neuronaler Plastizität bestehen. N2 - Recent studies have shown that Asc-1 knock-out mice leads to reduced intracellular glycine concentration in synaptic boutons in the brain followed by a development of a hyperekplexia-like phenotype. In humans, the underlying cause for hyperekplexia is not complexly understood. Based on findings in the Asc-1 knockout mouse model, a patient cohort of 51 patients was used to identify possible sequence alterations in the corresponding Gen SLC7A10 as a novel candidate gene for human hyperekplexia. For this purpose, genomic DNA was extracted from blood samples of patients suffering from hyperekplexia to identify mutations within functionally important areas of the gene by means of PCR and subsequent analyses of the determined sequences. Besides other sequence alterations mainly in introns, the coding mutation G307R within exon 7 was identified and used to investigate functional consequences of this amino acid exchange in an experimental series. The clone ACS-1 G307R was transfected into HEK293 cells to assess the activity of the transporter via biotinylation, immunocytochemical stainings, and functional uptake assays. Our results showed an almost loss of function with more than 95 % reduction in the transport activity although surface expression was unaffected. In conclusion, the ASC-1 mutation was confirmed as a novel cause for human hyperekplexia. In addition, mental retardation and restricted neuronal plasticity might play a role during disease manifestation. KW - Knockout KW - Glycin KW - Aminosäuren KW - Nervenzelle KW - SLC7A10 KW - Hyperekplexie KW - ASC-1 Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159736 ER -