TY - THES A1 - Scherer, Helmut T1 - Integration von aktiven und passiven optischen Bauelementen auf Basis photonischer Kristalle bei 1,3 und 1,5 μm Wellenlänge T1 - Integration of active and passive optical elements based on photonic crystals at 1.3 and 1.5 µm wavelength N2 - Im Rahmen der Arbeit wurden Halbleiterlaser aus photonischen Kristallen (PK) im Wellenlängenbereich von 1,3 und 1,5 µm untersucht. Insbesondere die Integration der Laser mit weiteren Bauelementen für die optische Telekommunikation stand im Vordergrund der Untersuchungen. Neben den versch. Anwendungen unterscheidet sich auch das Grundmaterial. Der kurzwellige Bereich um 1,3 µm wurde auf GaAs-basierten Material bearbeitet, die langwelligen Laser wurden auf InP-Basis bearbeitet. Photonische Kristalle bestehen aus einer periodisch angeordneten Brechungsindexvariation zwischen Luftlöchern in einer Halbleitermatrixstruktur. Die Ausbreitung elektromagnetischer Wellen wird durch das periodische Potential beeinflusst und es können z. B. Spiegel hergestellt werden. Die Reflektivität kann durch Variation der PK-Struktur angepasst werden. Weiterhin können Liniendefekte als effektive Wellenleiter benutzt werden. Es wurden mehrstufige Y-Kombinierer zur Zusammenführung der Emission mehrerer Laser auf der komplett aktiven Laserstruktur hergestellt. Die Definition der Bauteile erfolgte durch optische bzw. Elektronenstrahllithographie, die Strukturierung wurde mittels nass- und trockenchemischer Ätzverfahren sichergestellt. Weiterhin wurden Stegwellenleiter basierte Mikrolaser auf GaInNAs-Material hergestellt. Um abstimmbare Laser mit einem möglichst grossen Abstimmbereich herzustellen, wurden zwei Resonatoren mit unterschiedlicher Länge hergestellt. Zwischen beide Resonatoren wurde ein PK-Spiegel aus 2 bzw. 3 Lochreihen prozessiert. Dies ermöglicht das Abstimmen der Laser von 1307 bis 1340 nm. Im weiteren Verlauf wurden aktive und passive PK-Strukturen auf GaAs-Basis integriert. Hierzu wurden DWELL-Strukturen auf Basis von InGaAs/GaAs Quantenpunkten verwendet. Durch das Ankoppeln der Glasfaser an die Frontfacette des Lasers ist der laterale Abstand der Laserstrukturen durch die Dicke der Glasfaser auf 250 µm festgelegt. Durch die verlustarme Kopplung mehrerer Laser in einen Auskoppelwellenleiter kann die Flächenausnutzung deutlich gesteigert werden. Im Rahmen der Arbeit wurden vier Halbleiterlaser über PK Wellenleiter miteinander verbunden. Die gezeigten Laserstrukturen weisen eine Länge von unter 1,5 mm bei einer Gesamtbreite von 160 µm auf. Dies bedeutet, dass ein komplettes Modul schmaler als eine Glasfaser realisiert werden kann. Es konnte gezeigt werden, dass alle 4 Laser unabhängig von einander wellenlängenstabil ansteuerbar und abstimmbar sind. Die Seitenmodenunterdrückung im parallelen cw-Betrieb aller vier Laser liegt für den Laser mit der geringsten Seitenmodenunterdrückung immer noch bei mehr als 20 dB und der Leistungsunterschied zwischen den vier Lasern ist unter 2,5 dB. Weiterhin wurden PK-Strukturen bei einer Wellenlänge von 1,5 µm auf einem InP-Basis untersucht. Im Bereich der passiven Charakterisierung wurden W3-Wellenleiter spektral vermessen. Zu Beginn wurde das sog. Ministopband (MSB) des W3-Wellenleiters untersucht, um im Anschluss die Kopplung von zwei Wellenleitern mit Hilfe des Übersprechens im Bereich des MSB´s zu analysieren. Hierzu wurden zwei W3-Wellenleiter parallel zueinander strukturiert. Im Wellenlängenbereich des MSB erfolgt eine Übertragung vom Referenz- in den Monitorkanal. Durch die geometrischen Parameter der PK-Strukturen kann die spektrale Lage und Breite des Filters eingestellt werden. Die Filterung durch Übersprechen vom Referenz- in den Monitorkanal ist mit einer spektralen Breite von mehr als 10 nm noch relativ breitbandig. Daher wurden PK-Resonatoren hergestellt. Hierzu wurden Spiegel in die Wellenleiter prozessiert. Es wurden Filter mit einer spektralen Breite von weniger als 0,5 nm und Güten von über 9000 erreicht. Im Anschluss wurden die aktiven und passiven Bauteile auf einem Chip integriert. Die Laser erreichten eine max. Leistung von 28 mW. Die Integration zusätzlicher Funktionen hinter den Laser bedeutet eine Erhöhung der Komplexität und des Funktionsumfangs, ohne die Emissionsleistung des Lasers zu senken. Zusätzlich vereinfacht sich der Aufbau zur Charakterisierung und zum Betrieb der Laser. In den gezeigten Bauteilen wurde die durch den Laserrückspiegel transmittierte Lichtmode mittels eines Tapers in einen PK Wellenleiter geführt. Seitlich und am Ende des Wellenleiters wurde die erreichte Intensität mittels zweier getrennter Photodioden (PD) gemessen. Damit wird das Konzept der passiv untersuchten Wellenleiter zusammen mit den Lasern integriert. Bei konstanter Leistung und Wellenlänge müssen die beiden Photoströme konstant sein. Durch die sehr kompakte Bauform am Ende des Lasers mit einer zusätzlichen Länge von weniger als 100 µm ist das Bauelement sehr Verlustarm. Ändert sich die Wellenlänge ungewollt, so ändert sich das Verhältnis der Ströme in den PD. Für die Charakterisierung des Wellenlängenmonitors beträgt der Abstimmbereich 30 nm. N2 - This work presents fabricated and characterized semiconductor lasers with photonic crystal (PhC) structures in the wavelength ranges of 1.3 and 1.5 µm. Especially the integration of lasers with optical components, based on PhC-structures, relevant for future telecommunication applications have been investigated. Lasers at 1.3 µm wavelength have been fabricated on GaAs-substrates. Photonic Crystals consist of a periodic variation of the refractive index between air holes in a semiconductor matrix. The propagation of electromagnetic waves can be affected by the periodic potential and e. g. mirrors for electromagnetic waves can be fabricated. The reflectivity of PhC-structures used as mirrors for lasers can be adapted by varying the geometry. Line defects, designed into the triangular, periodic structure can be further used as effective, low loss waveguides. This work shows the integration of multi-level Y-coupler on all active material. The patterning of the elements is done by optical- or electron-beam-lithography. Etching into the semiconductor is done by using wet- and dry-etching processes. The fabrication and characterization of ridge waveguide based microlasers on GaInNAs-material together with high reflectivity PhC mirrors at the front and rear end of a ridge-waveguide was also investigated. Two resonators with different lengths were defined for the realization of widely tunable semiconductor lasers. PhC-mirrors with 2 or 3 rows of holes are fabricated between both resonators. The reflectivity is between 40 and 60%. The coupling between both resonators ensures effective lasing in cw-mode with a tuning range from 1307 to 1340 nm. The following part describes the integration of active and passive PhC-structures, based on GaAs-material. The laser emission is generated by InGaAs/GaAs-quantum dots embedded in a DWELL-structure. The semiconductor chip is coupled to an optical fiber with a lateral distance of about 250 µm (the fiber diameter). Semiconductor lasers are much smaller than that. The efficient coupling of multiple lasers into one waveguide increases the yield of the semiconductor without additional process complexity. To increase the yield of the semiconductor, four lasers are coupled into one waveguide by use of PhC Y-couplers. The lasers have a length of less than 1.5 mm and a width which is less than 160 µm. This means that one complete laser module with four independently tunable lasers, can be coupled into one optical fiber. It was possible to operate and tune all four lasers independent from each other. The SMSR of the parallel operated lasers in cw-mode is above 20 dB for the laser with the smallest SMSR and the difference in the output power between all four lasers is below 2,5 dB. In addition to the integration of active and passive components based on GaAs semiconductors further components were integrated to one functional module on InP. First, the passive components were characterized. The so called mini-stop-band (msb) of a W3-waveguide was measured. After that, two waveguides were processed parallel and the coupling from one into the other waveguide was analyzed. With use of the coupling effect a wavelength selective filter can simply be realized. The wavelength range and the position can be selected by the geometrical parameters of the PhC structures. The wavelength selectivity is too wide for a practical use in the optical telecommunication with a width of about 10 nm. Further effort was made to increase the spectral resolution of the filter by the investigation of resonators that were fabricated as mirrors in PhC-waveguides. With the approach, the resolution of the characterized resonators is better than 0,5 nm and the Q-factor which was measured being better than 9000. After that the passive components were integrated with active components. The laser structures were completely fabricated wit PhC structures. The maximum output power is up to 28 mW. After the characterization of the laser structure was completed, the described passive components were fabricated behind the rear mirror of the laser. The fabrication of additional components behind the rear mirror of the laser leads to a higher functionality of the module. The laser power which is transmitted through the rear mirror of the laser is collected by a PhC-taper-structure and guided into a PhC-waveguide. Two separate photodiodes (PD) measure the laser intensity. The already characterized passive component is integrated with lasers. A constant power of the laser at a constant wavelengths leads to a constant current relation of both PDs. The coupling relation is only defined by the geometry. The passive component is less than 100 µm long and less than 80 µm wide. Therefore the component has only low losses inside the waveguide. Changes of the laser wavelength change the relation between the two PDs. Lasers with a tuning range of 30 nm were made. KW - Halbleiterlaser KW - Lithographie KW - photonische Kristalle KW - Optoelektronik KW - Halbleiterlaser KW - Elektronenstrahllithografie KW - InP KW - GaAs KW - photonic crystal KW - optoelectronics KW - semiconductor laser KW - electron beam lithography KW - InP KW - GaAs Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-52150 ER - TY - THES A1 - Schwertberger, Ruth T1 - Epitaxie von InAs-Quanten-Dash-Strukturen auf InP und ihre Anwendung in Telekommunikationslasern T1 - Epitaxy of InAs quantum dash structures on InP and their application in telecommunication lasers N2 - Die vorliegende Arbeit beschäftigt sich mit der Herstellung und Charakterisierung von niedrigdimensionalen Strukturen für den Einsatz als aktive Schicht in InP-Halbleiterlasern. Quantenpunktstrukturen als Lasermedium weisen gegenüber herkömmlichen Quantenfilmlasern einige Vorteile auf, wie beispielsweise geringe Schwellenstromdichten, breites Verstärkungsspektrum und geringe Temperatursensitivität der Emissionswellenlänge. Ziel dieser Arbeit ist es, diese speziellen Vorteile, die im GaAs-System größtenteils nachgewiesen sind, auch auf das InP-System zu übertragen, da dieses für die Telekommunikationswellenlänge 1.55 µm prädestiniert ist. Die vorgestellten Strukturen wurden mittels einer Gasquellen-Molekularstrahlepitaxie-Anlage unter Verwendung der alternativen Gruppe-V-Precursor Tertiärbutylphosphin (TBP) und -arsin (TBA) hergestellt. Die Bildung der Quantenpunktstrukturen wurde zunächst an Hand von Teststrukturen optimiert. Scheidet man InAs auf einem InP(100)-Substrat ab, so bilden sich – anders als auf GaAs – keine runden InAs-Quantenpunkte, sondern unregelmäßige, strichförmige Strukturen mit einer klaren Vorzugsorientierung, sogenannte Dashes. Verschiedene Wachstumsparameter, wie die Menge an deponiertem InAs, der Strukturaufbau oder der Wachstumsmodus, lassen eine Beeinflussung der Emissionseigenschaften zu, die mittels Photolumineszenz (PL)-Spektroskopie untersucht wurden. So kann die Emissionswellenlänge der Dashes sehr genau und über einen großen Bereich zwischen 1.2 und 2.0 µm über die nominelle Dicke der Dash-Schicht festgelegt werden. Dieser Zusammenhang lässt sich auch nutzen, um durch die Kombination von Schichten unterschiedlicher Dash-Größe eine extreme Verbreiterung des Verstärkungsspektrums auf über 300 nm zu erzielen. Neben der Hauptanwendung als Telekommunikationslaser sind auch Einsatzmöglichkeiten in der Gassensorik für einen Wellenlängenbereich zwischen 1.8 und 2.0 µm denkbar. Dieser ist neben der Verwendung extrem dicker Schichten durch das Prinzip des migrationsunterstützten Wachstums (engl. migration enhanced epitaxy) oder durch die Einbettung der Dash-Schichten in einen InGaAs-Quantenfilm ("Dash-in-a-Well"-Struktur) realisierbar. Letzteres zieht eine starke Rotverschiebung um etwa 130 meV bei gleichzeitiger schmaler und intensiver Emission nach sich. Da die Dashes einige sehr interessante Eigenschaften aufweisen, wurde ihre Eignung als aktive Schicht eines InP-Halbleiterlasers untersucht. Zunächst wurden der genaue Schichtaufbau, speziell die Fernfeldcharakteristik, und die Wachstumsparameter optimiert. Ebenso wurde der Effekt eines nachträglichen Ausheilschritts diskutiert. Da die speziellen Vorteile der Quanten-Dash(QD)-Strukturen nur Relevanz haben, wenn auch ihre Grunddaten einem Quantenfilmlaser (QW-Laser) auf InP ebenbürtig sind, wurde besonderer Wert auf einen entsprechenden Vergleich gelegt. Dabei zeigt sich, dass die Effizienzen ebenso wie die Absorption der QD-Laser nahezu identisch mit QW-Lasern sind. Die Schwellenstromdichten weisen eine stärkere Abhängigkeit von der Länge des Laserresonators auf, was dazu führt, dass ab einer Länge von 1.2 mm QD-Laser geringere Werte zeigen. Die Temperaturabhängigkeit der Schwellenstromdichte, die sich in der charakteristischen Temperatur T0 äussert, zeigt dagegen für QD-Laser eine stärkere Sensitivität mit maximalen T0-Werten von knapp über 100 K. Betrachtet man das Emissionsspektrum der QD-Laser, so fällt die starke Blauverschiebung mit abnehmender Bauteillänge auf. Gleichzeitig zeigen diese Laser im Vergleich zu QW-Lasern eine deutlich größere Temperaturstabilität der Emissionswellenlänge. Beide Eigenschaften haben ihre Ursache in der flachen Form des Verstärkungsspektrums. Zusätzlich wurden einige der an Hand der Teststrukturen gezeigten Dash-Eigenschaften auch an Laserstrukturen nachgewiesen. So lässt sich durch Variation der Dash-Schichtdicke von 5 auf 7.5 ML eine Verschiebung der Emissionswellenlänge um bis zu 230 nm realisieren, wobei dieses Verfahren damit noch nicht ausgereizt ist. Ebenso wurde auch ein Überlapp aus sechs jeweils verschieden dicken Dash-Schichten in eine Laserstruktur eingebaut. An Hand von Subschwellspektren wurde eine Verstärkungsbreite von etwa 220 nm nachgewiesen, die eine Abdeckung des gesamten Telekommunikationsbandes durch eine einzige Laserstruktur erlauben würde. Aus Quanten-Dash-Material prozessierte Stegwellenleiter (RWG)-Laser weisen sehr vielversprechende Daten mit hohen Ausgangsleistungen bis 15 mW pro Facette und niedrigen Schwellenströmen auf. Damit schafft diese Arbeit die Grundvoraussetzungen, um InAs-Quanten-Dashes als echte Alternative zu herkömmlichen Quantenfilmen in InP-Halbleiterlasern zu etablieren. Besonders das breite Verstärkungsspektrum und die hohe Temperaturstabilität der Emissionswellenlänge zeichnen dieses Material aus. N2 - In this work the fabrication and characterisation of low-dimensional structures that can be used as active regions in InP semiconductor lasers are presented. Compared to conventional quantum well lasers quantum dot material shows some advantages like low threshold current density, broad gain spectrum and low temperature sensitivity of the emission wavelength. Most of these special advantages have already been demonstrated in the GaAs system and should be transferred to the InP system which is the material of choice for the telecommunication wavelength 1.55 µm. The presented structures were grown in a gas source molecular beam epitaxy system using the alternative group-V-precursors tertiarybutylphosphine (TBP) and tertiarybutylarsine (TBA). In a first step the formation of the quantum dot-like structures was optimised in test samples. When InAs is deposited on an InP(100) substrate unlike on GaAs there are no circular InAs quantum dots formed, but irregular dash-like structures with a preferred orientation. Growth parameters like the amount of InAs deposited, the design of the structure or the growth mode allow an influence on the emission properties which were investigated by photoluminescence (PL) spectroscopy. Thus the emission wavelength of the dashes can be defined very accurately over a large region between 1.2 and 2.0 µm by varying the thickness of the dash layer. This dependence can be used to achieve an extreme broadening of the gain spectrum of over 300 nm by overlapping layers with different thicknesses. Beside the major application in telecommunication lasers the usage for gas sensing detectors in the wavelength range between 1.8 and 2.0 µm is also possible. In addition to the employment of extremely thick dash layers this region can be reached by the growth principle of migration enhanced epitaxy or by embedding the dash layers in an InGaAs quantum well in a so-called DWell structure. The latter involves a large red-shift of about 130 meV accompanied by a small and intense emission. With the dashes showing a very interesting behaviour their suitability as an active layer of an InP semiconductor laser needs to be investigated. The exact layer design, especially the farfield characteristic, and the growth parameters had to be optimised. Also the effect of a subsequent annealing step was discussed. As the special advantages of quantum dash (QD) lasers are only of importance if their basic data are comparable to a quantum well (QW) laser on InP much attention was paid to a corresponding comparison. It can be shown that the efficiencies and the absorption of the QD lasers are nearly similar to QW lasers. The threshold current densities have a stronger dependence on the resonator length resulting in lower values for quantum dash lasers above 1.2 mm cavity length. The temperature dependence of the threshold current density corresponding to the characteristic temperature T0 shows a stronger sensitivity for QD lasers with maximum T0 values of about 100 K. In the emission spectra of the dash lasers a strong blue-shift with decreasing device length is recognised. At the same time these lasers have a much larger temperature stability of the emission wavelength. Both effects have their reason in the smaller slope of the gain spectrum. Some of the dash properties shown for test structures were also demonstrated for laser structures. By varying the thickness of the dash layers from 5 to 7.5 MLs a shift of the emission wavelength of about 230 nm was realised bearing potential for an even further extension of this method. Also a stack of six dash layers all slightly different in thickness was embedded in a laser structure. Using subthreshold spectra a gain width of 220 nm was measured giving the opportunity to cover the whole telecommunication band with a single device. Ridge waveguide lasers processed from quantum dash material show promising results with high maximum output powers of up to 15 mW per facet and low threshold currents. This work creates the basis for establishing InAs quantum dash lasers as an alternative for conventional quantum well lasers in the InP system. Especially the broad gain spectrum and the high temperature stability of the emission wavelength distinguish this material. KW - Halbleiterlaser KW - Indiumphosphid KW - Indiumarsenid KW - Nanostruktur KW - Molekularstrahlepitaxie KW - Optoelektronik KW - Halbleiterlaser KW - Epitaxie KW - Quanten-Dash KW - InP KW - optoelectronics KW - semiconductor laser KW - epitaxy KW - quantum dash KW - InP Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14609 ER -