TY - THES A1 - Maier, Sebastian T1 - Quantenpunktbasierte Einzelphotonenquellen und Licht-Materie-Schnittstellen T1 - Quantum dot based single photon sources and light-matter-interfaces N2 - Die Quanteninformationstechnologie ist ein Schwerpunkt intensiver weltweiter Forschungsarbeit, da sie Lösungen für aktuelle globale Probleme verspricht. So bietet die Quantenkommunikation (QKD, engl. quantum key distribution) absolut abhörsichere Kommunikationsprotokolle und könnte, mit der Realisierung von Quantenrepeatern, auch über große Distanzen zum Einsatz kommen. Quantencomputer (engl. quantum computing) könnten von Nutzen sein, um sehr schwierige und komplexe mathematische Probleme schneller zu lösen. Ein grundlegender kritischer Baustein der gesamten halbleiterbasierten Quanteninformationsverarbeitung (QIP, engl. quantum information processing) ist die Bereitstellung von Proben, die einerseits die geforderten physikalischen Eigenschaften aufweisen und andererseits den Anforderungen der komplexen Messtechnik genügen, um die Quanteneigenschaften nachzuweisen und technologisch nutzbar machen zu können. In halbleiterbasierten Ansätzen haben sich Quantenpunkte als sehr vielversprechende Kandidaten für diese Experimente etabliert. Halbleiterquantenpunkte weisen große Ähnlichkeiten zu einzelnen Atomen auf, die sich durch diskrete Energieniveaus und diskrete Spektrallinien im Emissionsspektrum manifestieren, und zeichnen sich überdies als exzellente Emitter für einzelne und ununterscheidbare Photonen aus. Außerdem können mit Quantenpunkten zwei kritische Bausteine in der Quanteninformationstechnologie abgedeckt werden. So können stationäre Quantenbits (Qubits) in Form von Elektronenspinzuständen gespeichert werden und mittels Spin-Photon-Verschränkung weit entfernte stationäre Qubits über fliegende photonische Qubits verschränkt werden. Die Herstellung und Charakterisierung von quantenpunktbasierten Halbleiterproben, die sich durch definierte Eigenschaften für Experimente in der QIP auszeichnen, steht im Mittelpunkt der vorliegenden Arbeit. Die Basis für das Probenwachstum bildet dabei das Materialsystem von selbstorganisierten In(Ga)As-Quantenpunkten auf GaAs-Substraten. Die Herstellung der Quantenpunktproben mittels Molekularstrahlepitaxie ermöglicht höchste kristalline Qualitäten und bietet die Möglichkeit, die Quantenemitter in photonische Resonatoren zu integrieren. Dadurch kann die Lichtauskoppeleffizienz stark erhöht und die Emission durch Effekte der Licht-Materie-Wechselwirkung verstärkt werden. Vor diesem Hintergrund wurden in der vorliegenden Arbeit verschiedene In(Ga)As-Quantenpunktproben mit definierten Anforderungen mittels Molekularstrahlepitaxie hergestellt und deren morphologische und optische Eigenschaften untersucht. Für die Charakterisierung der Morphologie kamen Rasterelektronen- und Rasterkraftmikroskopie zum Einsatz. Die optischen Eigenschaften wurden mit Hilfe der Reflektions-, Photolumineszenz- und Resonanzfluoreszenz-Spektroskopie sowie Autokorrelationsmessungen zweiter Ordnung ermittelt. Der Experimentalteil der Arbeit ist in drei Kapitel unterteilt, deren Kerninhalte im Folgenden kurz wiedergegeben werden. Quasi-Planare Einzelphotonenquelle mit hoher Extraktionseffizienz: Planare quantenpunktbasierte Einzelphotonenquellen mit hoher Extraktionseffizienz sind für Experimente zur Spinmanipulation von herausragender Bedeutung. Elektronen- und Lochspins haben sich als gute Kandidaten erwiesen, um gezielt einzelne Elektronenspins zu initialisieren, manipulieren und zu messen. Ein einzelner Quantenpunkt muss einfach geladen sein, damit er im Voigt-Magnetfeld ein λ-System bilden kann, welches die grundlegende Konfiguration für Experimente dieser Art darstellt. Wichtig sind hier einerseits eine stabile Spinkonfiguration mit langer Kohärenzzeit und andererseits hohe Lichtauskoppeleffizienzen. Quantenpunkte in planaren Mikrokavitäten weisen größere Werte für die Spindephasierungszeit auf als Mikro- und Nanotürmchenresonatoren, dagegen ist bei planaren Proben die Lichtauskoppeleffizienz geringer. In diesem Kapitel wird eine quasi-planare quantenpunktbasierte Quelle für einzelne (g(2)(0)=0,023) und ununterscheidbare Photonen (g(2)indist (0)=0,17) mit hoher Reinheit vorgestellt. Die Quantenpunktemission weist eine sehr hohe Intensität und optische Qualität mit Halbwertsbreiten nahe der natürlichen Linienbreite auf. Die Auskoppeleffizienz wurde zu 42% für reine Einzelphotonenemission bestimmt und übersteigt damit die, für eine planare Resonatorstruktur erwartete, Extraktionseffizienz (33%) deutlich. Als Grund hierfür konnte die Kopplung der Photonenemission an Gallium-induzierte, Gauß-artige Defektstrukturen ausgemacht werden. Mithilfe morphologischer Untersuchungen und Simulationen wurde gezeigt, dass diese Defektkavitäten einerseits als Nukleationszentren für das Quantenpunktwachstum dienen und andererseits die Extraktion des emittierten Lichts der darunterliegenden Quantenpunkte durch Lichtbündelung verbessern. In weiterführenden Arbeiten konnte an dieser spezifischen Probe der fundamentale Effekt der Verschränkung von Elektronenspin und Photon nachgewiesen werden, der einen kritischen Baustein für halbleiterbasierte Quantenrepeater darstellt. Im Rahmen dieses Experiments war es möglich, die komplette Tomographie eines verschränkten Spin-Photon-Paares an einer halbleiterbasierten Spin-Photon Schnittstelle zu messen. Überdies konnte Zweiphotoneninterferenz und Ununterscheidbarkeit von Photonen aus zwei räumlich getrennten Quantenpunkten auf diesem Wafer gemessen werden, was ebenfalls einen kritischen Baustein für Quantenrepeater darstellt. Gekoppeltes Quantenfilm-Quantenpunkt System: Weitere Herausforderungen für optisch kontrollierte halbleiterbasierte Spin-Qubit-Systeme sind das schnelle und zerstörungsfreie Auslesen der Spin-Information sowie die Implementierung eines skalierbaren Ein-Qubit- und Zwei-Qubit-Gatters. Ein kürzlich veröffentlichtes theoretisches Konzept könnte hierzu einen eleganten Weg eröffnen: Hierbei wird die spinabhängige Austauschwechselwirkung zwischen einem Elektron-Spin in einem Quantenpunkt und einem Exziton-Polariton-Gas, welches in einem nahegelegenen Quantenfilm eingebettet ist, ausgenützt. So könnte die Spin-Information zerstörungsfrei ausgelesen werden und eine skalierbare Wechselwirkung zwischen zwei Qubits über größere Distanzen ermöglicht werden, da sich die Wellenfunktion von Exziton-Polaritonen, abhängig von der Güte des Mikroresonators, über mehrere μm ausdehnen kann. Dies und weitere mögliche Anwendungen machen das gekoppelte Quantenfilm-Quantenpunkt System sehr interessant, weshalb eine grundlegende experimentelle Untersuchung dieses Systems wünschenswert ist. In Zusammenarbeit mit der Arbeitsgruppe um Yoshihisa Yamamoto an der Universität Stanford, wurde hierzu ein konkretes Probendesign entwickelt und im Rahmen dieser Arbeit technologisch verwirklicht. Durch systematische epitaktische Optimierung ist es gelungen, ein gekoppeltes Quantenfilm-Quantenpunkt System erfolgreich in einen Mikroresonator zu implementierten. Das Exziton-Polariton-Gas konnte mittels eines Quantenfilms in starker Kopplung in einer Mikrokavität mit einer Rabi-Aufspaltung von VR=2,5 meV verwirklicht werden. Zudem konnten einfach geladene Quantenpunkte mit hoher optischer Qualität und klarem Einzelphotonencharakter (g(2)(0)=0,24) in unmittelbarer Nähe zum Quantenfilm gemessen werden. Positionierte Quantenpunkte: Für die Herstellung quantenpunktbasierter Einzelphotonenquellen mit hoher optischer Qualität ist eine skalierbare technologische Produktionsplattform wünschenswert. Dazu müssen einzelne Quantenpunkte positionierbar und somit deterministisch und skalierbar in Bauteile integriert werden können. Basierend auf zweidimensionalen, regelmäßig angeordneten und dadurch adressierbaren Quantenpunkten gibt es zudem ein Konzept, um ein skalierbares, optisch kontrolliertes Zwei-Qubit-Gatter zu realisieren. Das hier verfolgte Prinzip für die Positionierung von Quantenpunkten beruht auf der Verwendung von vorstrukturierten Substraten mit geätzten Nanolöchern, welche als Nukleationszentren für das Quantenpunktwachstum dienen. Durch eine optimierte Schichtstruktur und eine erhöhte Lichtauskopplung unter Verwendung eines dielektrischen Spiegels konnte erstmals Resonanzfluoreszenz an einem positionierten Quantenpunkt gemessen werden. In einem weiteren Optimierungsansatz konnte außerdem Emission von positionierten InGaAs Quantenpunkten auf GaAs Substrat bei 1,3 μm Telekommunikationswellenlänge erreicht werden. N2 - Quantum information technology is in the focus of worldwide intensive research, because of its promising solutions for current global problems. With tap-proofed communication protocols, the field of quantum key distribution (QKD) could revolutionize the broadcast of sensitive data and would be also available for large distance communication with the realization of quantum repeater systems. Quantum computing could be used to dramatically fasten the solution of difficult and complex mathematical problems. A critical building block of solid state based quantum information processing (QIP) is the allocation of semiconductor samples, which on the one side provide the desired quantum mechanical features and on the other side satisfy the requirements of the complex non-demolition measurement techniques. Semiconductor quantum dots are very promising candidates in solid state based approaches as they act like artificial atoms manifesting in discrete emission lines. They are excellent emitters of single and indistinguishable photons. Moreover they can save quantum information in stationary quantum bits (qubits) as electron spins and emit flying photonic qubits to entangle remote qubits via spin-photon entanglement. The fabrication and characterization of quantum dot based semiconductor samples, which serve as a basic building block for experiments in the field of QIP with pre-defined physical features, are in focus of the present thesis. The basic material system consists of In(Ga)As quantum dots on GaAs substrates. The growth of quantum dot based semiconductor samples via molecular beam epitaxy offers highest crystal quality and the possibility to integrate the quantum emitters in photonic resonators, which improve the light outcoupling efficiency and enhance the emission by light-matter-coupling effects. Against this background this thesis focusses on the preparation and characterization of different In(Ga)As based quantum dot samples. Morphologic properties were characterized via scannnig electron microscopy or atomic force microscopy. The characterization of optical properties was performed by spectroscopy of the reflectance, photoluminescence and resonance fluorescence signal as well as measurements of the second order correlation function. The main part is divided in three chapters which are briefly summarized below. Quasi-planar single photon source with high extraction efficiency: Planar quantum dot based highly efficient single photon sources are of great importance, as quantum dot electron and hole spins turned out to be promising candidates for spin manipulation experiments. To be able to intialize, manipulate and measure single electron spins, the quantum dots have to be charged with a single electron and build up a λ-system in a magnetic field in Voigt geometry. It is important that on the one side the spin configuration is stable, comprising a long spin coherence time and on the other side that the photon outcoupling efficiency is high enough for measurements. Quantum dots in planar microcavities have large spin coherence times but rather weak outcoupling efficiencies compared to micro- or nanopillar resonators. In this chapter a quasi-planar quantum dot based source for single (g(2)(0)=0,023) and indistinguishable photons (g(2)indist (0)=0,17) with a high purity is presented. This planar asymmetric microcavity doesn`t have any open surfaces in close proximity to the active layer, so that the spin dephasing is minimalized. The optical quality of the quantum dots is very high with emission linewidths near the natural linewidth of a quantum dot. Additionally the single photon source shows a high outcoupling efficiency of 42% which exceeds the outcoupling of a regular planar resonator (33%). This high extraction efficiency can be attributed to the coupling of the photon emission to Gallium-induced, Gaussian-shaped nanohill defects. Morphologic investigations and simulations show, that these defect cavity structures serve as nucleation centers during quantum dot growth and increase the outcoupling efficiency by lensing effects. In further experiments on this specific sample, entanglement of an electron spin and a photon was demonstrated, which is a critical building block for semiconductor based quantum repeaters. In this context also the full tomography of a polarization-entangled spin-photon-pair was measured with a surprisingly high fidelity. Moreover two photon interference and indistinguishability of two photons from remote quantum dots of this wafer was measured, which also constitutes a critical building block for quantum repeaters. Coupled quantum well - quantum dot system: Further challenges for optical controlled spin-qubit systems are fast readout of the quantum information with high fidelity and the implementation of a scalable one- and two-qubit gate. Therefore a proposal was adapted which is based on the coupling of an electron spin in a quantum dot to a gas of exciton-polaritons, formed in a quantum well in close proximity of the quantum dot. In cooperation with Yoshihisa Yamamoto's group from the Stanford University, a sample structure was designed and technologically realized as part of this thesis, to study the fundamental physical properties of this coupled system. By systematic epitactical improvement, a coupled quantum well-quantum dot system could successfully be implemented in a microresonator. The exciton-polariton gas was realized in a quantum well which is strongly coupled to a microcavity with a Rabi splitting of VR=2,5 meV. Although the distance to the quantum well is only a few nm, charged quantum dots with high optical quality and clear single photon emission character (g(2)(0)=0,24) could be measured. Site-controlled quantum dots: A scalable technological platform for bright sources of quantum light is highly desirable. Site-controlled quantum dots with high optical quality are very promising candidates to realize such a system. This concept offers the possibility to integrate single quantum dots in devices in a deterministic and scalable way and furthermore provides sample structures with a regular two dimensional array of site-controlled quantum dots to realize concepts for optically controlled two-qubits gates. The method to position the quantum dots used in this thesis is based on etched nanoholes in pre-patterned substrates, which serve as nucleation centers during the quantum dot growth process. An optimized layer structure and an increased light outcoupling efficiency using a dielectric mirror allowed the first measurement of resonance fluorescence on site-controlled quantum dots. In a further optimized design, emission of positioned quantum dots at 1,3 μm telecommunication wavelength was demonstrated for the first time for InGaAs quantum dots on GaAs substrates. KW - Quantenpunkt KW - Drei-Fünf-Halbleiter KW - Molekularstrahlepitaxie KW - Einzelphotonenemission KW - Photolumineszenzspektroskopie KW - InAs/GaAs Quantenpunkte KW - Positionierte Quantenpunkte KW - InAs/GaAs quantum dots KW - site-controlled quantum dots Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-152972 ER - TY - THES A1 - Braun, Tristan T1 - Spektroskopie an positionierten III-V-Halbleiterquantenpunkten T1 - Spectroscopy of site-controlled III-V semiconductor quantum dots N2 - Viele Forschergruppen konzentrieren sich derzeit auf die Entwicklung von neuartigen Technologien, welche den Weg für die kommerzielle Nutzung einer Quantenkommunikation bereiten sollen. Erste Erfolge konnten dabei insbesondere auf dem Gebiet der Quantenschlüsselverteilung erzielt werden. In diesem Bereich nutzt man die Eigenschaft einzelner, ununterscheidbarer Photonen nicht kopiert werden zu können, um eine abhörsichere Übertragung sensibler Daten zu realisieren. Als Lichtquellen dafür eignen sich Halbleiter-Quantenpunkte. Diese Quantenpunkte lassen sich außerdem leicht in komplexe Halbleiter-Mikrostrukturen integrieren und sind somit besonders interessant für die Entwicklung solch fortschrittlicher Technologien, welche für eine abhörischere Kommunikation notwendig sind. Basierend auf diesem Hintergrund wurden in der vorliegenden Arbeit Halbleiter-Quantenpunkte spektroskopisch hinsichtlich ihres Potentials als Quanten-Lichtquelle für die Quantenkommunikation untersucht. Dabei wurden die Quantenpunkte aus InAs/GaAs und InP/GaInP unter anderem in einem speziellen Verfahren deterministisch positioniert und letztendlich in eine photonische Mikrostruktur integriert, welche aus einer Goldscheibe und einem dielektrischen Spiegel besteht. Als Grundcharakterisierungsmittel kam hauptsächlich die Mikrophotolumineszenzspektroskopie zur Bestimmung der Emissionseigenschaften zum Einsatz. Weiterführend wurden Photonen-Korrelationsmessungen zweiter Ordnung durchgeführt, um den Nachweis einer Quanten-Lichtquelle zu erbringen. Einfluss eines RTA-Prozesses auf die Emissionseigenschaften von InAs/GaAs-Quantenpunkten Zur Untersuchung des Einflusses eines Rapid-Thermal-Annealing-Prozesses auf die elektronischen Eigenschaften und die Oszillatorstärke selbstorganisierter InAs/GaAs-Quantenpunkte wurden Mikrophotolumineszenzmessungen an verschiedenen Proben im externen Magnetfeld von bis zu 5 T durchgeführt. Die Quantenpunkte wurden dabei in einem besonderen Verfahren gewachsen, bei dem die nominelle Quantenpunkthöhe durch eine bestimmte Bedeckungsschichtdicke vorgegeben wurde. Insgesamt wurden drei Proben mit Schichtdicken von 2 nm, 3 nm und 4 nm hergestellt, die jeweils nachträglich bei Temperaturen von 750° C bis 850° C für fünf Minuten ausgeheilt wurden. Anhand polarisationsaufgelöster Spektroskopie konnten aus den aufgenommenen Quantenpunktspektren die Zeemanaufspaltung und die diamagnetische Verschiebung extrahiert und damit der effektive Landé g-Faktor sowie der diamagnetische Koeffizient bestimmt werden. Die Auswertung der Zeemanaufspaltung zeigte, dass sowohl höhere Ausheiltemperaturen als auch dickere Bedeckungsschichten zu einer drastischen Abnahme der absoluten g-Faktoren sorgen. Dies lässt darauf schließen, dass eine dickere Bedeckungsschicht zu einer stärkeren Interdiffusion der Atome und einer steigenden Ausdehnung der Quantenpunkte für ex-situ Ausheilprozesse führt. Im Gegensatz dazu steigen die diamagnetischen Koeffizienten der Quantenpunkte mit zunehmender Ausheiltemperatur, was auf eine Ausdehnung der Exzitonwellenfunktion hindeutet. Außerdem wurden mittels zeitaufgelöster Mikrophotolumineszenzspektroskopie die Lebensdauern am Quantenpunktensemble bestimmt und eine Abnahme dieser mit steigender Temperatur festgestellt. Sowohl über die Untersuchungen des diamagnetischen Koeffizienten als auch über die Analyse der Lebensdauer konnte schließlich die Oszillatorstärke der Quantenpunkte ermittelt werden. Beide Messverfahren lieferten innerhalb der Fehlergrenzen ähnliche Ergebnisse. Die höchste Oszillatorstärke \(f_{\chi}=34,7\pm 5,2\) konnte für eine Schichtdicke von d = 3 nm und einer Ausheiltemperatur von 850° C über den diamagnetischen Koeffizienten berechnet werden. Im Falle der Bestimmung über die Lebensdauer ergab sich ein maximaler Wert von \(f_{\tau}=25,7\pm 5,7\). Dies entspricht einer deutlichen Steigerung der Oszillatorstärke im Vergleich zu den Referenzproben um einem Faktor größer als zwei. Des Weiteren konnte eine Ausdehnung der Schwerpunktswellenfunktion der Exzitonen um etwa 70% festgestellt werden. Insgesamt betrachtet, lässt sich durch ex-situ Rapid-Thermal-Annealing-Prozesse die Oszillatorstärke nachträglich deutlich erhöhen, wodurch InAs/GaAs-Quantenpunkte noch interessanter für Untersuchungen im Regime der starken Kopplung werden. Temperatur- und Leistungsabhängigkeit der Emissionseigenschaften positionierter InAs/GaAs Quantenpunkte Um einen Einblick in den Ablauf des Zerfallsprozesses eines Exzitons in positionierten Quantenpunkten zu bekommen, wurden temperatur- und leistungsabhängige Messungen durchgeführt. Diese Quantenpunkte wurden in einem speziellen Verfahren deterministisch an vorher definierten Stellen gewachsen. Anhand der Temperaturserien konnten dann Rückschlüsse auf die auftretenden Verlustkanäle in einem Quantenpunkt und dessen Emissionseigenschaften gezogen werden. Dabei wurden zwei dominante Prozesse als Ursache für den Intensitätsabfall bei höheren Temperaturen identifiziert. Die Anhebung der Elektronen im Grundzustand in die umgebende Barriere oder in delokalisierte Zustände in der Benetzungsschicht sorgt für die anfängliche Abnahme der Intensität bei niedrigeren Temperaturen. Der starke Abfall bei höheren Temperaturen ist dagegen dem Aufbruch der exzitonischen Bindung und der thermischen Aktivierung der Ladungsträger in das umgebende Substratmaterial geschuldet. Hierbei lassen sich exemplarisch für zwei verschiedene Quantenpunkte die Aktivierungsenergien \(E_{2A}=(102,2\pm 0,4)\) meV und \(E_{2B}=(163,2\pm 1,3)\) meV bestimmen, welche in etwa den Lokalisierungsenergien der Exzitonen in dem jeweiligen Quantenpunkt von 100 meV bzw. 144 meV entsprechen. Weiterhin deckte die Auswertung des Intensitätsprofils der Exzitonemission die Streuung der Exzitonen an akustischen und optischen Phononen als Hauptursache für die Zunahme der Linienbreite auf. Für hohe Temperaturen dominierte die Wechselwirkung mit longitudinalen optischen Phononen den Verlauf und es konnten für das InAs/GaAs Materialsystem typische Phononenenergien von \(E_{LOA}=(30,9\pm 4,8)\) meV und \(E_{LOB}=(32,2\pm 0,8)\) meV bestimmt werden. In abschließenden Messungen der Leistungsabhängigkeit der Linienbreite wurde festgestellt, dass spektrale Diffusion die inhärente Grenze für die Linienbreite bei niedrigen Temperaturen setzt. Optische Spektroskopie an positionierten InP/GaInP-Quantenpunkten Weiterhin wurden positionierte InP/GaInP-Quantenpunkte hinsichtlich der Nutzung als Quanten-Lichtquelle optisch spektroskopiert. Zunächst wurden die Emissionseigenschaften der Quantenpunkte in grundlegenden Experimenten analysiert. Leistungs- und polarisationsabhängige Messungen ließen dabei die Vermutung sowohl auf exzitonische als auch biexzitonische Zerfallsprozesse zu. Weiterhin brachten die Untersuchungen der Polarisation einen ungewöhnlich hohen Polarisationsgrad der Quantenpunktemission hervor. Aufgrund von lokalen Ordnungsphänomenen in der umgebenden GaInP-Matrix wurden im Mittel über 66 Quantenpunkte der Grad der Polarisation von Exziton und Biexziton zu \(p_{Mittel}=(93^{+7}_{-9})\)% bestimmt. Des Weiteren wiesen die Quantenpunkte eine sehr hohe Feinstrukturaufspaltung von \(\Delta_{FSS}^{Mittel}=(300\pm 130)\) µeV auf, welche sich nur durch eine stark anisotrope Quantenpunktform erklären lässt. Durch Auto- und Kreuzkorrelationsmessungen zweiter Ordnung wurden dann sowohl der nicht-klassische Einzelphotonencharakter von Exziton und Biexziton als auch erstmalig für diese Strukturen der kaskadierte Zerfall der Biexziton-Exziton-Kaskade demonstriert. Hierbei wurden \(g^{(2)}(0)\)-Werte von bis 0,08 erreicht. Diese Ergebnisse zeigen das Potential von positionierten InP/GaInP-Quantenpunkten als Grundbausteine für Quanten-Lichtquellen, insbesondere in Bezug auf den Einsatz in der Quantenkommunikation. Realisierung einer Einzelphotonenquelle auf Basis einer Tamm-Plasmonen-Struktur Nachdem die vorangegangen Untersuchungen die Eignung der positionierten InP/GaInP-Quantenpunkte als Emitter einzelner Photonen demonstrierten, befasst sich dieser Teil nun mit der Integration dieser Quantenpunkte in eine Tamm-Plasmonen-Struktur zur Realisierung einer effizienten Einzelphotonenquelle. Diese Strukturen bestehen aus einem dielektrischen Spiegel aus 30,5 AlGaAs/AlAs-Schichtpaaren und einer einigen Zehn Nanometer dicken Goldschicht, zwischen denen die Quantenpunkte eingebettet sind. Anhand von Messungen an einer planaren Tamm-Plasmonen-Struktur wurde das Bauteil charakterisiert und neben der Exziton- und Biexzitonemission der Zerfall eines Trions beobachtet, was durch Polarisations- und Korrelationsmessungen nachgewiesen wurde. Um eine Verstärkung der Einzelphotonenemission durch die Kopplung der Teilchen an eine lokalisierte Tamm-Plasmonen-Mode demonstrieren zu können, wurde ein Bereich der Probe mit mehreren Goldscheiben von Durchmessern von 3-6 µm abgerastert und die Lichtintensität aufgenommen. Unterhalb der untersuchten Goldscheiben konnte eine signifikante Erhöhung des Lumineszenzsignals festgestellt werden. Eine quantitative Analyse eines einzelnen Quantenpunktes mittels einer Temperaturserie lieferte dabei eine maximale Emissionsrate von \(\eta_{EPQ}^{Max}=(6,95\pm 0,76)\) MHz und damit eine Effizienz von \((6,95\pm 0,76)\)% solch einer Einzelphotonenquelle unter gepulster Anregung bei 82 MHz. Dies entspricht einer deutlichen Verbesserung der Effizienz im Vergleich zu Quantenpunkten im Volumenmaterial und sogar zu denen in einer planaren DBR-Resonatorstruktur. Positionierte InP/GaInP-Quantenpunkte in einer Tamm-Plasmonen-Struktur bilden somit eine vielversprechende Basis für die Realisierung hocheffizienter Einzelphotonenquellen. N2 - At the moment, many scientific groups focus on the development of new technologies which are supposed to lead the way to the commercial use of quantum communication. Particularly in the field of quantum key distribution first success has been achieved. These experiments make use of the fact that it is not possible to generate a perfect copy of a quantum state (Non-cloning theorem). One way to emit non-classical particles is to use semiconductor quantum dots. Furthermore such quantum dots can be easily integrated in complex semiconductor microstructures and are thus especially interesting for the development such advanced technologies, which are mandatory for a secure communication. Based on this background, the objective of the work presented in this thesis was a spectroscopic analysis of semiconductor quantum dots, regarding their potential as a quantum light source for quantum communication. In a dedicated process, amongst others, InAs/GaAs and InP/GaInP quantum dots were positioned deterministically and eventual integrated in a photonic microstructure, which consists of a gold disc and a dielectric mirror. Micro photoluminescence spectroscopy was used as a basic instrument for identifying the emission characteristics. In addition second order photon correlation measurements were performed to provide proof of a quantum light source. Impact of rapid thermal annealing on the emission characteristics of InAs/GaAs quantum dots Micro photoluminescence measurements of different samples in external magnetic fields up to 5 T have been performed in order to analyze the impact of rapid thermal annealing on the electronic properties and the oscillator strength of self-assembled InAs/GaAs quantum dots. The quantum dots were grown in a special procedure whereby the nominal quantum dot height was defined by the thickness of a capping layer. In total, three samples with capping layer thicknesses of 2 nm, 3 nm and 4 nm were processed and afterwards annealed at temperatures of 750° C up to 850° C for five minutes. The Zeeman splitting and the diamagnetic shift could be derived from the taken quantum dot spectra by means of polarization resolved spectroscopy. Hence, the effective Landé g-factors and the diamagnetic coefficient could be determined. The analysis of the Zeeman splitting demonstrated a drastic decrease of the absolute g-factors with increasing annealing temperature as well as thicker capping layers. This yield to the conclusion, that a thicker capping layer leads to a stronger interdifussion of the atoms and an increasing elongation of the quantum dots for ex-situ annealing procedures. The diamagnetic coefficients of the quantum dots rose with higher temperatures, which indicates an expansion of the excitonic wavefunction. Furthermore time resolved micro photoluminescence spectroscopy has been performed in order to assess the lifetime of the quantum dot ensemble. The lifetime decreases clearly with increasing temperatures. Both the investigations of the diamagnetic coefficient and the quantum dot lifetime finally lead to a determination of the oscillator strength and reveal values agreeing within the error bars. The highest oscillator strength \(f_{\chi}=34.7\pm 5.2\) (determined from the diamagnetic shift) could be determined for the sample with a capping layer of d = 3 nm anneald at a temperature of 850° C. In the case of the liftime measurements the oscillator strength exhibits a maximum value of \(f_{\tau}=25.7\pm 5.7\). This corresponds to a distinct enhancement of the oscillator strength of more than two compared to the reference samples. In addition an expansion of the center-of-mass wave function by about 70% has been ascertained. Taken as a whole the oscillator strength of InAs/GaAs quantum dots can be increased significantly by ex-situ rapid thermal annealing, which makes them even more interesting for investigations in the strong coupling regime. Temperature and power dependency of the emission characteristics of site-controlled InAs/GaAs quantum dots In order to investigate the decay process of an exciton in site-controlled quantum dots, temperature and power dependent measurements were performed. Those quantum dots were grown deterministically in a specific procedure on predefined positions. Existing photonic loss channels in the quantum dot were studied by performing temperature series. Hereby two dominant processes causing the decrease of the intensity at higher temperatures were identified. Initially the activation of the electron in the ground state into the surrounding barrier or into delocalized states of the wetting layer leads to a decrease of the intensity in the low temperature regime. However, the strong decrease for higher temperatures is attributed to ionization of the exciton and the subsequent activation of the carriers into the surrounding substrate. The fit yields two different activation energies \(E_{2A}=(102,2\pm 0,4)\) meV and \(E_{2B}=(163,2\pm 1,3)\) meV for two exemplary quantum dots A and B, respectively. Hence, both values correspond with the localization energies of the excitons in the respective quantum dot, which account for 100 meV and 144 meV respectively. Furthermore the analysis of the intensity profiles revealed that acoustical and optical phonons are the main reason for the broadening of the linewidth. The dependency of the linewidth for high temperatures is dominated by the interaction of the excitons with longitudinal optical phonons, where phonon energies of \(E_{LOA}=(30,9\pm 4,8)\) meV for quantum dot A and \(E_{LOB}=(32,2\pm 0,8)\) meV for quantum dot B were determined. Those values are typical for InAs/GaAs material system. In addition, the measurements indicate that the linewidth at low temperatures is caused by spectral diffusion. Optical spectroscopy of site-controlled InP/GaInP quantum dots In addtion site-controlled InP/GaInP quantum dots were investigated by means of optical spectroscopy regarding their use as a quantum light source. At first the emission features of the quantum dots were analyzed in basic experiments. Power and polarization dependent measurements were used to identify excitonic as well as biexcitonic decay processes. Furthermore the investigations of the polarization were exhibiting an unusual high degree of polarization of the quantum dot emission. The excitonic and biexcitonic emission shows a very high degree of linear polarization (\(p_{Mittel}=(93^{+7}_{-9})\)%), which is caused by local composition modulation phenomena in the surrounding GaInP matrix. For this calculation the average value was taken out of 66 quantum dots. In addition the quantum dots exhibited very large fine structure splittings of \(\Delta_{FSS}^{Mittel}=(300\pm 130)\) µeV, which can be explained only with a strong anisotropic quantum dot shape. Second order autocorrelation measurements revealed the non-classical emission character of the exciton and the biexciton. \(g^{(2)}(0)\) values down to 0.08 have been reached. In addition, by performing crosscorrelation measurements the cascaded emission of the biexiton-exciton cascade has been demonstrated for the first time for those structures. These results show the potential of site-controlled InP/GaInP quantum dots as a basic module for quantum light sources especially regarding their use in quantum communication. Realization of a single photon source based on a Tamm-plasmon structure After the previous analysis revealed the potential of the site-controlled InP/GaInP quantum dots acting as a single photon emitter, the following part considers the integration of those quantum dots into a Tamm-plasmon structure to realize an efficient single photon source. These structures consist of a distributed Bragg reflector (DBR) with 30.5 AlGaAs/AlAs mirror pairs and a gold disc with a thickness of only a few ten nanometers. The quantum dots are located between the DBR and the gold disc at an anti-node of the Tamm-plasmon mode. The device was characterized by photoluminescence investigations of a planar Tamm-plasmon structure. Besides excitonic and biexcitonic emission features, the experiments showed the decay of a trion state, which has been confirmed by polarization and correlation measurements. In order to demonstrate an enhancement of the single photon emission due to the coupling to a localized Tamm-plasmon mode, an array of gold discs with varying diameters from 3-6 µm was scanned and the light intensity recorded. At the positions of the gold discs a significant increase of the luminescence could be detected. Investigations in more detail on a single quantum dot tuned into the Tamm-plasmon resonance by adjusting the temperature revealed a maximum emission rate of \(\eta_{EPQ}^{Max}=(6,95\pm 0,76)\) MHz and with it an efficiency of \((6,95\pm 0,76)\)% of such a single photon source when taking the repetition rate of 82 MHz into account. This is a distinct enhancement of the efficiency compared to quantum dots in bulk material or even to those embedded in planar DBR-resonators. As a consequence of the experiments site-controlled InP/GaInP quantum dots embedded in a Tamm-plasmon structure can be considered as a promising base for the realization of highly efficient single photon sources. KW - Drei-Fünf-Halbleiter KW - Quantenpunkt KW - Photolumineszenzspektroskopie KW - III-V semiconductor quantum dot KW - site-controlled quantum dot KW - Optische Spektroskopie KW - Einzelphotonenemission Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146151 ER - TY - THES A1 - Hansen, Nis Hauke T1 - Mikroskopische Ladungstransportmechanismen und Exzitonen Annihilation in organischen Einkristallen und Dünnschichten T1 - Microscopic charge transport mechanisms and exciton annihilation in organic thin films and single crystals N2 - Um die Natur der Transportdynamik von Ladungsträgern auch auf mikroskopischen Längenskalen nicht-invasiv untersuchen zu können, wurde im ersten Schwerpunkt dieser Arbeit das PL- (Photolumineszenz-) Quenching (engl.: to quench: löschen; hier: strahlungslose Rekombination von Exzitonen) in einer organischen Dünnschicht durch die injizierten und akkumulierten Löcher in einer Transistorgeometrie analysiert. Diese Zusammenführung zweier Methoden - der elektrischen Charakterisierung von Dünnschichttransistoren und der Photolumineszenzspektroskopie - erfasst die Änderung des strahlenden Zerfalls von Exzitonen infolge der Wechselwirkung mit Ladungsträgern. Dadurch werden räumlich aufgelöste Informationen über die Ladungsverteilung und deren Spannungsabhängigkeit im Transistorkanal zugänglich. Durch den Vergleich mit den makroskopischen elektrischen Kenngrößen wie der Schwell- oder der Turn-On-Spannung kann die Funktionsweise der Transistoren damit detaillierter beschrieben werden, als es die Kenngrößen alleine ermöglichen. Außerdem wird die Quantifizierung dieser mikroskopischen Interaktionen möglich, welche beispielsweise als Verlustkanal in organischen Photovoltaikzellen und organicshen Leuchtdioden auftreten können. Die Abgrenzung zu anderen dissipativen Prozessen, wie beispielsweise der Exziton-Exziton Annihilation, Ladungsträgerrekombination, Triplett-Übergänge oder Rekombination an Störstellen oder metallischen Grenzflächen, erlaubt die detaillierte Analyse der Wechselwirkung von optisch angeregten Zuständen mit Elektronen und Löchern. Im zweiten Schwerpunkt dieser Arbeit werden die Transporteigenschaften des Naphthalindiimids Cl2-NDI betrachtet, bei dem der molekulare Überlapp sowie die Reorganisationsenergie in derselben Größenordnung von etwa 0,1 eV liegen. Um experimentell auf den mikroskopischen Transport zu schließen, werden nach der Optimierung des Kristallwachstums Einkristalltransistoren hergestellt, mit Hilfe derer die Beweglichkeit entlang verschiedener kristallographischer Richtungen als Funktion der Temperatur gemessen werden kann. Die einkristalline Natur der Proben und die spezielle Transistorgeometrie ermöglichen die Analyse der räumlichen Anisotropie des Stromflusses. Der gemessene Beweglichkeitstensor wird daraufhin mit simulierten Tensoren auf der Basis von Levich-Jortner Raten verglichen, um auf den zentralen Ladungstransfermechanismus zu schließen. N2 - In order to study charge transport in organic thin-film transistors on a microscopic length scale noninvasively, photoluminescence quenching by injected holes in transistor geometry was analyzed. The combination of these two techniques – the electrical characterization of transistors and the photoluminescence spectroscopy – captures the variation of radiative recombination of excitons, which results from the interaction with the accumulated charge carriers. Thereby, spatially resolved information about the charge distribution and its voltage dependence in the transistor channel become accessible. By comparison with the macroscopic electrical parameters, such as the threshold voltage or the turn-on voltage, the mode of operation of the transistors can thus be described in more detail than the characteristic values alone permit. In addition, the quantification of these microscopic interactions becomes possible, which can occur, for example, as a loss channel in organic photovoltaic cells and organic light-emitting diodes. The delimitation to other dissipative processes, such as exciton-exciton annihilation, charge carrier recombination, triplet transitions or recombination at impurities or metallic interfaces, allows the detailed analysis of the interaction of optically excited states with electrons and holes. The second focus of this work is on the transport properties of the naphthalene diimide Cl2-NDI in which the molecular overlap as well as the reorganization energy are of the same order of magnitude of approximately 0.1 eV. In order to close experimentally on the microscopic transport, after the optimization of crystal growth, single crystal transistors are produced by means of which the mobility along different crystallographic directions can be measured as a function of the temperature. The single crystal nature of the samples and the special transistor geometry allow the analysis of the spatial anisotropy of the current flow. The measured mobility tensor is then compared with simulated tensors based on Levich-Jortner rates to infer the central charge transfer mechanism. KW - Organischer Halbleiter KW - Ladungstransport KW - organic field-effect transistor KW - photoluminescence spectroscopy KW - electronic transport KW - single crystal KW - Organischer Feldeffekttransistor KW - Photolumineszenzspektroskopie KW - Elektronischer Transport KW - Einkristall Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143972 ER - TY - THES A1 - Bergler, Felix T1 - Photolumineszenzbasierte Untersuchung der Struktur und der thermodynamischen Bildungsparameter mizellar stabilisierter (6,5)-Kohlenstoffnanoröhren T1 - Photoluminescence based study on structure and thermodynamic properties of micellarly stabilized (6,5) carbon nanotubes N2 - In dieser Arbeit werden die Wechselwirkungen zwischen der Oberfläche von Kohlenstoffnanoröhren und verschiedenen Dispergierreagenzien anhand der Photolumineszenz (PL) der (6,5)-Nanoröhren untersucht. Um den Einfluss der verschiedenen Reagenzien auf die exzitonischen Eigenschaften und die PL-Emission zu quantifizieren, wurden die Dispergierreagenzien ausgetauscht, die Temperaturabhängigkeit bestimmt und die Konzentration der Reagenzien variiert. Die Dispergierreagenzien eines immobilisierten, SC-stabilisierten (6,5)-SWNT-Ensembles wurden im Mikrofluidikkanal ausgetauscht. Wird der Kanal mit Wasser gespült, verringern sich die PL-Intensität und die Emissionsenergie, da der Wasserfluss die Tensidmoleküle von der Oberfläche entfernt. Beim Austausch einer DOC-Umgebung gegen Wasser nimmt die PL-Intensität ebenfalls ab und die PL-Emissionsenergie verringert sich. Die Austauschexperimente verlaufen reversibel und der instantane Anstieg der Emissionsenergie bei der Tensidadsorption weist auf eine kooperative Anlagerung hin. Deshalb ist anzunehmen, dass sich Tensid-SWNT-Heteromizellen ausbilden. Anschließend werden die Emissionsenergie und die PL-Intensität in verschiedenen Dispergierreagenzien und in Wasser verglichen. Die größte Emissionsenergie und PL-Intensität werden während des Wechsels von einer SDS- zu einer (GT)16-Lösung gemessen. Dies kann auf die lückenlose Bedeckung der SWNT-Oberfläche mit einer heterogenen Schicht aus SDS-Molekülen und (GT)16-Strängen zurückgeführt werden. In reiner SDS-Umgebung emittieren die Nanoröhren Licht mit der zweithöchsten Energie, aber die PL-Intensität liegt unter der in einer SC-Umgebung. Die Emissionsenergie in der SC-Umgebung ist geringer und davon abhängig, ob die SWNTs bereits mit (GT)16-Strängen stabilisiert waren, da dies eine permanente Rotverschiebung der Emissionsenergie in der SC-Umgebung sowie eine verringerte PL-Intensität verursacht. In wässriger Umgebung verringert sich nach erfolgtem (GT)16-Kontakt die PL-Intensität dauerhaft. Danach wurde die Anlagerung von Tensidmolekülen an die (6,5)-SWNT-Oberfläche in Suspensionen mit der Temperatursprungmethode untersucht. Die Temperatur im Mikrofluidikkanal wurde anhand der linearen Abnahme der Emissionsenergie SC- und DOC-stabilisierter SWNTs mit steigender Temperatur bestimmt. Die Suspensionstemperatur ist in den verschiedenen Temperatursprungexperimenten unabhängig von der Messposition im Mikrofluidikkanal und wird durch die absolute Position auf den Peltier-Elementen bestimmt. Zudem stimmen die im Kanal gemessenen Temperaturen für SC- und DOC-stabilisierte (6,5)-SWNTs überein, weshalb in diesem Experiment nicht die erwartete Einstellung eines Gleichgewichts wie in einem Temperatursprungexperiment der Fall, sondern die Momentantemperatur gemessen wird. Die schnelle Gleichgewichtseinstellung zwischen freien und auf der SWNT-Oberfläche adsorbierten Tensidmolekülen beim Temperatursprung zeigt, dass die SC- und DOC-(6,5)-SWNT-Suspensionen thermochrome Farbstoffe sind. Wegen der Temperaturabhängigkeit der Emissionsenergie ist es bei wissenschaftlichen Arbeiten wichtig, neben dem verwendeten Dispergierreagenz auch die Temperatur der SWNT-Suspension anzugeben. Abschließend wurden die kritischen Mizellenkonzentrationen von Tensid-SWNT-Suspensionen in Verdünnungsexperimenten und daraus die thermodynamischen Bildungsparameter der Tensid-SWNT-Heteromizellen ermittelt. In der temperaturabhängigen Analyse der SC-SWNT-Mizellenbildung wird ein konstanter Hill-Koeffizient erhalten, der die Mizellenbildung als positiv kooperativ klassifiziert. Für die Bestimmung der Freien Mizellierungsenthalpie wurden nur die CMCs aus den Verdünnungsexperimenten verwendet, da die Mizellenbildung bei der Aufkonzentration teils kinetisch gehemmt ist. Da die Freie Mizellierungsenthalpie bei allen Temperaturen negativ ist, stabilisiert die Bildung der Heteromizellen das System. Die Triebkraft für die Mizellenbildung ist über 322 K die Enthalpie, während unterhalb von 316 K der Entropiegewinn dominiert. Die Verdünnung einer DOC-SWNT-Suspension zeigt keine Änderung der Emissionsenergie, obwohl dabei sowohl die primäre als auch die sekundäre CMC von DOC unterschritten werden. Zuletzt wurden die Verdünnungsexperimente mit einer SDS-SWNT-Suspension durchgeführt und die thermodynamischen Parameter der Mizellenbildung bestimmt. Da auf die Auflösung der Mizellenstruktur direkt die Aggregation der SWNTs folgt, wurde für die Ermittlung der CMC näherungsweise die Konzentration am Maximum der Emissionsenergie verwendet. Daraus ergibt sich bei jeder Temperatur eine negative Freie Mizellierungsenthalpie, deren Beiträge analog zu SC bei kleineren Temperaturen als 323 K entropisch und bei höheren Temperaturen enthalpisch dominiert werden. Somit ermöglichen die Experimente mit SC- und SDS-SWNT-Suspensionen die temperaturabhängige Bestimmung der CMC und damit die Berechnung der Freien Mizellierungsenthalpie sowie der zugehörigen enthalpischen und entropischen Beiträge. N2 - The goal of this thesis is to study the interplay between the SWNT surface and various dispersion agents. The influence of different surfactants on photoluminescence (PL) intensity and emission energy of (6,5)-SWNTs was quantified experimentally. The experiments are separated into three categories: surfactant exchange, determination of the temperature dependency of the PL, and the variaton of surfactant concentration. The dispersion agents of immobilized (6,5)-SWNT ensembles, that are placed in a microfluidic channel, are exchanged. Purging water through the microfluidic channel diminishes the PL intensity and red shifts PL emission energy, as the surfactants either SC or DOC are removed from the SWNT surface. The decrease of the PL intensity and emission energy are also observed if solution is exchanged for water. The surfactant exchange is reversible and the surfactant adsorption shows cooperativity features, which provide evidence for the formation of a surfactant SWNT hetero micelle. Afterwards the PL intensity and PL emission energy of the SWNTs are compared in different dispersing agents and water. The peak values for PL emission energy and PL intensity are measured when exchanging the SDS surfactant for (GT)16 ssDNA. They are caused by a complete coverage of the SWNT surface with a hetero-layer consisting of both species. The second highest PL emission energy is emitted in pure SDS environment followed by SC environment. Regarding the PL intensity the opposite effect is observed. A SC shell yields higher PL intensities than the SDS shell. If the SWNTs had previously been in contact with the (GT)16 ssDNA, the PL intensity was permanently reduced in the SC environment and was accompanied by a permanent red shift of the PL emission energy. The decreased PL intensity renders the water environment indistinguishable from the (GT)16 ssDNA covered SWNTs because they now show the same emission energy and equally low intensities. Subsequently the attachment of surfactant molecules to the surface of colloidally stabilized SWNTs is analyzed by using a temperature jump method. The temperature in the microfluidic channel was measured using the linear relationship between the temperature increase and the decrease of the PL emission energy of SC- and DOC-SWNT solutions. The solution temperature in the temperature jump experiments is independent of the channel position but determined by the absolute position on the Peltier element. In addition, the use of DOC instead of SC as surfactant showed no difference in temperature development, which leads to the conclusion that instead of the equilibration process, the actual liquid temperature is measured since the former is too fast for this experimental approach. The instantaneous equilibration of free and adsorbed surfactant molecules allows to deduce the solution temperature. Thus, SC- and DOC-SWNT solutions can be used as thermochromic dyes. More importantly, the correlation of PL intensity and PL emission energy with temperature emphasizes the importance of providing solution temperatures alongside the dispersing agents and their respective concentrations in scientific studies. Critical micelle concentrations (CMC) of surfactant SWNT solutions are determined in dilution experiments. Afterwards, thermodynamic parameters of the SWNT surfactant heteromicelle formation process are calculated. Hill analysis was used to identify the CMC at the inflection point of the sigmoidal PL emission energy decrease and to determine the Hill coefficient, classifying the micelle formation to be cooperative. Only the CMCs of the dilution experiments were used to calculate the micellar Gibbs energies since the micelle formation in the titration experiments is kinetically hindered at lower temperatures. Since the micellar Gibbs energy is negative at all temperatures, the micelle formation stabilizes the system. At temperatures above 322 K the micellar Gibbs Energy is dominated by the enthalpic contribution while the micelle formation is driven entropically below 316 K. The same experiment was conducted using DOC as dispersion agent, but showed no difference in the PL emission energy passing both the primary and the secondary CMCs of a pure DOC solution. Further experiments feature the dilution of SDS-SWNT solutions and the calculation of the thermodynamic parameters. As the breakup of the micellar structure is directly followed by SWNT aggregation, the CMC is approximately defined as concentration at the PL emission energy maximum. As the micellar Gibbs energy is always negative, the micelle formation provides a stabilization of the SDS-SWNT System, which is driven entropically below 323 K and dominated by enthalpy at higher temperatures. In conclusion, dilution experiments allow for the temperature dependent determination of CMCs and calculation of micellar Gibbs Energy with corresponding entropic and enthalpic contributions. KW - Kohlenstoff-Nanoröhre KW - Tensid KW - Kooperativität KW - Photolumineszenzspektroskopie KW - Strukturaufklärung KW - Mizelle KW - micelle KW - Mikrofluidikchip KW - microfluidic chip KW - Temperaturabhängigkeit KW - temperature dependence KW - SWNT-Ensemble KW - SWNT-ensemble KW - Freie Enthalpie KW - Gibbs Energy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-123586 ER - TY - THES A1 - Schilling, Daniel T1 - Zur spektralen Diffusions- und Energietransferdynamik in halbleitenden einwandigen Kohlenstoffnanoröhren T1 - Spectral diffusion and energy transfer dynamics in semiconducting single wall carbon nanotubes N2 - Einwandige Kohlenstoffnanoröhren weisen aufgrund ihrer besonderen Struktur viele für ein rein kohlenstoffhaltiges Makromolekül ungewöhnliche Eigenschaften auf. Dies macht sie sowohl für die Erforschung grundlegender Phänomene in eindimensionalen Nanostrukturen als auch für potenzielle Anwendungen äußerst interessant. Da alle Atome einer SWNT Oberflächenatome sind, führt dies zu einer besonders ausgeprägten Empfindlichkeit ihrer elektronischen Eigenschaften auf Wechselwirkungen mit der Umgebung. Lokale zeitabhängige Änderungen in diesen Wechselwirkungen führen daher zu Phänomenen wie dem Photolumineszenz-Blinken und spektraler Diffusion. Die Erforschung und Kontrolle der Parameter, die für die Beeinflussung der elektronischen Eigenschaften von SWNTs durch Umgebungseinflüsse entscheidend sind, wird neben der spezifischen Synthese eine maßgebliche Rolle dabei spielen, ob und in welcher Form SWNTs in optoelektronischen Bauteilen zukünftig Anwendung finden. Die vorliegende Arbeit liefert einen Beitrag zum Verständnis dieser Wechselwirkungen, indem die Dynamik von Energietransferprozessen innerhalb von SWNTs und zwischen SWNTs untersucht wurde. Im Rahmen dieser Arbeit wurden homogene und inhomogene Beiträge zur Linienverbreiterung von in einer Matrix eingebetteten SWNTs bestimmt. Dabei wurde erstmals beobachtet, dass die spektrale Diffusion sowohl bei Raumtemperatur als auch bei 17 K auf einer ultraschnellen Zeitskala, d. h. innerhalb von weniger als 1 ps abläuft. Mittels transienter Lochbrennspektroskopie konnte gezeigt werden, dass die homogene Linienbreite von (6,5)-SWNTs mit 3.6 meV nur den geringsten Beitrag zur Absorptionslinienbreite liefert, während die größte Verbreiterung mit mehr als 99 % inhomogen ist. Die inhomogene Linienbreite wurde aus inkohärenten 2D-Spektren, welche durch spektrale Lochbrennexperimente bei Variation der Anregungswellenlänge erhalten werden konnten, zu \(54\pm5\)meV bestimmt. Die Dynamik der spektralen Diffusion wird mit einer Exzitonendiffusion in einer durch lokale Umgebungswechselwirkungen verursachten inhomogenen Energielandschaft entlang der Nanorohrachse erklärt. Durch zeitaufgelöste Lochbrennexperimente unter nichtresonanter Anregung konnte gezeigt werden, dass die Populationsumverteilung innerhalb dieser Energielandschaft für eine energetisch abwärts gerichtete Relaxation ein spontaner Prozess ist. Im umgekehrten Fall ist sie dagegen thermisch aktiviert. Mögliche Einflüsse von Artefakten wurden anhand von Referenzmessungen diskutiert und die Bestimmung der homogenen Linienbreite durch komplementäre CW-Lochbrennexperimente ergänzt. Durch Monte-Carlo-Simulationen konnten erstmals Informationen über die Form der Potenzialenergielandschaft entlang einer SWNT erhalten und die Größenordnung der Plateaubreite mit nahezu konstanter Energie innerhalb der Potenziallandschaft zu 5.8-18.2nm ermittelt werden. Dies gelang durch eine Kalibrierung der Simulationszeit anhand experimenteller transienter Absorptionsspektren. Im Rahmen dieses Modells wurde darüber hinaus die Zeit für einen Sprung zu einem benachbarten Gitterplatz der Energielandschaft zu 0.1 ps bestimmt. Inter- und intraband-Relaxationsprozesse von SWNTs wurden mittels Photolumineszenzspektroskopie untersucht. Die Ergebnisse deuten auf eine temperaturunabhängige Effizienz der internen Konversion und die photostimulierte Generierung von Löschzentren hin. Anhand temperaturabhängiger PL-Messungen, die erstmals bei Anregung des \(S_1\)-Zustands durchgeführt wurden, konnte die Energiedifferenz zwischen dem hellen und dunklen Exziton für (6,5)-SWNTs im Rahmen des Modells eines Dreiniveausystems zu \(\delta = (3.7\pm0.1)\)meV bestimmt werden. Aus der guten Übereinstimmung des temperaturabhängigen Trends der PL-Intensität unter \(S_1\)-Anregung mit in früheren Studien erhaltenen Ergebnissen unter \(S_2\)-Anregung konnte geschlussfolgert werden, dass die Effizienz der internen Konversion nicht ausgeprägt temperaturabhängig ist. Für SWNT-Gelfilme wurde unter \(S_2\)-Anregung eine deutliche Abweichung zur \(S_1\)-Anregung in Form eines Bleichens der Photolumineszenz beobachtet. Dieses Phänomen ist in der Literatur wenig diskutiert und wurde daher in leistungsabhängigen PL-Experimenten weiter untersucht. Dabei wurde für die \(S_2\)- im Vergleich zur \(S_1\)-Anregung eine stärker ausgeprägte sublineare Leistungsabhängigkeit gefunden. Die Abweichung vom linearen Zusammenhang der PL-Intensität mit der Leistung trat hier schon bei um eine Größenordnung geringeren Leistungsdichten auf als in früheren Studien und kann mit einer Exziton-Exziton-Annihilation allein nicht erklärt werden. Möglicherweise ist die Öffnung zusätzlicher Zerfallskanäle durch metastabile Löschzentren für dieses Verhalten verantwortlich. Die PL-Experimente zeigten zudem ein zeitabhängiges irreversibles Bleichen unter \(S_2\)-Anregung, welches bei 30 K stärker ausgeprägt war als bei Raumtemperatur. Dessen Abhängigkeit von der eingestrahlten Photonenzahl lässt auf eine Akkumulation von Löschzentren schließen. Daher wird eine mögliche Redoxreaktion mit Wasser, ausgelöst durch die intrinsische p-Dotierung der SWNTs, als Quelle der Löschzentren diskutiert. Das Verzweigungsverhältnis für die Relaxation nach \(S_2\)-Anregung von SWNTs wurde in Form der relativen Quantenausbeute bestimmt und eine nahezu quantitative interne Konversion des \(S_2\)-Exzitons gefunden. Dieses Ergebnis hat eine wichtige Bedeutung für potenzielle Anwendungen von SWNTs in der Photovoltaik, da die Verluste durch die interband-Relaxation bei einer Anregung des zweiten Subband-Exzitons <3% zu sein scheinen. Die Herausforderung des Experiments wird hier durch die geringe Stokes-Verschiebung von SWNTs verursacht, die eine quantitative Trennung von PL- und Streulicht unmöglich macht. Daher wurde ein Aufbau realisiert, in dem ein großer Teil des Streulichts bereits räumlich entfernt wird und die PL unter \(S_1\)- bzw. \(S_2\)-Anregung quantifizierbar und ohne eine Annahme über Streulicht-Anteile direkt vergleichbar ist. Sowohl für SDS- als auch für Polymer-stabilisierte SWNTs wurde eine relative Quantenausbeute von \(\xi \approxeq 1\) erhalten, was eine nahezu quantitative interne Konversion von \(S_2\)- zu \(S_1\)-Exzitonen innerhalb der PL-Lebensdauer nahelegt. Anregungsenergietransferprozesse zwischen Kohlenstoffnanoröhren in mono- und bidispersen SWNT-Netzwerkfilmen definierter Zusammensetzung wurden mittels zeitaufgelöster Polarisationsanisotropie untersucht. Dabei wurden neben einem ultraschnellen Energietransfer in weniger als 1 ps auch Hinweise auf Beiträge des \(S_2\)-Exzitons an diesem Prozess gefunden. Die Ergebnisse der Experimente mit bidispersen SWNT-Netzwerkfilmen bestätigen den auch in PLE-Spektren beobachteten energetisch abwärts gerichteten Energietransfer von SWNTs mit großer zu solchen mit kleiner Bandlücke und liefern darüber hinaus eine Zeitskala von weniger als 1 ps für diesen Prozess. Die umgekehrte Transferrichtung konnte weder aus dem \(S_1\)- noch aus dem \(S_2\)-Exziton beobachtet werden. Eine Beschleunigung der Anisotropiedynamik bei \(S_2\)- im Vergleich zu S\uu1-Anregung deutet auf einen Beitrag des \(S_2\)-Exzitons am Energietransferprozess in Konkurrenz zur internen Konversion hin. Durch Referenzexperimente mit monodispersen Netzwerkfilmen konnte eine Beteiligung von Energietransferprozessen zwischen SWNTs der gleichen Chiralität auf einer Zeitskala von 1-2ps nachgewiesen werden. Dadurch konnten Beobachtungen von zeitabhängigen Anisotropieänderungen, die einen energetisch aufwärts gerichteten Energietransfer suggerieren, mit einem intra-Spezies-Transfer erklärt werden - Hinweise auf energetisch aufwärts gerichtete EET-Prozesse wurden nicht gefunden. Eine wichtige Erkenntnis aus diesen Experimenten ist die Tatsache, dass die Überlappung von Signalbeiträgen zu einer Verfälschung der Anisotropie und damit zu fehlerhaften Interpretationen führen kann. Darüber hinaus wurde auf den Einfluss der Probenheterogenität und der Alterung von SWNT-Netzwerkfilmen hingewiesen. Diese Untersuchungen legen nahe, dass ein effizienter Exzitonentransfer in SWNT-Netzwerkfilmen auch zwischen den einzelnen Röhrensträngen erfolgen kann und es somit möglich ist, die Effizienz entsprechender Solarzellen zu verbessern. Im letzten Teil der Arbeit wurden erstmals transiente Absorptionsexperimente im Femtosekundenbereich mit SWNTs unter \(Gate-Doping\) durchgeführt. In ersten Experimenten konnte gezeigt werden, dass analog zur chemischen Dotierung von SWNTs die Dynamik des \(S_1\)-Bleichens eines (6,5)-SWNT-Netzwerkfilms nach \(S_2\)-Anregung unter \(Gate-Doping\) eine Beschleunigung durch zusätzliche Zerfallskanäle erfährt. Die elektrochemische Bandlücke wurde für (6,5)-Nanoröhren zu 1.5 eV bestimmt. Eine Verringerung der Photoabsorptionsamplitude mit zunehmendem Potenzial lässt Vermutungen über die Natur dieses in transienten Absorptionsexperimenten beobachteten PA-Merkmals in Form der Absorption einer dotierten SWNT-Spezies zu. Diese Untersuchungen liefern erste Einblicke in die Art und Weise, wie eine elektrochemische Modifizierung von SWNTs die elektronische Bandstruktur und Ladungsträgerdynamik verändert. N2 - Due to their unique structure single wall carbon nanotubes exhibit many exceptional properties compared to other carbon based macromolecules. Their striking properties make SWNTs ideal candidates for the investigation of fundamental phenomena in one-dimensional nanostructures as well as for potential applications. Since all carbon atoms are at the SWNT surface their electronic properties are strongly sensitive towards local environmental interactions. Time-dependent local modifications of these interactions result in phenomena like photoluminescence blinking and spectral diffusion. In addition to specific synthesis, the investigation as well as the proper control of the parameters that affect the environmental influence on the electronic properties of SWNTs will be key factors for the question if and how SWNTs will be used in future optoelectronic devices. This thesis contributes to the understanding of these environmental interactions by means of an investigation of energy transfer dynamics within and between SWNTs. Within the scope of this work, homogeneous and inhomogeneous contributions to the line broadening of matrix embedded SWNTs were determined. It was observed for the first time that spectral diffusion takes place on an ultrafast time scale within less than 1 ps both, at room temperature and at 17 K. Transient hole-burning spectroscopy was used to show, that the homogeneous linewidth of (6,5)-SWNTs is 3.6 meV and thus contributes only a small fraction to the absorption linewidth, whereas inhomogeneous broadening represents the largest contribution with more than 99 %. The inhomogeneous linewidth was deduced from incoherent 2D-spectra which were obtained by excitation wavelength dependent hole-burning spectroscopy. The dynamics of spectral diffusion is consistent with an exciton diffusion in an inhomogeneous energy landscape along the SWNT axis, caused by local environmental interactions. Off-resonant spectral hole-burning experiments revealed that a bathochromic spectral diffusion is a spontaneous process, whereas its hypsochromic equivalent is thermally activated. Control experiments were performed to show possible influences of artifacts on the determination of the homogeneous linewidth. The latter was accompanied by means of complementary CW hole-burning spectroscopy experiments. From Monte-Carlo simulations information about the granularity of the potential energy landscape along the SWNT axis was obtained. The width of plateau regions with nearly constant energy was found to be in the range of 5.8-18.2nm. This was accomplished by calibration of the simulation time on the basis of experimental transient absorption spectra. Within this model the time interval for a population hop to adjacent lattice sites was deduced to be on the order of 0.1 ps. Inter- and intraband relaxation processes of SWNTs were investigated by means of photoluminescence spectroscopy. The results suggest that the efficiency of internal conversion is temperature-independent and that quenching centers are generated by irradiation of SWNTs with light. From the PL temperature dependence, which was carried out under \(S_1\) excitation for the first time, the energy splitting \(\delta\) between the bright and dark exciton states for (6,5)-SWNTs was determined. Within the model of a three level system a value of \(\delta = 3.7\pm0.1\)meV was deduced. The good agreement of the temperature dependence of PL intensity under \(S_1\) excitation with previously published studies under \(S_2\) excitation suggests, that the efficiency of internal conversion exhibits no pronounced temperature dependence. A strong PL bleaching was observed for SWNT gelatin films under \(S_2\) excitation, which has not been found in case of \(S_1\) excitation. Since this discrepancy is only little discussed in literature, power dependent PL experiments were performed for further investigation. For \(S_2\) excitation the sublinear power dependence was found to be more pronounced compared to \(S_1\) excitation. The deviation of PL intensity from a linear trend with increasing excitation power occurred at excitation densities which are one order of magnitude lower as compared to earlier studies and cannot be explained by pure exciton-exciton annihilation. Instead, additional relaxation channels seem to be opened, possibly by the formation of metastable quenching species. The PL experiments also revealed an irreversible time-dependent bleaching under \(S_2\) excitation which was found to be more pronounced at 30 K compared to room temperature. The bleaching dependence on the photon number suggests an accumulation of quenching sites. A possible candidate might be a quenching SWNT species formed by a redox reaction with water in presence of intrinsic p-doping. The branching ratio for relaxation after \(S_2\) excitation was determined as the relative PL quantum yield of the second and first subband exciton for which an almost quantitative internal conversion was deduced. This result is important for potential applications of SWNTs in photovoltaic devices since the loss due to interband relaxation of the \(S_2\) exciton seems to be < 3%. The small Stokes shift in SWNTs hampers the quantitative separation of PL and excitation intensity. In order to avoid contributions from scattered excitation light, a setup was implemented that allows spatial removal of a large fraction of excitation intensity. Furthermore, the PL intensity for both excitation pathways can be quantified at the same time within the same setup and without assumptions about stray light contributions. For SDS- as well as polymer-stabilized SWNT dispersions a relative quantum yield of \(\xi \approxeq 1\) was determined which suggests, that internal conversion of \(S_2\) excitons has a quantum yield of almost unity within the PL lifetime. Excitation energy transfer processes between carbon nanotubes in mono- and bidisperse SWNT network films of predefined composition were investigated by means of time-resolved polarization anisotropy. An ultrafast energy transfer within less than 1 ps as well as contributions of the \(S_2\) exciton to EET were found. The results confirm observations of downhill energy transfer in bidisperse network films from larger to smaller bandgap SWNTs as observed in PLE spectra. The transfer occurs in less than one picosecond. An uphill energy transfer from small to large bandgap tubes has been observed neither for \(S_1\) nor for \(S_2\) excitation. An increase of anisotropy decay rate for \(S_2\) excitation suggests a contribution of energy transfer from the \(S_2\) state as a competing pathway. From reference experiments with monodisperse SWNT network films evidence for a contribution of energy transfer between the same SWNT species within 1-2 ps was provided. This explains consistently the observation of an anisotropy decay after excitation of small band gap tubes in bidisperse networks which could be misinterpreted as an uphill energy transfer. One of the key findings in this work is the fact that anisotropy values might be corrupted due to signal overlap in the transient absorption spectra. Furthermore, it was pointed out that effects of sample heterogeneity and film aging might be important in the context of applications of SWNT thin films under ambient conditions. The results suggest that efficient exciton transfer in SWNT network films is possible between individual SWNT fibers, which can help to improve the efficiency of corresponding photovoltaic devices. In the last part of this work transient absorption experiments on the femtosecond time-scale were performed with SWNTs in the presence of gate doping for the first time. The experiments show that analogous to the case of chemical doping the dynamics of the \(S_1\) bleach recovery of a (6,5)-SWNT network film accelerate in the presence of gate doping. This demonstrates that doping opens an additional relaxation channel. The electrochemical band gap was determined for (6,5)-SWNTs from transient absorption spectroscopy to be 1.50 eV. The observation of a decrease in photoabsorption amplitude with increasing potential leads to speculations about the nature of the PA as an absorption of a doped SWNT species. The investigation provides first insight into the way how electrochemical modification of SWNTs alters their electronic band structure and charge carrier dynamics. KW - Einwandige Kohlenstoff-Nanoröhre KW - Photolumineszenzspektroskopie KW - Pump-Probe-Technik KW - Exziton KW - (6,5)-Kohlenstoffnanoröhre KW - Spektrale Diffusion KW - Energietransfer Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122772 ER - TY - THES A1 - Hartleb, Holger Edgar Heinz Erich T1 - Spektroelektrochemische Untersuchung von halbleitenden Kohlenstoffnanoröhren T1 - Spectroelectrochemical investigation of semiconducting carbon nanotubes N2 - Der Schwerpunkt dieser Arbeit lag auf der spektroelektrochemischen Untersuchung von halbleitenden SWNTs. Hierbei wurden erstmalig Absorptions- und Photolumineszenzspektren ein und derselben SWNT-Probe simultan unter elektrochemischer Potentialkontrolle aufgenommen. Hierbei konnte gezeigt werden, dass die Messmethode einen entscheidenden Einfluss auf die erhaltene Bandlücke besitzt und der in der Literatur geprägte Begriff der Elektrochemischen Bandlücke aufgrund einer fehlenden allgemeingültigen Definition problembehaftet ist. So ergeben Photolumineszenzmessungen im Vergleich zu Raman- oder Absorptionsmessungen die kleinste Bandlücke. Dies wurde auf die diffusionskontrollierte Löschung der Exzitonen an Ladungszentren zurückgeführt. Weiterhin wurden die optischen Spektren von SWNTs unter Ladungseinfluss analysiert und die zugrundeliegenden Änderungen der elektronischen Eigenschaften diskutiert. Neben SWNTs wurden die Übergangsmetalldichalkogenide MoS2 und WS2 spektroelektrochemisch untersucht. Auffallend im Vergleich zu den Messungen an SWNTs war der breite Potentialbereich, über den die Abnahme der exzitonischen Signale zu beobachten war. Dies kann auf die unterschiedliche elektronische Struktur von TMDs und SWNTs und den geringen Anteil von Einzellagen in den TMD-Proben zurückgeführt werden. Weiterhin konnte in den Absorptionsspektren unter Ladungseinfluss ein Signal beobachtet werden, welches auf die Entstehung von Trionen hindeutet. In einem weiteren Teilprojekt wurde eine elektrochemische Zelle zur Untersuchung von metallischen SWNT-Filmen als Elektrode für die Wasserstoffproduktion entwickelt und getestet. Hierbei gelang es die von Das et al. publizierte Aktivierung von SWNTs mit Schwefelsäure erfolgreich nachzuvollziehen und einen katalytischen Effekt der SWNTs auf die Wasserstoffentwicklung zu beobachten. N2 - The main focus of this work was on spectroelectrochemical studies of semiconducting SWNTs. For the first time, absorption and photoluminescence spectra of one and the same sample were recorded simultaneous under electrochemical control of the potential. It was shown, that the optical method has a significant influence on the resulting band gap. Therefore, the term electrochemical band gap, which has developed in literature, is problematic due to a missing general definition. Photoluminescence measurements yield the smallest band gap in comparison to Raman or absorption measurements. This was attributed to the diffusion limited quenching of excitons at charges. Furthermore, the optical spectra of charged SWNTs were analysed and the underlying electronic changes were discussed. In addition to SWNTs, the transition metal dichalcogenides MoS2 and WS2 were studied with spectroelectrochemical methods as well. Striking, when compared to the measurements of SWNTs, was the broad potential range during which the decrease of the excitonic signals could be observed. This can be attributed to the different electronic structures of TMDs and SWNTs and the small amount of mono layers in the TMD samples. Under the influence of charges it was furthermore possible to observe a signal in the absorption spectra, which points to the formation of trions. In the last part of this work an electrochemical cell for the investigation of hydrogen production at metallic SWNT electrodes was developed and tested. The activation procedure of SWNTs with sulphuric acid, which was published by Das et al., was successfully reproduced, and a catalytic effect on the hydrogen production by the SWNTs was observed. KW - Kohlenstoff-Nanoröhre KW - Photolumineszenzspektroskopie KW - Absorptionsspektroskopie KW - Spektroelektrochemie KW - Übergangsmetalldichalkogenide KW - Elektrolyse KW - elektrochemische Bandlücke Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116628 ER - TY - THES A1 - Münch, Steffen T1 - Photolumineszenz-Spektroskopie an niederdimensionalen Halbleiterstrukturen auf III-V-Basis T1 - Photoluminescence Spectroscopy on low-dimensional III-V Semiconductor Structures N2 - Die vorliegende Arbeit beschäftigt sich mit optischen Untersuchungen an niederdimensionalen III/V-Halbleiterstrukturen. Dabei werden zunächst im ersten Teil selbst-organisiert gewachsene Nanodrähte aus InP und GaN bezüglich ihrer Oberflächen- und Kristallqualität charakterisiert. Dies ist besonders im Hinblick auf zukünftige opto- und nanoelektronische Bauteile von Interesse. Der zweite, grundlagenorientierte Teil der Arbeit ist im Bereich der Quantenoptik angesiedelt und widmet sich magneto-optischen Studien zur Licht-Materie Wechselwirkung in Quantenpunkt-Mikroresonator-Systemen im Regime der starken Kopplung. Oberflächen-Untersuchungen an Halbleiter-Nanodrähten Bei diesem Teilaspekt der vorliegenden Arbeit stehen Untersuchungen von Halbleiter-Nanodrähten mittels zeitintegrierter und zeitaufgelöster Photolumineszenz (PL)-Spektroskopie im Vordergrund. Diese eindimensionalen Nanostrukturen bieten eine vielversprechende Perspektive für die weitere Miniaturisierung in der Mikroelektronik. Da konventionelle Strukturierungsverfahren wie die optische Lithographie zunehmend an physikalische und technologische Grenzen stoßen, sind selbstorganisierte Wachstumsprozesse hierbei von besonderem Interesse. Bei Nanodrähten besteht darüber hinaus konkret noch die Möglichkeit, über ein gezieltes axiales und radiales Wachstum von Heterostrukturen bereits bei der Herstellung komplexere Funktionalitäten einzubauen. Auf Grund ihres großen Oberfläche-zu-Volumen Verhältnisses sind die elektronischen und optischen Eigenschaften der Nanodrähte extrem oberflächensensitiv, was vor allem im Hinblick auf zukünftige Anwendungen im Bereich der Mikro- oder Optoelektronik sowie der Sensorik von essentieller Bedeutung ist. Zur näheren Untersuchung der Oberflächeneigenschaften von Nanodrähten eignet sich die optische Spektroskopie besonders, da sie als nicht-invasive Messmethode ohne aufwändige Probenpräparation schnell nützliche Informationen liefert, die zum Beispiel in der Optimierung des Herstellungsprozesses eingesetzt werden können. Quantenoptik an Halbleiter-Mikrokavitäten Der zweite Teil dieser Arbeit widmet sich der Licht-Materie-Wechselwirkung in Quantenpunkt-Mikroresonator-Systemen. Dabei ist das Regime der starken Kopplung zwischen Emitter und Resonator, auch im Hinblick auf mögliche zukünftige Anwendungen in der Quanteninformationsverarbeitung, von besonderem Interesse. Diese Mikroresonator-Türmchen, die auf planaren AlAs/GaAs-Mikroresonatoren mit InGaAs Quantenpunkten in der aktiven Schicht basieren, wurden mittels zeitintegrierter und zeitaufgelöster Mikro-PL-Spektroskopie in einem äußeren magnetischen Feld in Faraday-Konfiguration untersucht. Grundlegende Untersuchungen von Quantenpunkten im Magnetfeld Zunächst wurden InxGa(1−x)As-Quantenpunkte mit unterschiedlichem In-Gehalt (x=30%, 45% und 60%) magneto-optisch untersucht. Aufgrund der größeren Abmessungen weisen die Quantenpunkte mit 30% In-Anteil auch hohe Oszillatorstärken auf, was sie besonders für Experimente zur starken Kopplung auszeichnet. Unter dem Einfluss des Magnetfeldes zeigte sich ein direkter Zusammenhang zwischen der lateralen Ausdehnung der Quantenpunkte und ihrer diamagnetischen Verschiebung. Starke Kopplung im magnetischen Feld Neben der Möglichkeit, das Resonanzverhalten über das externe Magnetfeld zu kontrollieren, zeigte sich eine Korrelation zwischen der Kopplungsstärke und dem magnetischen Feld, was auf eine Verringerung der Oszillatorstärke im Magnetfeld zurückgeführt werden konnte. Diese steht wiederum im Zusammenhang mit einer Einschnürung der Wellenfunktion des Exzitons durch das angelegte Feld. Dieser direkte Einfluss des Magnetfeldes auf die Oszillatorstärke erlaubt eine in situ Variation der Kopplungsstärke. Photon-Photon-Wechselwirkung bei der starken Kopplung im Magnetfeld Nach der Demonstration der starken Kopplung zwischen entarteten Exziton- und Resonatormoden im Magnetfeld, wurden im weiteren Verlauf Spin-bezogene Kopplungseffekte im Regime der starken Kopplung untersucht. Es ergaben sich im Magnetfeld unter Variation der Temperatur zwei Bereiche der Wechselwirkung zwischen den einzelnen Komponenten von Resonator- und Exzitonenmode. Von besonderem Interesse ist dabei eine beobachtete indirekte Wechselwirkung zwischen den beiden photonischen Moden im Moment der Resonanz, die durch die exzitonische Mode vermittelt wird. Diese sogenannte Spin-vermittelte Photon-Photon-Kopplung stellt ein Bindeglied zwischen eigentlich unabhängigen photonischen Moden über den Spinzustand eines Exzitons dar. N2 - This thesis deals with optical investigations on low-dimensional III/V-semiconductor structures. In the first part self-organized nanowires made of InP and GaN are characterized for their surface and crystal quality, which is of special interest with respect to future opto- and nanoelectronic devices. The second part is dedicated to the more basic research topic of Quantum Optics. It presents magneto-optical studies on the light-matter interaction in quantum dot microresonator systems within the regime of strong coupling. Surface investigations on semiconductor nanowires This aspect of the present work focuses on investigations of semiconductor nanowires by means of time-integrated and time-resolved photoluminescence (PL) spectroscopy. These one-dimensional nanostructures provide a promising perspective for the further miniaturization of microelectronics. Since conventional structuring techniques increasingly face physical and technological boundaries, self-organized growth processes are of special interest in this context. Moreover, nanowires offer the possibility to implement complex functionalities already during their fabrication by means of controlled growth of axial and radial heterostructures. Due to their high surface-to-volume ratio the electronic and optical properties of nanowires are extremely sensitive to the surface conditions, which is of essential relevance for future applications in the range of micro- and optoelectronics as well as sensor technology. For a detailed investigation of the surface properties of nanowires optical spectroscopy is especially suitable, because as a non-invasive measurement method it quickly provides useful information without the necessity of an eloborate sample preparation. This information can, for instance, be adopted for the optimization of the fabrication process. Quantum Optics in semiconductor microcavities The second part of this thesis addresses the light-matter interaction in quantum dot-microresonator systems. Here, the regime of strong coupling between emitter and resonator is of special interest, also with respect to potential future applications in the field of quantum information processing. These microresonator-pillars based on planar AlAs/GaAs microresonators with InGaAs quantum dots in the active layer have been investigated by means of time-integrated and time-resolved micro-PL-spectroscopy in an external magnetic field in Faraday configuration. Basic investigations of quantum dots in magnetic fields In the first place, InxGa(1−x)As quantum dots with different In-content (x = 30%, 45% and 60%) have been investigated magneto-optically. Due to their bigger dimensions these quantum dots with 30% In-content exhibit higher oscillator strengths which makes them especially suitable for experiments on strong coupling. The influence of the magnetic field showed a direct relation between the lateral extension of the quantum dots and their diamagnetic shift. Strong coupling in magnetic fields Besides the possibility of tuning the system in resonance by the external magnetic field, a correlation between the coupling strength and the magnetic field was discovered which could be ascribed to a reduction of the oscillator strength in the magnetic field. This in turn is based on a squeeze of the exciton’s wavefunction by the applied field. This direct influence of the magnetic field on the oscillator strength allows for an in situ control of the coupling strength. Photon-photon interaction under strong coupling in magnetic fields After the demonstration of strong coupling between degenerate exciton and resonator modes in magnetic fields, spin-related coupling effects within the regime of strong coupling have been investigated. Two regions of interaction between the individual components of the resonator and exciton mode developed in the magnetic field under variation of the temperature. Here, an observed indirect interaction between both photonic modes at the moment of resonance is of special interest, because it is mediated by the excitonic mode. This so-called spinmediated photon-photon coupling represents a link between technically independent photonic modes via the spin state of an exciton. KW - Drei-Fünf-Halbleiter KW - Niederdimensionaler Halbleiter KW - Photolumineszenzspektroskopie KW - quantum dot KW - quantum optics KW - optical spectroscopy KW - solid state physics KW - nanowire KW - Quantenpunkt KW - Quantenoptik KW - Optische Spektroskopie KW - Festkörperphysik KW - Nanodraht Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74104 ER - TY - THES A1 - Schöppler, Friedrich Eugen T1 - Photolumineszenzmikroskopie und-spektroskopie halbleitender Kohlenstoffnanoröhren T1 - Photoluminescence microscopy and spectroscopy of semiconducting nanotubes N2 - Im Rahmen dieser Dissertation wurden optische Eigenschaften von halbleitenden, einwandigen Kohlenstoffnanoröhren (SWNTs) der (6,5)-Chiralität untersucht. Dies gelang durch Ensemblemessungen aber vor allem durch den Aufbau eines Mikroskops zur Messung an einzelnen SWNTs. Dieses Einzel- SWNT-Mikroskop ermöglichte nebst „normaler“ Bildgebung durch Sammlung und Abbildung der nahinfraroten Photolumineszenz (PL) der (6,5)-SWNTs auch die spektral- und zeitaufgelöste Untersuchung der PL. Durch Verwendung von Dichtegradientenultrazentrifugation (DGU) zur chiralen Aufreinigung des SWNT-Rohmaterials konnten alle Messungen unter Minimierung des störenden Einflusses von Aggregaten oder SWNTs anderer Chiralität durchgeführt werden. Untersucht und bestimmt wurde der Absorptionsquerschnitt und die Exzitonengröße, die PL-Eigenschaften aggregierter SWNTs und der Einfluß der Permittivität auf die PL einzelner SWNTs. N2 - Within the course of this work fundamental optical properties of semiconducting single-walled carbon nanotubes (SWNTs) of the (6,5)-chirality were examined by utilizing ensemble measurements and in particular a home-built microscope setup for measurements of individual SWNTs. This single-SWNTmicroscope allowed for „standard“ imaging of the near infrared photoluminescence (PL) signal of the (6,5)-SWNTs as well as for spectrally and timeresolved PL measurements. Facilitating density gradient ultracentrifugation (DGU) for chiral enrichment of the SWNT soot, all measurements were carried out with minimum influence of aggregates or minority species of other SWNT chiralities. The absorption cross section, the exciton size, PL-features of aggregated SWNTs and the influence of permittivity on SWNT-PL have been investigated. KW - Mikroskopie KW - Photolumineszenz KW - Photolumineszenzspektroskopie KW - Kohlenstoff-Nanoröhre KW - Halbleiter KW - Spektroskopie KW - NIR-Spektroskopie KW - Lebensdauer KW - Laserinduzierte Fluoreszenz KW - Aggregation KW - Exziton KW - Dielektrizitätszahl KW - microscopy KW - spectroscopy KW - carbon nanotubes KW - fluorescence Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73329 ER -