TY - THES A1 - Giner, Martin T1 - Signalmechanismen der epithelialen Proliferation und DIfferenzierung T1 - Signal mechanisms of Proliferation and Differentiation in Epithelia N2 - Gestörte Proliferations- und Differenzierungsprozesse in Keratinozyten spielen eine wichtige Rolle in der Pathogenese vieler Hauterkrankungen. Intrazelluläre Signalmechanismen, die die korrekte Balance zwischen epidermaler Proliferation und Differenzierung aufrecht halten, sind bis jetzt größtenteils unbekannt. Einer dieser ausschlaggebenden Transkriptionsfaktoren ist der Nukleäre Faktor-kappaB (NF-kB). Uns interessierte der Einfluss des IKK/IkBa/NF-kB-Signalweges auf das intrinsische Differenzierungsprogramm von Keratinozyten. Mittels retroviraler Infektion wurden sowohl in primären Keratinozyten als auch in HaCaT verschieden mutante Formen von Faktoren des NF-kB-Signalweges eingebracht: dominant negative (dn) Formen der IKK1 und IKK2, eine konstitutiv aktive Form der IKK2 (IKK2 EE) und eine nicht-degradierbare Form des Inhibitors IkBa. Zusätzlich wurden auch pharmakologische Inhibitoren von NF-kB (BAY 11-7082 und SC-514) untersucht. Die Funktionalität der Mutanten wurde im Westernblot durch Analyse der IkBa Degradation überprüft. Anschließend wurde die Differenzierung der Keratinozyten durch Erhöhung des extrazellulären Calciums induziert. Der Grad der Differenzierung wurde durch morphologische Studien und Untersuchung der Expression der Differenzierungs-marker p21 und Involucrin untersucht. Im Gegensatz zu Ergebnissen aus Tiermodellen, konnten wir keine Effekte der mutierten IkB Kinasen 1 und 2 auf die Calcium-induzierte in vitro Differenzierung beobachten. Jedoch wurde die Aktivierung inflammatorischer Gene, gemessen an der Induktion von ICAM-1 und IL-8 nach TNF-a Stimulation, vollständig in den IKK2 KD und mut IkBa exprimierenden Zellen inhibiert. In der Zelllinie, welche die entsprechende IKK1 Mutante trug, wurde deren Expression nur teilweise geblockt. Zusammenfassend lässt sich aus unseren Ergebnissen schließen, dass zumindest in vitro IKK1 und IKK2 nicht an der Regulation des Calcium-induzierten intrinsischen Differen-zierungsprozesses von Keratinozyten beteiligt sind, jedoch eine zentrale Rolle in der inflammatorischen Aktivierung dieser Zellen spielen. N2 - Disturbed proliferation and differentiation processes of keratinocytes play a major role in the pathogenesis of many skin diseases. Intracellular signalling mechanisms which regulate the balance between epidermal proliferation and differentiation, however, are thus far largely unknown. Earlier reports suggest a role for the transcription factor nuclear factor–kappaB (NF-kB) in such processes. Here we attempted to analyze the impact of the IKK/IkBa/NF-kB signalling pathway on the intrinsic differentiation process of keratinocytes. Primary human keratinocytes as well as HaCaT cells were retrovirally infected to express different mutant forms of components of the IKK/NF-kB pathway: dominant negative (dn) mutants of NF-kB upstream kinases IKK1 and IKK2, a constitutive active form of IKK2 (IKK2 EE), and a non degradable mutant form of IkBa. In addition, pharmacological inhibitors of the pathway such as BAY 11-7082 and SC-514 were analysed. Proper functionality of the generated mutants was subsequently confirmed by Western blot analysis monitoring induced IkBa degradation. Thereafter, differentiation of keratinocytes was induced by elevation of extracellular calcium levels. The differentiation state of keratinocytes was then assessed by studying morphology and expression of differentiation markers such as p21 as well as involucrin. In contrast to data reported from animal models, we could not detect any effects of mutated IKK1 or IKK2 on the calcium-induced intrinsic differentiation program in keratinocytes. However, inflammatory activation of keratinocytes as measured by TNF-a-mediated up-regulation of ICAM-1 and IL-8 was almost completely inhibited in cells expressing dn IKK2 and the IkBa mutant form whereas it was only partly blocked in IKK1dn cells. In conclusion, our data suggest that, in least in vitro, IKK1 and IKK2 are not involved in the regulation of calcium-induced keratinocyte differentiation while they are pivotal for inflammatory activation of these cells. KW - NF-kappaB KW - Keratinozyten KW - Involucrin KW - Differenzierung KW - Proliferation KW - inflammatorische Antwort KW - NF-kappaB KW - Keratinocytes KW - Involucrin KW - differentiation KW - proliferation KW - inflammatory response Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27069 ER - TY - THES A1 - Brocher, Jan T1 - Einfluss von HMGA1-Proteinen auf die Myogenese und Heterochromatinorganisation während der Differenzierung T1 - Influence of HMGA1 proteins on myogenesis and heterochromatin organization during differentiation N2 - HMG-Proteine sind nach den Histonen die zweithäufigste Superfamilie nukleärer Proteine. Sie binden an DNA und Nukleosomen und induzieren strukturelle Veränderungen im Chromatin. Sie spielen eine wichtige Rolle in der Dynamik des Chromatins und beeinflussen dadurch DNA-abhängige Prozesse, wie Transkription und Replikation. Proteine der HMGA-Familie sind charakterisiert durch konservierte DNA-Bindungsmotive, den AT-Hooks, welche eine Bindung an AT-reiche DNA-Sequenzen vermitteln und durch einen sauren C-Terminus. HMGA-Proteine sind verstärkt im Heterochromatin konzentriert und stehen in Verbindung mit der Expressionsregulation spezifischer Gene aufgrund der Stabilisierung von Nukleoproteinkomplexen, so genannten Enhanceosomen. HMGA-Proteine spielen des Weiteren eine entscheidende Rolle in verschiedenen Entwicklungsprozessen und bei der Tumorprogression . Um den Einfluss von HMGA1 auf die zelluläre Differenzierung und die Chromatinmodulation zu untersuchen, wurden C2C12 Maus-Myoblastenzellen verwendet. Die Induktion der Myogenese in diesen Zellen geht mit der Herunterregulierung von HMGA1 einher. Durch die Etablierung einer C2C12-Zelllinie, welche ein EGFP-markiertes HMGA1a stabil exprimierte, konnte gezeigt werden, dass eine anhaltende HMGA1-Expression spezifisch die Myogeneseprozess inhibierte, während die Osteogenese davon unbeeinflusst zu bleiben schien. Dieser hemmende Effekt kann durch die HMGA1-abhängige Fehlexpression verschiedener Gene, welche für eine einwandfreie Muskeldifferenzierung nötig sind und in die Zellzyklusregulation eingreifen, erklärt werden. Unter der Verwendung von RNAi konnte gezeigt werden, dass die Herunterregulierung von HMGA1-Proteinen für eine korrekte Genexpression und den Muskeldifferenzierungsprozess notwendig ist. Während der terminalen Differenzierung wird die Umorganisation des Chromatins durch die Fusion der Chromozentren offensichtlich. Fotobleichtechniken, wie „fluorescence recovery after photobleaching“ (FRAP) zeigten, dass HMGA1-Proteine mit dem Methyl-CpG-bindenden Protein 2 (MeCP2), welches eine wichtige Rolle in der Chromozentrenfusion spielt, um DNA-Bindungsstellen konkurriert und dieses vom Chromatin verdrängt. Diese dynamische Konkurrenz zwischen einem anhaltend exprimierten HMGA1 und MeCP2 trägt somit zur Inhibition der differenzierungsabhängigen Modulation des Chromatins während der späten Myogenese bei. Die Untersuchungen in C2A1a-Zellen lieferten weitere Hinweise dafür, dass der wesentlichste Umbau des Chromatins in einem Zeitfenster um den dritten Tag nach Induktion der Myogenese stattfindet, an welchem HMGA1 natürlicherweise nahezu vollständig herunterreguliert sind. In diesem Zeitraum kommt es zur Dissoziation der Chromozentren, zu veränderten Expressionsmustern in bestimmten Genen, zu Modulationen in Histonmodifikationen (H3K4me2, H3K4me3, H3K27me3), zur Replikations-unabhängigen Akkumulation von Histon H3 in den Chromozentren über ungefähr einen Zellzyklus hinweg und zu eine signifikanten Erhöhung der HP1-Dynamik. Durch den Einsatz von Bimolekularer Fluoreszenzkomplementierung (BiFC), die es erlaubt Protein-Protein-Interaktionen in vivo zu visualisieren, konnte gezeigt werden, dass der saure C-Terminus des HMGA mit der Chromodomäne (CD) des HP1 interagiert. Zusätzlich ist für diese Interaktion die korrekte DNA-Bindung des HMGA nötig. FRAP-Messungen mit HP1-EGFP-Fusionsproteinen in Zellen die wildtypisches oder ein mutiertes HMGA koexprimierten, bestätigten diese Daten und wiesen darauf hin, dass die HP1-Verweildauer im Heterochromatin maßgeblich von der Gegenwart eines funktionellen HMGA1 abhängig ist. Des Weiteren zeigten C2C12-Myoblasten, die HMGA1 natürlicherweise exprimieren, eine hohe HP1-Verweildauer, die nach HMGA1-knock down drastisch verringert ist. Umgekehrt ist die HP1-Verweildauer nach einer Herunterregulierung von HMGA1 an Tag 3 der Myogenese gering und steigt durch die Koexpression von HMGA1 auf das in Myoblasten gemessene Niveau an. Zusammengenommen zeigen diese Daten, dass die differenzielle Expression von HMGA1 und ihre Fähigkeit mit HP1 zu interagieren, sowie ihre Konkurrenz mit MeCP2 um DNA-Bindungsstellen einen entscheidende Rolle in der Regulation der Aufrechterhaltung und Plastizität des Heterochromatins während der Differenzierung spielen. Daher ist eine zeitlich festgelegte Herunterregulierung von HMGA1 notwendig, um die Modulation des Chromatins und dadurch den Differenzierungsprozess zu ermöglichen N2 - HMG proteins are an abundant superfamily of nuclear proteins that bind to DNA and nucleosomes and induce structural changes in the chromatin fiber. These proteins play an important role in chromatin dynamics and thereby impact DNA-related processes like transcription and replication. Proteins of the HMGA family are characterized by conserved DNA-binding domains, the AT hooks, which mediate binding to AT-rich DNA, and an acidic c-terminal domain. HMGA proteins concentrate in heterochromatin and are linked to specific gene regulation by stabilizing nucleoprotein complexes called enhanceosomes. Furthermore, HMGA proteins play an important role in several developmental processes and in tumor progression. C2C12 mouse myoblast cells were used to explore the impact of HMGA1 proteins on differentiation and chromatin modulation. After induction of myogenesis HMGA1 proteins revealed a downregulation. By establishing a C2C12 cell line stably expressing an EGFP tagged HMGA1a (C2A1a) it could be shown that sustained HMGA expression inhibited specifically the myogenic process while osteogenesis seemed to be unaffected. This inhibition can be explained by an HMGA1-dependent misexpression of several genes that are required for proper myogenic differentiation and genes involved in cell cycle regulation. Using RNAi techniques it could be demonstrated that downregulation of HMGA1 proteins is required to restore proper gene expression and to enable the myogenic program. During terminal differentiation chromatin remodeling is apparent by fusion of chromocenters. Photobleaching experiments like “fluorescence recovery after photobleaching” (FRAP) revealed that HMGA1 proteins compete with the methyl-CpG-binding protein 2 (MeCP2), which plays an important role during the fusion of chromocenters, for DNA-binding sites. Thereby MeCP2 is displaced from chromatin. This dynamic competition between constitutively expressed HMGA1 and MeCP2 thereby leads to an inhibition of the differentiation dependent modulation of the chromatin during late myogenesis. Studies in C2A1a cells revealed a set of evidences indicating that further major chromatin remodeling occurs around day three after induction when HMGA1 proteins are downregulated. At this time-frame chromocenters dissociate, expression patterns of genes are switching, histone modifications are modulated (H3K4me2, H3K4me3, H3K27me3), histone H3 accumulates in a replication independent mode in chromocenters for approximately one cell cycle, and dynamics of HP1 proteins are significantly increased. Applying bimolecular fluorescence complementation (BiFC) that allows visualization of protein-protein interactions in living cells I could show that the acidic domain of HMGA interacts with the chromodomain (CD) of HP1. In Addition, the proper DNA-binding of HMGA1 is necessary to accomplish a functional interaction between HP1 and HMGA. FRAP measurements of HP1-EGFP in cells coexpressing wild type or mutated HMGAs corroborated theses findings and indicated that the HP1 residence time in heterochromatin strongly depends on the presence of functional HMGA proteins. Furthermore, HP1 residence time is high in C2C12 myoblasts which express HMGA1 but low after HMGA1 knock down. Vice versa, it is low in C2C12 cells at day 3 of differentiation when HMGA proteins are downregulated, but high when HMGA1 proteins are coexpressed. Together, these data indicate that the differential expression of HMGAs and their capacity to interact with HP1 proteins and compete with MeCP2 plays an important role in the regulation of heterochromatin maintenance and plasticity during differentiation. Therefore, the downregulation of HMGA1 proteins is required to allow chromatin remodeling and to enable the differentiation program. KW - HMG-Proteine KW - Differenzierung KW - Muskelentwicklung KW - Heterochromatin KW - C2C12-Zellen KW - HMG proteins KW - myogenesis KW - heterochromatin KW - differentiation KW - C2C12 cells Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24456 ER -