TY - THES A1 - Grebner, Wiebke T1 - Organspezifische Bildung und Funktion von Oxylipinen in Arabidopsis thaliana T1 - Organ specific synthesis and function of oxylipins in Arabidopsis thaliana N2 - Oxylipine sind Signalmoleküle, welche durch die enzymatische oder nicht-enzymatische Oxidation von Fettsäuren gebildet werden. Eine bedeutende Gruppe von Oxylipinen in Pflanzen sind die Jasmonate. Dazu zählen Jasmonsäure (JA), deren Vorstufe 12-Oxophytodiensäure (OPDA) sowie deren Metabolite. Ein bedeutender Metabolit von JA ist das Aminosäure-Konjugat JA-Isoleucin (JA-Ile), welches hohe biologische Aktivität besitzt. Besonders für die oberirdischen Organe von Pflanzen wurden bisher vielfältige Funktionen von Jasmonaten beschrieben. Sie sind beteiligt an verschiedenen Entwicklungsprozessen wie der Fertilität von Blüten, aber auch an der Abwehr von Pathogenen und Herbivoren und bei der Reaktion von Pflanzen auf abiotische Stressoren wie hohe Salzkonzentrationen oder Trockenheit. Über die Bildung und Funktion von Oxylipinen in Wurzeln ist bisher jedoch nur wenig bekannt. Aus diesem Grund wurden in der vorliegenden Arbeit die Gehalte von Galaktolipiden und Jasmonaten in Spross und Wurzel von Arabidopsis thaliana Pflanzen verglichen. Mit Hilfe verschiedener JA Biosynthese-Mutanten konnte zudem die Bildung von Jasmonaten in der Wurzel und deren biologische Funktion in diesem Pflanzenorgan untersucht werden. Um die Wurzeln der Arabidopsis Pflanzen einfach behandeln zu können und um schnell und stressfrei größere Mengen von Wurzelmaterial ernten zu können, wurde ein hydroponisches Anzuchtsystem etabliert. Die Analyse von Galaktolipiden zeigte, dass in der Wurzel deutlich geringere Galaktolipid Gehalte als im Spross vorhanden sind. Da Galaktolipide den Hauptbestandteil plastidärer Membranen ausmachen, in den Wurzeln insgesamt jedoch weniger Plastiden vorkommen als in Blättern, wäre dies ein möglicher Grund für den beobachteten Unterschied. Das Vorkommen von mit OPDA oder dnOPDA veresterten Galaktolipiden (Arabidopsiden) wird in der Literatur für die Thylakoidmembranen der Chloroplasten beschrieben. Die Analyse der Arabidopsid Gehalte von Wurzeln konnte diese Aussage stützen, da in Wurzeln, welche normalerweise keine Chloroplasten besitzen, nahezu keine Arabidopside detektiert werden konnten. Die Analyse der Jasmonate zeigte anhand von Pfropfungsexperimenten mit der Jasmonat-freien dde2 Mutante, dass die Wurzeln unabhängig vom Spross in der Lage sind Jasmonate zu bilden, obwohl die Expression vieler JA-Biosynthese-Gene in den Wurzeln sehr gering ist. Zudem zeigten diese Experimente, dass es keinen direkten Transport von Jasmonaten zwischen Spross und Wurzel gibt. Die Bildung von Jasmonaten in der Wurzel konnte durch verschiedene Stresse wie Verwundung, osmotischen Stress oder Trockenheit induziert werden. Kälte und Salzstress hatten hingegen keinen Jasmonat-Anstieg in den Wurzeln zur Folge. Anders als bei osmotischem Stress und Trockenheit, wo sowohl die Gehalte von OPDA als auch von JA und JA-Ile anstiegen, konnte bei Verwundung keine Zunahme der OPDA-Spiegel detektiert werden. Hier kam es zu einer deutlichen Abnahme, wohingegen die JA und JA-Ile Spiegel sehr stark anstiegen. Dies deutet darauf hin, dass es sehr komplexe und vielfältige Regulationsmechanismen hinsichtlich der Bildung von Jasmonaten gibt. Der erste Schritt der JA-Biosynthese, die Bildung von 13-Hydroperoxyfettsäuren (HPOTE), wird durch 13-Lipoxygenase (LOX) Enzyme katalysiert. In Arabidopsis sind vier unterschiedliche 13-LOX Isoformen bekannt. Die Untersuchung verschiedener 13-LOX-Mutanten ergab, dass nur die LOX6 an der Biosynthese von Jasmonaten in der Wurzel beteiligt ist. So konnten in Wurzeln der lox6 Mutante weder basal noch nach verschiedenen Stressen bedeutende Mengen von Jasmonaten gemessen werden. Im Spross dieser Mutante war basal kein OPDA vorhanden, nach Stresseinwirkung wurden jedoch ähnliche Jasmonat Gehalte wie im Wildtyp detektiert. Um Hinweise auf die biologische Funktion von Jasmonaten in Wurzeln zu erhalten, wurden Untersuchungen mit einer lox6 KO Mutante durchgeführt. Dabei zeigte sich, dass abgeschnittene lox6 Wurzeln, welche keine Jasmonate bilden, im Vergleich zum Wildtyp von saprobiont lebenden Kellerasseln (Porcellio scaber) bevorzugt als Futter genutzt werden. Blätter dieser Mutante, welche nach Stress annähernd gleiche Jasmonat Gehalte wie der Wildtyp aufweisen, wurden nicht bevorzugt gefressen. Von der Jasmonat-freien dde2 Mutante wurden hingegen sowohl die Wurzeln als auch die Blätter bevorzugt gefressen. Neben den Experimenten mit Kellerasseln wurden auch Welke-Versuche mit lox6 und dde2 Pflanzen durchgeführt. Hierbei wiesen die lox6 Pflanzen, nicht aber die dde2 Pflanzen, eine erhöhte Suszeptibilität gegenüber Trockenheit auf. dde2 Pflanzen haben im Gegensatz zu LOX Mutanten unveränderte 13-HPOTE Gehalte, aus denen auch andere Oxylipine als Jasmonate gebildet werden können. Dies zeigt, dass durch LOX6 gebildete Oxylipine, im Falle von Trockenheit aber nicht Jasmonate, an der Reaktion von Arabidopsis Pflanzen auf biotische und abiotische Stresse beteiligt sind. N2 - Oxylipins are signaling molecules derived by enzymatic or non-enzymatic oxidation of fatty acids. Jasmonates are one important group of oxylipins in plant. This group includes jasmonic acid (JA), its precursor 12-oxophytodienoic acid, and all JA metabolites. The amino acid conjugate JA-isoleucine (JA-Ile) is one relevant metabolite of JA which shows high biological activity. For the aerial parts of plants, many different functions of jasmonates have been described. Jasmonates are involved in developmental processes like the flower fertility. Furthermore, these compounds function as signals in defense reactions against pathogens and herbivores and in the response to abiotic stress like high salt concentrations or drought. For roots, much less is known about the formation and function of jasmonates. Therefore, in this work the levels of galactolipids and jasmonates in roots of Arabidopsis thaliana in comparison to leaves were analyzed. Using mutants in different steps of jasmonate biosynthesis the formation and biological function of jasmonates in roots were investigated. For easy handling, treatment, and harvest of root material a hydroponic system was established. The analysis of galactolipids showed reduced contents of these compounds in roots in comparison to the shoots. These differences might occur due to the fact that galactolipids are the main compounds of plastid membranes and that roots in general contain less plastids than the leaves. In the literature it is described, that galactolipids esterified with OPDA or dnOPDA (arabidopsides) only occur in the thylakoid membranes of chloroplasts. The analysis of arabidopsid contents in roots supports this statement since nearly no arabidopsides were detectable in roots, which do normally not have chloroplasts. The analysis of jasmonates with different grafting experiments using the jasmonate free dde2 mutant showed that roots were able to synthesize jasmonates independently of the shoot although the expression of several JA biosynthesis genes is very low. These experiments also pointed out that there is no transport of jasmonates between the shoot and the root. Jasmonates accumulated in roots upon different stresses such as wounding, osmotic stress, or drought. Cold and salt stress did not lead to increased jasmonate levels in the roots. Osmotic and drought stress resulted in an increase of all three analyzed jasmonates whereas after wounding only JA and JA-Ile showed higher concentrations. OPDA levels strongly decreased after this type of stress. This suggests the existence of diverse and complex regulatory mechanisms of stress-induced jasmonate synthesis. 13-lipoxygenase (13-LOX) enzymes are involved in the first step of the JA biosynthesis, the formation of 13-hydroperoxy fatty acids (HPOTE), and four 13-LOX isoforms exist in Arabidopsis. Investigation of different 13-LOX mutants revealed that only the LOX6 enzyme is involved in the biosynthesis of jasmonates in roots. In roots of the lox6 mutant no jasmonate levels were detectable, neither basal nor after different stress treatments. In the shoot of this mutant no basal OPDA was measurable. However, after stress treatment nearly the same amounts of jasmonates were detected. To investigate the function of jasmonates in roots a lox6 KO mutant was used. The experiments showed that detached roots of the lox6 mutant which do not produce jasmonates were the preferred food of the detritivorous crustacean Porcellio scaber in comparison to roots of the wild type. Detached leaves of this mutant which show nearly the same amount of jasmonates after stress like the wild type were not eaten faster. However, detached roots and leaves of the jasmonate free dde2 mutant were both preferred in comparison to the wild type. Besides the investigations with P. scaber also drought experiments were carried out. The lox6 mutant but not dde2 was more susceptible to drought. In contrast to LOX mutants, dde2 plants show unaltered levels of 13-HPOTE which can also be converted to other oxylipins than jasmonates. This indicates that LOX6 derived oxylipins are important for the response to biotic and abiotic factors. However, concerning to drought this is not the case for jasmonates. KW - Oxylipine KW - Ackerschmalwand KW - Jasmonate KW - Wurzel KW - Kellerassel KW - Trockenheit KW - Lipoxygenase 6 KW - Arabidopsis thaliana KW - Jasmonatbiosynthese KW - oxylipins KW - Arabidopsis thaliana KW - jasmonates KW - root KW - drought stress KW - rough woodlouse KW - lox6 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76730 ER - TY - THES A1 - Raacke, Ines Christine T1 - Wirkmechanismen von Hefe-Elicitoren sowie die Rolle von Jasmonaten in Pflanze-Pathogen-Interaktionen T1 - Mechanisms of defense activation by yeast elicitors and function of jasmonates in plant-pathologen-interactions N2 - Die Anwendung von Hefe (Saccharomyces cerevisiae) als Elicitor wurde bisher in Zellkulturen, ebenso in Sojabohne und Gerste beschrieben. Im Rahmen der vorliegenden Arbeit wurde eine mögliche Elicitorwirkung von Hefe auf A. thaliana untersucht. Das Sprühen mit autoklavierter Bäckerhefe führte zu einem Anstieg des Phytoalexins Camalexin mit einem Maximum (54 nmol/g FG) am 5. Tag nach der Behandlung mit dem Elicitor. Bei nachfolgenden Infektionen am 5. Tag nach Hefebehandlung mit Pseudomonas syringae pv. tomato DC3000 wurde eine Schutzwirkung detektiert, die beim Wildtyp Col-0 zu einer 3 bis 4fachen Verringerung des Bakterienwachstums im Vergleich zur Wasserbehandlung führte. Die Schutzwirkung setzte mit dem 5. Tag nach Hefebehandlung ein und hielt bis einschließlich dem 11. Tag an. Ein Schutz gegen Pseudomonas syringae pv. tomato DC3000 war auch systemisch in nicht mit Hefe behandelten Blättern zu detektieren. Infektionen mit Botrytis cinerea 5 Tage nach Hefebehandlung führten beim Wildtyp Col-0 zu Nekrosengröße, die nur 17 % der Nekrosengröße der mit Wasser behandelten Kontrolle betrugen. Veränderungen in der Genexpression 48 Stunden nach Hefebehandlung wurden in einer Microarray-Analyse (in Kooperation mit der GSF Neuherberg) ermittelt. Von rund 1400 Stress-responsiven Genen konnte eine Induktion von 6 Genen nachgewiesen werden. Dabei handelte es sich um Salicylsäure-abhängige Gene (Pr1, Pr2 und Pr5), Gluthation-S-Transferasen (Gst2 und Gst11) und eine UDP Glucosyltransferase. Die Erhöhung der Gene Pr1 und Pr2 deutet auf eine Aktivierung des Salicylsäure-Weges hin. Die Induktion der anderen Gene deutet auf eine Aktivierung der Detoxifizierung hin. Gene aus dem Jasmonsäure (JA)- und Ethylen-Weg wurden nicht induziert. Reprimiert wurde das Gen Asa1, das für eine JA-induzierte Antranilatsynthase kodiert. In Northernblot-Analysen wurden Gene auch zu früheren Zeitpunkten als in der Microarray-Analyse untersucht. Für die Untersuchung, welche Signalwege für die Resistenz durch Hefebehandlung verantwortlich sind, wurden verschiedene Mutanten mit den korrespondierenden Wildtypen von Arabidopsis thaliana aus dem JA-Weg (dde2, opr3 und jin1), aus dem Salicylsäure-Weg (nahG und npr1) und aus dem Camalexin-Weg (cyp79B2/B3 und pad3) mit Pseudomonas syringae pv. tomato DC3000 oder Botrytis cinerea infiziert. Nach Infektionen mit Pseudomonas syringae pv. tomato DC3000 konnte nur in den Salicylsäure-Mutanten keine erhöhte Hefe-vermittelte Resistenz festgestellt werden. Das deutet darauf hin, dass Salicylsäure für den Schutzeffekt der Hefe gegenüber Pseudomonas syringae pv. tomato DC3000 notwendig ist. Bei den getesteten Wildtypen und den Mutanten aus dem JA- und Camalexin-Weg wurden in den mit Hefe vorbehandelten Pflanzen Schutzfaktoren gegen Pseudomonas syringae pv. tomato DC3000 zwischen 2 und 5fach nachgewiesen. Bei Infektionen mit Botrytis cinerea wurde in allen getesteten Mutanten nach Hefebehandlung eine Schutzwirkung aufgezeigt (Schutzfaktoren von 3 bis 7). Das deutet darauf hin, dass weder JA, noch Salicylsäure oder Camalexin für die Schutzwirkung gegen Botrytis cinerea verantwortlich ist. Eine direkte hemmende Wirkung der Hefe auf das Wachstum des nekrotrophen Pilzes konnte durch Wachstumsversuche auf unterschiedlichen Medien ausgeschlossen werden. In Versuchen mit den Mutanten dde2 und opr3 konnte nachgewiesen werden, dass dde2, die weder 12-Oxo-Phytodiensäure noch JA bilden kann, größere Läsionen nach Botrytis cinerea Infektionen ausbildet als der Wildtyp. Größere Läsionen zeigte auch opr3, die 12-Oxo-Phytodiensäure, aber keine JA bildet, die sich aber nicht signifikant vom Wildtyp unterschieden. Daraus lässt sich schließen, dass 12-Oxo-Phytodiensäure eine wichtige Rolle für die Abwehr gegenüber dem nekrotrophen Pilz Botrytis cinerea spielt, wobei JA vermutlich zusätzlich zur Abwehr beiträgt. Infektionen mit Pseudomonas syringae pv. tomato DC3000 führten bei beiden Mutanten zu einer geringeren Symptomausprägung als in den Wildtypen. Übereinstimmend mit den makroskopisch sichtbaren Symptomen zeigte die Mutante dde2 ein mehr als 20fach geringeres Bakterienwachstum als der Wildtyp. Dieses Ergebnis deutet darauf hin, dass sich die Anwesenheit von 12-Oxo-Phytodiensäure und JA im Wildtyp negativ auf die Abwehr gegen das biotrophe Pathogen Pseudomonas syringae pv. tomato DC3000 auswirkt. In Fusarium graminearum konnte JA nachgewiesen werden. Ob es sich bei der JA um einen Pathogenitätsfaktor des Pilzes handelt, sollte durch Mutanten mit einem Defekt im Lipoxygenasegen untersucht werden. Infektionsversuche mit Lipoxygenase-Knockout-Mutanten und Stämmen mit komplementierter Lipoxygenase-Expression zeigten keine Unterschiede in der Symptomausprägung an Blüten und jungen Schoten von Arabidopsis thaliana im Vergleich zum Wildtyp-Pilz. Dieses Ergebnis deutet darauf hin, dass die Lipoxygenase in Fusarium graminearum keine Rolle in der Pathogenität gegenüber Arabidopsis thaliana spielt. N2 - In previous studies yeast-elicitors (Saccaromyces cerevisiae) were described as defense inducers in different cell cultures as well as in plants of soybean and barley. In this work a possible elicitor effect on Arabidopsis thaliana was analysed. After spraying with autoclaved bakers yeast, the phytoalexin camalexin increased in the plants and reached maximum level of 54 nmol/g fw five days after treatment. Infection with Pseudomonas syringae pv. tomato DC3000 five days after yeast treatment showed a protection effect which resulted in 3 to 4 fold less bacterial growth in the wild type Col-0. A protection was detectable between five and eleven days after yeast treatment. Protection was also systemic. Infection with Botrytis cinerea five days after yeast spraying showed a reduction in necrotic lesions to 17 % of water pre-treated plants. Regulation of gene expression 48 hours after yeast treatment was assessed. In a cDNA array comprising 1,400 stress responsive genes (in cooperation with GSF Neuherberg) six genes were induced. Induction was evident for salicylic acid-responsive genes (Pr1, Pr2 and Pr5), glutathion-S-transferases (Gst1 and Gst2), and an UDP-glucosyl transferase. This regulation of gene expression indicated an activation of the salicylic acid pathway and of the detoxification system by yeast. Genes of the jasmonic acid (JA)- and ethylene pathway were not induced. The gene Asa1 which encodes a JA-inducible antranilate synthase was down regulated. With Northern blot analysis the results of the array analyses were verified and in addition earlier time points were analysed. To investigate which signaling pathways are involved in the resistance after yeast treatment different Arabidopsis thaliana mutants were analysed. In the jasmonic acid pathway the mutant’s dde2, opr3 and jin1 were examined, in the salicylic acid pathway nahG and npr1 and in the camalexin biosynthesis cyp79B2/B3 and pad3. The mutants in the salicylic acid pathway showed no yeast-mediated resistance against Pseudomonas syringae pv. tomato DC3000. This indicates that the salicylic acid pathway is necessary for the protection by yeast against Pseudomonas syringae pv. tomato DC3000. In contrast, yeast pre-treatment resulted in a protection in mutants in the jasmonic acid and Camalexin pathways which was similar to the wild type. Upon infection with Botrytis cinerea after yeast pre-treatment a protection effect was detectable in all explored mutants (three to seven fold). This indicates that neither JA, nor salicylic acid nor camalexin is necessary for the protection against Botrytis cinerea. A direct inhibitory effect of yeast on the growth of the necrotrophic fungus can be excluded from growth tests on different plates. Experiments with the dde2 mutant which is not able to synthesize 12-oxo-phytodienoic acid and JA, and the opr3 mutant which is able to accumulate 12-oxo-phytodienoic acid but not JA showed that after Botrytis cinerea infection dde2 developed bigger lesions as the wild type. Lesion sizes were also bigger in opr3 but not significant. These results suggest that 12-oxo-phytodienoic acid is important for the defense against the necrotrophic fungus Botrytis cinerea while JA might additionally contribute. Both mutants showed fewer symptoms after Pseudomonas syringae pv. tomato DC3000 infection as the corresponding wild typs. In agreement with the symptom development, the bacterial growth of Pseudomonas syringae pv. tomato DC3000 in the mutant dde2 was more than 20-fold lower than in the wild type. This result indicates that in the wild type 12-oxo-phytodienoic acid and JA negatively affect the defense against the biotrophic pathogen Pseudomonas syringae pv. tomato DC3000. JA was detected in Fusarium graminearum. In order to investigate if JA is important for pathogenicity of this fungus, mutants with a defect in the lipoxygenase gene were analysed. No difference in the symptom development after infection of flowers and young siliques of Arabidopsis thaliana with lipoxygenase-knockout-mutants or strains with complemented lipoxygenase expression in comparison to the wild type were detectable. These results indicated that the lipoxygenase gene in Fusarium graminearum is not necessary for the pathogenicity in Arabidopsis thaliana. KW - Ackerschmalwand KW - Phytopathogene Pilze KW - Saccharomyces cerevisiae KW - Resistenzfaktor KW - Jasmonate KW - Jasmonate KW - Hefe-Elicitor KW - Pflanze-Pathogen-Interaktion KW - OPDA KW - jasmonates KW - yeast-elicitor KW - plant-pathogen-interaction KW - OPDA Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-22255 ER - TY - THES A1 - Karg, Kathrin T1 - Analyse biologisch aktiver, oxidierter Lipide in Pflanzen und Menschen T1 - Analysis of biologically acitve, oxidized lipids in plants and humans N2 - Durch freie, radikalkatalysierte Oxidation von Linolensäure können in vitro und in vivo meh-rere Klassen von Phytoprostanen gebildet werden. Im Rahmen der vorliegenden Arbeit wur-den Phytoprostane in Pflanzenmaterial (Blättern, Blütenpollen), Speiseölen sowie in mensch-lichen Körperflüssigkeiten (Blut und Urinproben) untersucht. Zusätzlich wurden neue Metho-den entwickelt, um Phytohormone sowie verschiedene Metabolite des pflanzlichen Primär- und Sekundärstoffwechsels zusammen mit einer gemeinsamen Aufarbeitung erfassen und bestimmen zu können. Blütenpollen enthalten mehrere mmol/g an Phytoprostanen, darunter PPA1/PPB1, PPE1 und PPF1. Physiologisch relevant sind jedoch nur die Mengen, die sich nach Extraktion in einem wässrigen Puffer wiederfinden lassen. Deshalb wurden hier erstmals wässrige Extrakte von Birkenpollen untersucht. In diesen befanden sich durchschnittlich 60 nmol PPE1 und 10 nmol PPF1 pro g extrahiertem Pollen. Pflanzenöle enthalten a-Linolensäure bis zu einem Gewichtsanteil von 56 % (m/m). In Spei-seölen aus ausgesuchten Pflanzenarten (Leinöl, Sojaöl, Olivenöl), Walnussöl, Traubenkernöl) und parenteraler Nahrung (Intralipid) wurden die Phytoprostanklassen A1, B1, D1, E1, F1 und deoxy-J1 nachgewiesen und quantifiziert. In frischen Ölen wurden große Mengen an Phy-toprostanen (0,4 – 101 mg/g Öl) gefunden, welche teilweise frei und teilweise verestert vorla-gen. Der absolute Phytoprostangehalt der Öle nahm in folgender Reihe ab: Leinöl » Sojaöl > Olivenöl > Walnussöl > Rapsöl >> Traubenkernöl. (a-Tocopherol). In allen untersuchten Ö-len dominierten entweder PPE1 oder PPF1 als häufigste Phytoprostanklasse. PPA1 und PPB1 waren lediglich als untergeordnete Bestandteile enthalten. PPD1 und dPPJ1 konnten nur in sehr geringen Mengen gefunden werden. Wenn ein Öl bei längerer Lagerung autoxidiert, können die Gehalte an oxidierten Fettsäuren um ein Vielfaches ansteigen. Es konnte gezeigt werden, dass bei der Autoxidation von Spei-seölen weitere Phytoprostane entstehen und die Konzentrationen von PPE1 und PPF1 im Öl bis auf das 10-fache ansteigen können. Weiterhin wurde dabei die Bildung von detektierbaren Mengen dPPJ1 nachgewiesen. Die Kinetik der Phytoprostanbildung folgte dem für andere Autoxidationsprodukte typischem zeitlichen Verlauf und erst nach Überschreiten einer Induk-tionsperiode traten vermehrt Phytoprostane auf. Im menschlichen Verdauungstrakt sind Phytoprostane chemisch stabil. Allerdings können im sauren Milieu des Magens (pH 0-2) Dehydratisierungen auftreten: Nach Inkubation von PPE1 in 0,1 M HCl waren nach 3 h noch 97 % intakt, wohingegen 3 % nichtenzymatisch zu PPA1 konvertiert waren. Unter den gleichen Bedingungen wurden 19 % der inkubierten PGD1 zu dPGJ1 dehydratisiert. In den Pflanzenölen veresterte PPF1 wurden mit Schweinepankreas-Lipase innerhalb 1 h zu 44 bis 100 % hydrolysiert. Raffinierte Speiseöle, welche fast ausschließlich aus Triacylglyce-riden zusammengesetzt sind, wurden die veresterten PPF1 sogar zu fast 100 % hydrolysiert. Weiterhin konnte erstmals gezeigt werden, dass Phytoprostane nach oraler Aufnahme resor-biert werden können und anschließend mit dem Urin ausgeschieden werden. Nach Verzehr von Pflanzenölen (Sojaöl, Olivenöl, Traubenkernöl) wurden die Spiegel von PPF1 in Blut und Urin bestimmt. Dabei zeigte sich eine deutliche Korrelation zwischen dem Phytoprostangehalt der Öle und dem Gehalt in den Blut- und Urinproben: Nach Konsum von Oliven- oder Sojaöl konnten innerhalb von 24 h PPF1 in Blut und Urin wiedergefunden werden, wohingegen der Konsum von Traubenkernöl in den untersuchten Zeiträumen weder im Blut noch im Urin zu detektierbaren PPF1-Mengen führte. Im Blut lag PPF1 verestert vor: Im Serum von Olivenöl-Konsumenten konnten durchschnittlich 1,22 nmol/l PPF1 gefunden werden. Das Serum eines Sojaöl-Konsumenten enthielt 0,97 nmol PPF1/l. Die Ausscheidung von unmetabolisierten PPF1 mit dem Urin erfolgte fast vollständig innerhalb der ersten 8 h nach dem Konsum der Öle, 8 bis 24 h danach konnten im Urin nur noch sehr geringe Mengen PPF1 detektiert wer-den. In den Urinproben der Konsumenten von Olivenöl oder Sojaöl konnten nach 0-4 h durch-schnittlich 2,02 bzw. 0,43 pmol PPF1/mg Kreatinin und nach 4-8 h 1,39 bzw. 0,68 pmol PPF1/mg Kreatinin gefunden werden. Im Rahmen dieser Arbeit wurde eine Methode entwickelt, welche die simultane Bestimmung von Phytohormonen, Oxylipinen und Fettsäuren ermöglicht. Weiterhin wurden Methoden zur Metabolit-Analytik entwickelt, mit welchen Konzentrationsunterschiede zwischen zwei Pro-ben direkt verglichen werden können. Zur Markierung von der Carboxylgruppe von Oxylipinen, Phytohormonen und Aminosäuren mit 18O-Sauerstoff wurden allgemein anwendbare Methoden entwickelt. Die [18O]2-markierten Verbindungen erwiesen sich als stabil und eigneten sich als interner Standard in der GC-MS und HPLC-MS Analytik. N2 - Free radical catalyzed oxidation of linolenic acid leads to the formation of several classes of phytoprostanes, which can occur in vitro and in vivo. In the present thesis, phytoprostanes have been determined in plant material (leaves, pollen), fatty oils and human body fluids (blood and urine samples). Within this work, existing methods were optimized in order to detect all phytoprostane classes in various materials. In addition, new methods for simultane-ous detection and quantification of phytohormones and other plant primary and secondary metabolites together in one sampling procedure were developed. Pollen grains contain phytoprostanes in amounts of some mmol/g, among them PPA1/PPB1, PPE1 und PPF1. However, only the concentrations that can be achieved after extraction with water are physiologically relevant. Therefore, the quantity of phytoprostanes that can be ex-tracted with aqueous buffer was examined. In aqueous birch pollen extract, considerable amounts of PPE1 and PPF1 have been found, ranging around 60 nmol PPE1 and 10 nmol PPF1 per gram extracted pollen. Vegetable oils contain a-linolenic acid in concentrations up to 50% (m/m). In edible oils from selected plant species (linseed oil, soybean oil, olive oil, walnut oil, grapeseed oil) and par-enteral nutrition (intralipid) the phytoprostane classes A1, B1, D1, E1, F1 and deoxy-J1 were identified and quantified. High levels of phytoprostanes (0,4 – 101 mg / g oil) in both free and esterified form were found even in apparently fresh oils. Linseed oil and soybean oil con-tained the highest levels of phytoprostanes (26 µg / g and 29 µg /g, respectively). The abso-lute phytoprostane content of the oil declined in the following order: Linseed oil » soybean oil > olive oil > walnut oil > rapeseed oil >> grape seed oil. Surprisingly, the total amount of phytoprostanes did not correlate well with the linolenic acid content and the content of vita-min E (a-tocopherole). In all oils, either PPE1 or PPF1 was the dominant phytoprostane class. PPA1 and PPB1 were only minor components. PPD1 was found in very small amounts whereas dPPJ1 could exclusively be detected in natural soybean oil. Moreover, levels of oxidized lipids dramatically increase when oils become autoxidized upon prolonged storage. It was shown that during autoxidation of edible oils the levels of PPE1 and PPF1 may raise 10-fold. Furthermore, the formation of detectable amounts of dPPJ1 was demonstrated. The formation of phytoprostanes showed the kinetics typical for all autoxidation products and the amount of oxylipin increased after an induction period. In the human gastrointestinal tract, phytoprostanes are chemically stable. Indeed, exposed to the acidic conditions in the stomach (pH 0-2), dehydration reactions may take place. After incubation of PPE1 in 0,1 M HCl for 3 h, 97% remained intact while 3% were non-enzymatically converted to PPA1. Under the same conditions, 19% of the incubated PGD1 were converted into dPGJ1.Pancreatic lipase released 44 to 100 % of PPF1 esterified in the plant oils within 1 h. Refined oils that consist almost completely of triacylglyceroles were hydrolyzed nearly by 100 %. Furthermore, absorption of phytoprostanes from the human intestinal tract and excretion into urine could be demonstrated for the first time. After oral consumption of 100 ml of a vegeta-ble oil (olive oil, soybean oil or grape seed oil) PPF1 levels were determined in blood and urine. A strong correlation could be found between the amount of phytoprostanes in the oil and the PPF1-content of the blood and urine samples. Within 24 hours after consuming olive or soybean oil, PPF1 were found in the examined body fluids, whereas after the intake of grape seed oil, PPF1 could be detected neither in blood nor in urine. In blood, PPF1 occurred esterified and the collected blood samples of olive oil consumers contained 1,22 nmol/l PPF1 on average while in the blood of one consumer of soybean oil 0,97 nmol PPF1/l could be de-tected. Excretion of the unmetabolized PPF1 in urine occurred nearly completely during the first 8 hours and 8 to 24 hours after the oil intake only very small amount of PPF1 were still measured. 0-4 h after the oil consumption the urine of olive or soybean oil consumers con-tained on average 2,02 and 0,43 pmol PPF1/mg creatinine and after 4-8 h 1,39 and 0,68 pmol PPF1/mg creatinine, respectively. A method that allows the simultaneous determination of phytohormones, oxylipins and fatty acids was developed. Additionally, methods were developed that enable a direct comparison of two different samples in a sum of metabolites. These methods were shown to be suitable for the determination of fatty acids and amino acids. For the labeling of oxylipins, acidic phytohormones and amino acids with 18O in the carboxyl group general methods were established. The [18O2]-labelled compounds are stable and suit-able as internal standards for GC/MS and HPLC/MS analysis. KW - Prostaglandine KW - Pflanzen KW - Mensch KW - Phytoprostane KW - Isoprostane KW - Prostaglandine KW - Jasmonate KW - Oxylipine KW - phytoprostanes KW - isoprostanes KW - prostaglandins KW - jasmonates KW - oxylipins Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20424 ER - TY - THES A1 - Krischke, Markus T1 - Oxidativer Stress in Pflanzen : Untersuchungen zum D1-Phytoprostan-Signalweg T1 - Oxidative stress in plants: Investigating the D1-phytoprostane signalling pathway N2 - Phytoprostane (PP) können nichtenzymatisch in vitro und in vivo durch freie Radikal-katalysierte Peroxidation von alpha-Linolensäure entstehen. In der vorliegenden Arbeit konnte gezeigt werden, dass über den D1-Phytoprostan-Weg zwei weitere Klassen von Phytoprostanen gebildet werden können, die D1-Phytoprostane (PPD1) und die Deoxy-J1-Phytoprostane (dPPJ1). PPD1 und dPPJ1 wurden erstmals durch Partialsynthese hergestellt. Zudem konnten diese Verbindungen durch Autoxidation von alpha-Linolensäure gewonnen werden. PPD1 und dPPJ1 wurden chromatographisch aufgetrennt und UV-spektroskopisch und massenspektrometrisch charakterisiert. Zum Nachweis von PPD1 und dPPJ1 in planta wurde eine neuartige Analysenmethode mittels Fluoreszenz-HPLC entwickelt. Mit dieser Methode konnten PPD1 und dPPJ1 in drei unterschiedlichen Pflanzenspezies nachgewiesen werden. Zudem wurde eine verstärkte Biosynthese von dPPJ1 in planta durch oxidativen Stress beobachtet, z.B. durch eine Belastung mit Schwermetallen oder einen kurzfristigen Kälteschock. Darüber hinaus konnte gezeigt werden, dass dPPJ1 sowohl in Pflanzen als auch in Tieren biologisch aktiv sind. N2 - Phytoprostanes (PP) are formed in vitro and in vivo by free radical-catalyzed peroxidation of linolenic acid. In this work it has been shown that two additional classes of phytoprostanes are formed via the D1-phytoprostane pathway, D1-phytoprostanes (PPD1) and deoxy-J1-phytoprostanes (dPPJ1). For the first time PPD1 and dPPJ1 were prepared by partial synthesis. Additionally, these compounds were also obtained by autoxidation of linolenic acid in vitro. PPD1 and dPPJ1 were separated by chromatographical methods and characterized by UV spectroscopy and mass spectrometry. A novel method for the quantitation of PPD1 and dPPJ1 in planta has been developed, using fluorescence HPLC. This method allowed the identification of PPD1 and dPPJ1 in three different plant species. Furthermore, enhanced formation of dPPJ1 in planta was observed after oxidative stress, e.g. treatment with heavy metals or short exposure to low temperatures. Furthermore, it has been shown that dPPJ1 display biological activity in plants as well as in animals. KW - Phytoprostane KW - Prostaglandin-ähnliche Verbindungen in Pflanzen KW - Lipidperoxidation KW - Jasmonate KW - ROS KW - phytoprostanes KW - prostaglandin-like compounds in plants KW - lipid peroxidation KW - jasmonates KW - ROS Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8599 ER -