TY - THES A1 - Wenninger, Florian T1 - Modifikation von Titanoberflächen mittels elektrochemischer Abscheidung von Magnesiumphosphaten N2 - In der vorliegenden Arbeit ist es gelungen, die experimentellen Parameter für eine erfolgreiche elektrochemische Abscheidung sowohl von Struvit (MgNH4PO4 • 6H2O) als auch Newberyit (MgHPO4 • 3H2O) auf durch Sandstrahlen aufgeraute Titanproben zu ermitteln. Welche der beiden Phasen auf den Titanoberflächen abgeschieden wurde, hing dabei hauptsächlich von der jeweiligen Elektrolytzusammensetzung ab. Bei der Elektrodeposition selbst erwiesen sich eine Elektrolyttemperatur von 50 °C und Stromdichten von etwa 79 – 105 mA/cm2 als optimal, um geschlossene Schichten von hinreichender Dicke reproduzierbar herzustellen. Es zeigte sich, dass die für die jeweiligen Abscheidungsprodukte optimierten Parameter (79 mA/cm2 für Struvit und 105,3 mA/cm2 für Newberyit) zu deutlich unterschiedlichen Massenabscheidungen (4,4 mg/cm2 für Struvit und 0,6 mg/cm2 für Newberyit bei einer Beschichtungsdauer von 15 min) führten. Das Monohydrat Dittmarit (MgNH4PO4 • H2O) ließ sich nicht direkt abscheiden, konnte aber durch Dampfsterilisation von zuvor erzeugten Struvitschichten in einem Autoklaven erzeugt werden. Um das Verhalten der Oberflächenmodifikationen in einer in-vivo-Umgebung zu simulieren, wurden die Beschichtungen für eine maximale Dauer von 14 Tagen in Simulated Body Fluid (SBF), Dulbecco's Modified Eagle Medium (DMEM) und in fötalem Kälberserum (FCS) eingelagert. In bestimmten Zeitabständen wurden eingelagerte Proben ihrem Medium entnommen, getrocknet und die Schichten mit Hilfe der Röntgendiffraktometrie und der Rasterelektronen-mikroskopie hinsichtlich ihrer kristallographischen und morphologischen Eigenschaften charakterisiert. Dabei zeigten die drei Magnesiumphosphate jeweils unterschiedliches Degradationsverhalten in den verschiedenen Einlagerungsmedien. Struvit wandelte sich nach 14 Tagen in DMEM teilweise, in FCS größtenteils und in SBF vollständig zu Bobierrit (Mg3(PO4)2 • 8H2O) um. Ein ähnliches Verhalten zeigte sich bei Dittmarit, allerdings kam es hier in allen Medien zur Bildung einer weiteren Phase (Tri-Magnesium-Di-Phosphat-5-Hydrat, Mg3(PO4)2 • 5H2O), in FCS bildete sich zusätzlich noch Di-Magnesiumphosphathydroxid-4-Hydrat (Mg2PO4OH • 4H2O). Die Newberyit-Schichten hingegen zeigten keinerlei Phasenumwandlungen, lösten sich aber in den Einlagerungsversuchen teilweise auf. Diese Ergebnisse zeigen, dass elektrochemisch erzeugte Beschichtungen auf Magnesiumphosphatbasis durchaus vielversprechend im Hinblick auf die funktionelle Modifikation metallischer Implantatoberflächen sind. Neben den literaturbekannten positiven Eigenschaften der Magnesiumphosphate (gute Zytokompatibilität, hohe Löslichkeit und mechanische Festigkeit) ist für zukünftige Forschungen vor allem das in dieser Arbeit untersuchte Degradationsverhalten von Interesse. Die in fast allen untersuchten Kombinationen aus Schichtmodifikation und Einlagerungsmedium auftretenden Phasenumwandlungen weisen auf durch die physiologische Umgebung hervorgerufene Resorptionsprozesse hin, die wiederum in vivo die Osteointegration des Implantats unterstützen könnten. Ein weiterer Aspekt zukünftiger Untersuchungen ist die mögliche Beladung der biokompatiblen Schichten mit bioaktiven Substanzen (antibakterielle oder osteointegrative Wirkstoffe sowie Metallionen zur Unterstützung bzw. Steuerung biologischer Prozesse im implantatnahen Bereich). Hier könnten die unterschiedlichen Degradationsmechanismen der verschiedenen untersuchten Magnesiumphosphat-Modifikationen die Grundlage für kontrollierte und maßgeschneiderte Freisetzungskinetiken liefern. KW - Magnesiumphosphate KW - Titan KW - Galvanische Abscheidung KW - Struvit KW - Degradation KW - elektrochemische Abscheidung KW - electrochemical deposition KW - titanium KW - magnesium phosphate KW - struvite Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85557 ER - TY - THES A1 - Vorndran, Elke T1 - Rapid-Prototyping hydraulisch härtender Calcium- und Magnesiumphosphatzemente mit lokaler Wirkstoffmodifikation T1 - Rapid-prototyping of hydraulic calcium- and magnesium phosphate cements with local drug modification N2 - Ziel dieser Arbeit war die Herstellung individuell formbarer Strukturen mittels des 3D-Pulverdrucks auf Basis von bei Raumtemperatur hydraulisch abbindenden Knochenzementpulvern. Neben der Entwicklung neuartiger Zementformulierungen auf Basis von Magnesiumphosphaten war vor allem die gleichzeitige Ausstattung der Werkstoffe mit temperaturlabilen und bioaktiven Verbindungen ein wichtiger Entwicklungsschritt. Die Lokalisation der Wirkstoffe korreliert dabei mit entsprechenden Farbinformationen im Design der Konstrukte, die durch einen Mehrfarbendrucker physikalisch abgebildet werden. Das auf Calciumphosphat basierende System hat den Nachteil, dass die Abbindereaktion bei stark sauren pH-Werten abläuft, was negative Auswirkungen auf die gleichzeitige Ausstattung mit sensitiven Wirkstoffen hat. Zur Lösung dieser Problematik wurde ein neues Knochenzementpulver auf Magnesiumphosphatbasis entwickelt, welches unter neutralen pH-Bedingungen mit ammoniumhaltigem Binder zu dem Mineral Struvit abbindet. Das Zementpulver aus Trimagnesiumphosphat wurde bezüglich der pulvertechnologischen Eigenschaften, wie Partikelgröße, Partikelgrößenverteilung, Glättungseigenschaften und Schüttdichte sowie hinsichtlich des Abbindeverhaltens charakterisiert und für den Druckprozess optimiert. Die hohe Strukturgenauigkeit ermöglichte die Darstellung von makroporösen Strukturen mit einem minimalen Porendurchmesser von ca. 200 µm. Gute mechanische Kennwerte der gedruckten Strukturen, sowie eine hohe Umsetzungsrate zur gewünschten Phase Struvit wurden durch eine Nachhärtung in Ammoniumphosphatlösung erhalten. Die Druckfestigkeit betrug > 20 MPa und der Phasenanteil von Struvit konnte auf insgesamt 54 % gesteigert werden. Die Darstellung von wirkstoffmodifizierten Calciumphosphat- und Magnesiumphosphatstrukturen durch Verwendung eines Mehrfarbendruckers wurde beginnend vom Design der Strukturen bis hin zur experimentellen Bestimmung der Korrelation von Farbinformation und Binderapplikation etabliert. Zur Sicherstellung einer hohen Druckqualität und der Ortsständigkeit gedruckter Wirkstoffe erwies sich eine zusätzliche Modifikation des Tricalciumphosphatpulvers mit quellfähigen Polymeren (Hydroxypropylmethyl-cellulose (HPMC) bzw. Chitosan) als erfolgreich. Eine maximale Auflösung von ca. 400 µm konnte für eine HPMC/Chitosan/Calciumphosphat-Variante erreicht werden, während das hochreaktive Magnesiumphosphat/Magnesiumoxid-System eine Auflösung von 480 µm aufwies. Die Ortsständigkeit eingebrachter Lösungen war Voraussetzung für die Steuerung der Freisetzungskinetik. Das Freisetzungsverhalten in vitro wurde in Abhängigkeit von der Wirkstofflokalisation (homogen, Depot, Gradient) innerhalb der Matrix und unter Einbringung zusätzlicher polymerer Diffusionsbarrieren für den Wirkstoff Vancomycin untersucht. Dabei zeigte sich, dass die Modifikation der Matrices mit Polymeren zu einer verzögerten Freisetzung führte. Die lokale Wirkstoffmodifikation der Matrices in Form eines Depots oder Gradienten hatte Einfluss auf die Freisetzungskinetik, wobei eine lineare Freisetzung mit der Zeit (Kinetik 0. Ordnung) erreicht werden konnte. Die applizierten Wirkstoffe umfassten sowohl niedermolekulare Verbindungen, wie etwa das Antibiotikum Vancomycin oder das Polysaccharid Heparin, als auch proteinbasierte Faktoren wie den Knochenwachstumsfaktor rhBMP-2. Beurteilt wurde die pharmakologische Wirksamkeit der Verbindungen nach dem Druck, sowie nach der Freisetzung aus einer Calciumphosphatmatrix für den Wirkstoff Vancomycin. Es konnte belegt werden, dass die biologische Aktivität nach dem Druckprozess zu über 80 % erhalten blieb. Limitierend war der stark saure pH-Wert bei bruschitbasierten Systemen, der zu einer Inaktivierung des Proteins führte. Diesem Problem könnte durch die Nutzung des neutral abbindenden Magnesiumphosphatsystems entgegengewirkt werden. Abschließend erfolgten eine mikrostrukturelle Charakterisierung der Calciumphosphat- und Magnesiumphosphatmatrices mittels µ-CT-Analyse und Heliumpyknometrie, sowie eine quantitative Phasenanalyse nach Rietveld. Experimentell konnte nachgewiesen werden, dass mit Hilfe des 3D-Pulverdruck die Darstellung von Makroporen > 200 µm möglich ist. Die Analyse der Phasenzusammensetzung ergab, dass die Umsetzungsrate von Tricalciumphosphat und Trimagnesiumphosphat zu den gewünschten Phasen Bruschit und Struvit infolge des Nachhärtungsprozesses signifikant gesteigert werden konnte. Im Zuge dessen nahm die Porosität der gedruckten Matrices der Phase Struvit von 58 % auf 26 % und der Phase Bruschit von 47 % auf 38 % ab. N2 - Aim of this study was the room temperature fabrication of individually formed structures via 3D-powder printing based on hydraulic bone cements. In addition to the development of a novel cement formulation composed of magnesium phosphate, the simultaneous modification of matrices during the printing process with temperature sensitive and bioactive drugs was an important part of the work. The drug localization within the matrices is hereby correlated with an analogous colour design of the structures, which is physically reproduced by the multi-colour-printer. The calcium phosphate based system has the disadvantage of a strongly acidic setting reaction, which has negative effects on the simultaneous modification with sensitive bioactive agents. To solve this problem a novel bone cement formulation based on magnesium phosphate was established. This cement reacts with ammonium based binder solution within seconds to form the mineral struvite at neutral pH. The technological properties of the of trimagnesium phosphate cement powder, including particle size, particle size distribution, spreadability, powder density, and the setting behaviour, were characterized and optimized for the printing process. The high structural accuracy enabled the production of macroporous structures with a minimal pore diameter of approximately 200 µm. Proper mechanical characteristics of the printed structures as well as a high degree of conversion to the struvite phase were achieved by post-hardening in ammonium phosphate solution. The compressive strength could be increased to more than 20 MPa and the phase fraction of struvite could be increased to a maximum value of a total of 54 %. The fabrication of drug loaded calcium phosphate and magnesium phosphate scaffolds using a multi-colour-printer was established, beginning with the structure design and following the experimental verification of the correlation between the colour information and the applied binder. To guarantee a high accuracy of printing and the localization of the printed drugs, a supplemental modification of the tricalcium phosphate powder with swellable polymers (hydroxypropylmethylcellulose (HPMC) or chitosan) was successful. A maximum resolution of about 400 µm was achieved by an HPMC/chitosan/calcium phosphate composition, whereas the highly reactive magnesium phosphate/magnesium oxide system showed a resolution of about 480 µm. The localization of the applied solutions was a prerequisite to control the release kinetics of the drugs. The release kinetic of vancomycin was investigated in vitro depending on the drug localization (homogeneous, depot, gradient-like) within the matrix and by adding additional polymeric diffusion barriers. It could be shown that the polymeric modification of the matrices resulted in a delayed drug release. By discrete and depot-like or graded drug distributions within the matrices the release kinetic could be controlled, achieving a linear release with time (zero order release). The administered agents involved both low molecular compounds like the antibiotic vancomycin or the polysaccharide heparin and protein based factors like bone morphogenic factor rhBMP-2. Evaluation of pharmacological activity of the agents after printing as well as after release of vancomycin from a calcium phosphate matrix was determined, indicating that the bulk biological activity of more than 80 % was retained during the printing process. The limiting factor of the brushite based system was the strong acidic pH, which resulted in an inactivation of protein-based bioactives. This problem may be solved by using neutrally setting magnesium phosphate systems. Finally a microstructural characterization of calcium phosphate and magnesium phosphate matrices by µ-CT analysis and helium pycnometry as well as a quantitative phase analysis by Rietveld was performed. It was demonstrated, that 3D-printing allows the manufacturing of macro pores > 200 µm. The analysis of phase composition showed a significant increase of the degree of conversion from tricalcium phosphate or trimagnesium phosphate to the phases brushite or struvite due to the post hardening process. Hence the porosity of the printed matrices decreased from 58 % to 26 % for struvite and from 47 % to 38 % for brushite. KW - 3D-Druck KW - Calciumphosphate KW - 3D Pulverdruck KW - Calciumphosphat KW - Magnesiumphosphat KW - 3D powder printing KW - calcium phosphate KW - magnesium phosphate KW - Magnesiumphosphate KW - Rapid Prototyping KW - Kontrollierte Wirkstofffreisetzung Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70245 ER - TY - THES A1 - Saratsis, Vasileios T1 - Untersuchungen zum Abbindeverhalten und der Injizierbarkeit von Magnesiumphosphat-Knochenzementen T1 - Research of setting properties and the injectability of magnesium phosphate bone cements N2 - Ziel dieser Arbeit war die experimentelle Untersuchung von selbsthärtenden Magnesiumphosphat Zementen als Knochenersatzmaterial bezüglich der Verarbeitungsqualität, der Temperaturentwicklung beim Abbinden, der Injizierbarkeit und der mechanischen Eigenschaften. Der Schwerpunkt wurde dabei auf die Anpassung der rheologischen Eigenschaften der Zementpaste für eine minimal–invasive Applikation gelegt. Durch eine elektrische Aufladung der Partikeloberfläche von Farringtonit nach Adsorption von Citrat–Ionen und Zusatz der biokompatiblen Füllstoffe Struvit oder TiO2 für die Einstellung einer bimodalen Partikelgrößenverteilung, war es möglich, die Viskosität der Pasten zu erniedrigen und den filter–pressing−Effekt während der Injektion zu unterdrücken. Die Modifikation des Mg3(PO4)2 Pulvers und der flüssigen Phase erlaubte bei einer Verarbeitungszeit von ca. 10 min die nahezu quantitative Injektion des Zements durch eine 40 mm lange Kanüle mit einem inneren Durchmesser von ca. 800 μm. Zemente mit dem P/L–Verhältnis von 2,0 g/ml erreichten so eine Festigkeit von über 50 MPa nach 24 h Aushärtung. Obwohl die exotherme Abbindereaktion der Zemente teilweise zu einer Erwärmung auf bis zu 67 °C führte, geben literaturbekannte in vivo Studien keinen Hinweis auf Nebenwirkungen innerhalb des umliegenden Hart- bzw. Weichgewebes, was den Verdacht einer möglichen thermischen Nekrose aufgrund der exothermen Abbindereaktion ausschließt. Dies liegt eventuell auch darin begründet, dass die Temperaturmessungen in dieser Arbeit mit einer verhältnismäßig großen Menge an Zementpaste (∼15 g) durchgeführt wurden, während in vivo doch eher geringere Mengen (< 5 g) appliziert werden. N2 - Aim of the present thesis was to investigate self-setting magnesium phosphate cements as bone substitute material with regard to their setting quality, the temperature development during the setting, the injectability and the mechanical properties. Emphasis was placed on the optimization of the rheological properties of the cement paste for a minimally invasive application. Due to electrostatic repulsion of farringtonite particles after adsorption of citrate ions and addition of struvite or TiO2 for setting a bimodal particle size distribution the injectability was vastly improved. The modification of the Mg3(PO4)2 powder and the liquid phase allowed the quantitative injection of the cement through a 40 mm long cannula with an inner diameter of 800 μm with a setting time of approximately 10 minutes. Cements set at P/L ratio 2.0 demonstrated a compressive strength of more than 50 MPa after curing for 24 hours. Although the cement setting reaction resulted in temperatures of up to 67 °C, in vivo studies indicate no side effects within the surrounding hard or soft tissue, which excludes the suspicion of a possible thermal necrosis due to the exothermic setting reaction. This may also be related to the fact that temperature measurements in this work were carried out with a relatively large amount of cement paste (~15 g), whereas in vivo rather smaller amounts (<5 g) are applied. KW - Knochenzement KW - Injizierbarkeit KW - Injectability KW - Abbindeverhalten KW - Magnesiumphosphat KW - Knochenzemente KW - properties KW - magnesium phosphate KW - cements Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158902 ER -