TY - THES A1 - Lubina, Nora T1 - 3,0 Tesla HR-MR-Mammographie bei pathologischer Mamillensekretion T1 - 3.0 Tesla breast magnetic resonance imaging in patients with nipple discharge N2 - Da die häufigste Ursache der pathologischen Mamillensekretion ein benigner Prozess ist, sollte die Diagnostik mittels nicht invasiver Verfahren im Vordergrund stehen. Dabei stellt die Kernspintomographie eine wichtige Modalität dar, vor allem wenn die Mammographie und die Mammasonographie keine Befunde zeigen. In dieser Studie wurden Patientinnen mit pathologischer Mamillensekretion mittels MR-Mammographie bei 3,0 Tesla und anschließend mittels Galaktographie untersucht. Von Juli 2009 bis Juni 2012 wurden 50 Patientinnen in die Studie eingeschlossen, die eine pathologische Mamillensekretion zeigten und einer MR-Mammographie bei 3,0 Tesla zustimmten. Bei allen Studienteilnehmerinnen waren sowohl die Mammographie als auch die Mammasonographie negativ oder zeigten einen unklaren Befund. Weitere Einschlusskriterien waren im Normbereich liegende Nieren- und Prolaktinwerte. Sechs Patientinnen zeigten einen beidseitigen Ausfluss. Hier wurden beide Brüste in die Studie eingeschlossen, so dass insgesamt 56 Fälle mit einem Durchschnittsalter von 51,2 Jahren (Standardabweichung ± 12,8 Jahre, Median 52,5 Jahre) betrachtet wurden. Ältere Patientinnen zeigten dabei häufiger maligne Ursachen als jüngere, ohne Nachweis eines signifikanten Unterschieds (p = 0,272). Bei der klinischen Untersuchung war in 44,6% (25/56) ein nicht-blutiger und in 55,4% (31/56) ein blutiger Ausfluss erkennbar. Die Inzidenz der Malignität in der Gruppe der blutigen Sekretion war höher (19,4% vs. 8,0%), jedoch nicht signifikant (p = 0,23). In der Literatur wird davon berichtet, dass bei blutigem Ausfluss das Risiko für ein Mammakarzinom höher ist. Es wird aber auch darauf hingewiesen, dass bei einem nicht-blutigen Ausfluss ein Malignom keinesfalls ausgeschlossen werden kann. Die häufigste Ursache der pathologischen Mamillensekretion war, wie auch in der Literatur berichtet wird, mit 39,4% ein Papillom. Insgesamt wurde in 14,8% ein Malignom nachgewiesen. Dies ist etwas höher als die vergleichbaren Angaben von 2% - 10% in der Literatur. Es bestand ein signifikanter, direkt proportionaler Zusammenhang zwischen Größe in der MR-Mammographie und Malignität (p = 0,019). Ein Phänomen, das Liberman et al. ebenfalls beschrieben. Sowohl sie als auch Langer et al. empfehlen somit bei Läsionen, die kleiner als 5 mm sind, aufgrund der geringen Malignomrate auf eine Biopsie zu verzichten. Auch in der vorliegenden Studie waren alle Läsionen < 5 mm benigne. Zwischen der MR-mammographisch geschätzten Größe und der histopathologisch ermittelten Größe konnte eine signifikant hohe Korrelation gezeigt werden (Korrelationskoeffizient nach Pearson 0,095, p < 0,0001). Dabei wurden die Befunde in der Kernspintomographie tendenziell größer dargestellt. Die gleiche Erfahrung machten auch Son et al. und Schouten van der Velden et al.. Die Ergebnisse der MR-Mammographie wurden mit der danach durchgeführten Galaktographie verglichen. Ein wichtiger Nachteil der Galaktographie zeigte sich in der eingeschränkten Durchführbarkeit. In 23,3% konnte diese nicht erfolgreich beendet werden. In der Literatur wird von ähnlichen Prozentsätzen gesprochen. Zusätzlich erzielten wir im Vergleich zur MR-Mammographie sowohl eine geringere Sensitivität (86% vs. 96%) als auch eine niedrigere Spezifität (33% vs. 70%) für die Galaktographie, was sicherlich auch die Schwierigkeit der Unterscheidung zwischen benignen und malignen Befunden bei einer Galaktographie widerspiegelt. Morrogh et al. verglichen die Galaktographie mit der MR-Mammographie bei 1,5 Tesla ebenfalls bei Patientinnen mit pathologischer Mamillensekretion und negativer Standarddiagnostik. Die von ihnen berichtete Sensitivität von 83% für die MR-Mammographie ist vergleichbar mit der der vorliegenden Studie (75%). Bei 1,5 Tesla erreichten sie allerdings nur eine Spezifität von 62%, die geringer ist als die von uns errechnete Spezifität von 88%. Auch andere Studien referieren eine höhere Spezifität bei höherer Feldstärke. Um dies allerdings aussagekräftig zu zeigen, muss eine intraindividuelle Studie bei 1,5 Tesla und 3,0 Tesla durchgeführt werden. Zusammenfassend kann man jedoch sagen, dass die Galaktographie durch die nicht invasive, strahlungsfreie MR-Mammographie bei der Untersuchung von Patientinnen mit pathologischer Mamillensekretion ersetzt werden sollte, insbesondere wenn die Standarddiagnostik keine auffälligen Befunde liefern konnte. N2 - Objectives To compare 3.0 Tesla breast magnetic resonance imaging (MRI) with galactography for detection of benign and malignant causes of nipple discharge in patients with negative mammography and ultrasound. Methods We prospectively evaluated 56 breasts of 50 consecutive patients with nipple discharge who had inconspicuous mammography and ultrasound by using 3.0 Tesla breast MRI utilizing a dedicated 16 channel breast coil and compared the results with galactography. Histopathological diagnoses and follow ups were used as reference standard. Lesion size estimated on MRI was compared with the size at histopathology. Results Sensitivity and specificity of MRI vs. galactography for detecting pathologic findings were 95.7% vs. 85.7% and 69.7% vs. 33.3%, respectively. For the supposed concrete pathology based on the findings in MRI, the specificity was 67.6% and the sensitivity 77.3% (PPV 60.7%, NPV 82.1%). 8 malignant lesions were detected (14.8%). The estimated size at breast MRI showed excellent correlation with the size at histopathology (Pearson’s correlation coefficient 0.95, p < 0.0001). Conclusions MRI of the breast at 3.0 Tesla is an accurate imaging test and can replace galactography in the work-up of nipple discharge in patients with inconspicuous mammography and ultrasound. KW - NMR-Mammographie KW - Mamma KW - 3,0 Tesla KW - Mamillensekretion KW - Galaktographie KW - magnetic resonance imaging KW - breast KW - 3.0 Tesla KW - nipple discharge KW - galaoctography Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-106180 ER - TY - THES A1 - Wichmann, Tobias T1 - Spulen-Arrays mit bis zu 32 Empfangselementen für den Einsatz an klinischen NMR-Geräten T1 - Coil-Arrays with up to 32 receive channels for the use on clinical NMR systems N2 - In dieser Arbeit wurden für spezielle Anwendungen an klinischen MR-Geräten optimierte Phased-Array-Spulen entwickelt. Das Ziel war, durch die Verwendung neuer Spulen entweder neue Anwendungsgebiete für klinische MR-Geräte zu eröffnen oder bei bestehenden Applikationen die Diagnosemöglichkeiten durch eine Kombination von höherem SNR und kleineren g-Faktoren im Vergleich zu bestehenden Spulen zu verbessern. In Kapitel 3 wurde untersucht, ob es durch den Einsatz neu entwickelter, dedizierter Kleintierspulen sinnvoll möglich ist, Untersuchungen an Kleintieren an klinischen MR-Geräten mit einer Feldstärke von 1,5T durchzuführen. Der Einsatz dieser Spulen verspricht dem klinischen Anwender Studien an Kleintieren durchführen zu können, bei denen er den gleichen Kontrast wie bei einer humanen Anwendung erhält und gleichzeitig Kontrastmittel sowie Sequenzen, die klinisch erprobt sind, einzusetzen. Durch die gewählten geometrischen Abmessungen der Spulen ist es möglich, Zubehör von dedizierten Tier-MR-Geräten, wie z. B. Tierliegen oder EKG- bzw. Atemtriggereinheiten, zu verwenden. Durch Vorversuche an für Ratten dimensionierten Spulen wurden grundlegende Zusammenhänge zwischen verwendetem Entkopplungsmechanismus und SNR bzw. Beschleunigungsfähigkeit erarbeitet. Für Ratten wurde gezeigt, dass in akzeptablen Messzeiten von unter fünf Minuten MR-Messungen des Abdomens in sehr guter Bildqualität möglich sind. Ebenfalls gezeigt wurde die Möglichkeit durch den Einsatz von paralleler Bildgebung sowie Kontrastmitteln hochaufgelöste Angiographien durchzuführen. Es stellte sich heraus, dass bei 1,5T dedizierte Mäusespulen bei Raumtemperatur von den SNR-Eigenschaften am Limit des sinnvoll Machbaren sind. Trotzdem war es möglich, auch für Mäuse ein 4-Kanal-Phased-Array zu entwickeln und den Einsatz bei kontrastmittelunterstützten Applikationen zu demonstrieren. Insgesamt wurde gezeigt, dass durch den Einsatz von speziellen, angepassten Kleintierspulen auch Tieruntersuchungen an klinischen MR-Geräten mit niedriger Feldstärke durchführbar sind. Obwohl sich die Bestimmung der Herzfunktion an MR-Geräten im klinischen Alltag zum Goldstandard entwickelt hat, ist die MR-Messung durch lange Atemanhaltezyklen für einen Herzpatienten sehr mühsam. In Kapitel 4 wurde deswegen die Entwicklung einer 32-Kanal-Herzspule beschrieben, welche den Komfort für Patienten deutlich erhöhen kann. Schon mit einem ersten Prototypen für 3T war es möglich, erstmals Echtzeitbildgebung mit leicht reduzierter zeitlicher Auflösung durchzuführen und damit auf das Atemanhalten komplett zu verzichten. Dies ermöglicht den Zugang neuer Patientengruppen, z. B. mit Arrythmien, zu MR-Untersuchungen. Durch eine weitere Optimierung des Designs wurde das SNR sowie das Beschleunigungsvermögen signifikant gesteigert. Bei einem Beschleunigungsfaktor R = 5 in einer Richtung erhält man z. B. gemittelt über das gesamte Herz ein ca. 60 % gesteigertes SNR zu dem Prototypen. Die Kombination dieser Spule zusammen mit neuentwicklelten Methoden wie z. B. Compressed- Sensing stellt es in Aussicht, die Herzfunktion zukünftig in der klinischen Routine in Echtzeit quantifizieren zu können. In Kapitel 5 wurde die Entwicklung einer optimierten Brustspulen für 3T beschrieben. Bei Vorversuchen bei 1,5T wurden Vergleiche zwischen der Standardspule der Firma Siemens Healthcare und einem 16-Kanal-Prototypen durchgeführt. Trotz größerem Spulenvolumen zeigt die Neuentwicklung sowohl hinsichtlich SNR als auch paralleler Bildgebungseigenschaften eine signifikante Verbesserung gegenüber der Standardspule. Durch die Einhaltung aller Kriterien für Medizinprodukte kann diese Spule auch für den klinischen Einsatz verwendet werden. Mit den verbesserten Eigenschaften ist es beispielsweise möglich, bei gleicher Messdauer eine höhere Auflösung zu erreichen. Aufgrund des intrinsischen SNR-Vorteils der 3 T-Spule gegenüber der 1,5 T-Spule ist es dort sogar möglich, bei höheren Beschleunigungsfaktoren klinisch verwertbare Schnittbilder zu erzeugen. Zusammenfassend wurden für alle drei Applikationen NMR-Empfangsspulen entwickelt, die im Vergleich zu den bisher verfügbaren Spulen, hinsichtlich SNR und Beschleunigungsvermögen optimiert sind und dem Anwender neue Möglichkeiten bieten. N2 - Purpose of this work was to develop optimized phased array coils for clinical magnetic resonance imaging (MRI) systems for applications were dedicated coils were not readily available. Chapter 3 evaluates the use of dedicated small animal coils on clinical MR scanners with a field strength of 1,5T instead of using special animal-systems with higher intrinsic signal-to-noise ratio. Advantage of the clinical system is the availability and the portability of the results of animal studies to human applications because sequences can easily be adopted. The available contrast is similar and clinically tested contrast agents can directly be used. Comparisons of different array decoupling methods with respect to SNR and parallel imaging performance have been conducted on coils with the standard size of rat-coils on animal scanners as part of this work. This geometry made it possible to directly use accessories of these systems like animal beds and monitoring systems. It showed that it is possible to acquire images of the abdomen of the rat in under five minutes in very good image quality with such setup. It was also used for high resolution angiographie in very short scanning time due to the use of parallel imaging techniques. However it has shown that the use of dedicated mouse coils is at the very limit of SNR at 1.5 T. Nevertheless a four channel phased array coil was built and tested. The results are described within this work. Another application which can benefit of novel dedicated coils is the assessment of cardiac function. Especially for heart patients it can be very exhausting to hold breath for a longer period of time, which is required by the current standard protocol for cardiac imaging. The combination of 3T and many available receive channels is a very promising combination to shorten the scan time. Chapter 4 describes the development of a 32 channel cardiac phased array coil for 3T to investigate this idea. Starting with an existing coil for 1.5T a first prototype was developed which was the first coil to demonstrate real-time cardiac imaging with only slightly reduced temporal resolution. A further optimization of this coil led to a completely new coil with higher SNR performance and better parallel imaging abilities and was a further step towards real-time imaging of the heart in clinical routine. Chapter 5 describes the development of an optimized 16 channel breast coil for 3T which can be used in clinical routine. Tests at 1.5T were conducted to find the best coil element layout . It was also possible to compare the prototypes at this field strength to an existing breast coil of Siemens Healthcare. Better SNR and parallel imaging performance could be achieved due to the possibility of adjusting the coil size to different breast sizes and therefore optimizing the filling factor. These improved qualities will allow to have higher resolution in the same scan time compared to the current standard in clinical routine. In conclusion it has been shown that these applications can benefit from dedicated array coils due to better SNR and parallel imaging performance. KW - Kernspintomografie KW - NMR-Tomographie KW - Spulen-Array KW - magnetic resonance imaging KW - coil-array KW - Magnetspule KW - Magnetische Kernresonanz Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79358 ER - TY - THES A1 - Grodzki, David Manuel T1 - Entwicklung von neuen Sequenzen mit ultrakurzen Echozeiten für die klinische Magnetresonanzbildgebung T1 - Development of New Sequences with Ultrashort Echo Times for Clinical Magnetic Resonance Imaging N2 - Stoffe mit schnell zerfallendem Magnetresonanz (MR)-Signal sind mit herkömmlichen MR- Sequenzen nicht darstellbar. Solche Stoffe haben meist starke Bindungen, wie im menschlichen Körper beispielsweise Sehnen, Bänder, Knochen oder Zähne. In den letzten Dekaden wurden spezielle Sequenzen mit ultrakurzer Echozeit entwickelt, die Signale von diesen Stoffen messen können. Messungen mit ultrakurzen Echozeiten eröffnen der Kernspintomographie neue Anwendungsgebiete. In dieser Doktorarbeit werden die in der Literatur bekannten Methoden zur Messung mit ultrakurzen Echozeiten untersucht und evaluiert. Es werden zwei neue, in dieser Arbeit entwickelte Ansätze vorgestellt, die es zum Ziel haben, bestehende Probleme der vorhandenen Methoden bei robuster Bildqualität zu lösen, ohne auf Hardwareänderungen am Kernspintomographen angewiesen zu sein. Die ’Gradient Optimized Single Point imaging with Echo time Leveraging’ (GOSPEL) Sequenz ist eine Single-Point-Sequenz, die im Vergleich zu den bekannten Single-Point-Sequenzen eine stark reduzierte Echozeit ermöglicht. Es wird gezeigt, dass dadurch ein deutlich besseres Signalzu-Rausch-Verhältnis (SNR) von Stoffen mit schnell zerfallendem Signal erreicht wird. Das Problem der sehr langen Messzeit bei Single-Point-Verfahren wird mit der ’Pointwise Encoding Time reduction with Radial Acquisition’ (PETRA) Sequenz gelöst. Bei diesem Ansatz wird der k-Raum-Außenbereich radial und das k-Raum-Zentrum single-point-artig abgetastet. Durch die Kombination beider Akquisitionsstrategien ist eine schnelle und robuste Bildgebung mit ultrakurzer Echozeit und ohne Hardwareänderungen möglich. Wie bei anderen Ansätzen sind bei der PETRA-Sequenz die Bildgebungsgradienten zum Anregungszeitpunkt bereites angeschaltet. Es wird untersucht, welchen Einfluss ungewollte Schichtselektionen auf die Bildgebung haben können und ein Korrekturalgorithmus entwickelt, mit dem sich dadurch entstehende Artefakte im Bild beheben lassen. Die Limitationen des Korrekturalgorithmus sowie mögliche Artefakte der PETRA-Sequenz werden untersucht und diskutiert. Erste Anwendungsbeispiele der PETRA-Sequenz bei verschiedenen Feldstärken und Applikationen werden demonstriert. Wie bei anderen Sequenzen mit ultrakurzen Echozeiten sind die Gradientenaktivitäten bei der PETRA- und GOSPEL-Sequenz gering, wodurch die Messung sehr leise sein kann. Lautstärkemessungen zeigen, dass bei Messungen mit der PETRA-Sequenz der Geräuschpegel um nur ein bis fünf dB(A) im Vergleich zum Hintergrundgeräuschpegel steigt. Es wird demonstriert, dass sich dadurch neue Anwendungsgebiete eröffnen könnten. Vergleichsmessungen zwischen einer T1-gewichteten PETRA- und einer MPRAGE-Messung weisen Bilder auf, die in Kontrast, Auflösung, SNR und Messzeit vergleichbar sind. Mit den in dieser Arbeit entwickelten Methoden konnten Probleme bestehender Ansätze gelöst und offene Fragen beantwortet werden. Die Ergebnisse können helfen, Applikationen von Sequenzen mit ultrakurzen Echozeiten in der klinischen Routine weiter zu etablieren. N2 - Tissues with fast decaying magnetic resonance (MR) signal are not measureable with conventional MR sequences. These tissues mostly have strong covalent bondings, like in the human body tendons, ligaments, bones and teeth. In the last decade, special MR sequences with ultrashort echo times have been developed that are able to depict signal from those tissues. Ultrashort echo time imaging opens new application fields for magnetic resonance imaging. In this thesis, the known methods for imaging with ultrashort echo times are investigated and evaluated. Two new approaches that were developed in this work are presented. They aim to solve the problems of the previous methods and to allow for robust image quality. No hardware changes should be required for the MR scanner. The ’Gradient Optimized Single Point imaging with Echo time Leveraging’ (GOSPEL) sequence is a single-point sequence. Compared to the known single-point sequences, GOSPEL enables a reduced echo time. It is demonstrated that this allows for an enhanced SNR for tissues with fast decaying signal. The problem of very long measurement times with single point sequences is solved with the ’Pointwise Encoding Time reduction with Radial Acquisition’ (PETRA) sequence. In this approach, outer k-space is acquired with radial half-projections while the k-space center is acquired single-pointwise. The combination of these two acquisition strategies allows for fast and robust ultrashort echo time imaging without the need for hardware changes. Comparable to other approaches, the imaging gradients at the PETRA sequence are already switched on during the excitation pulse. The influence of unwanted slice-selectivity of the pulse is investigated. A newly developed correction algorithm is presented that eliminates artefacts due to unwanted slice-selectivity. The limitations of the correction approach are presented and discussed. A number of application examples of the PETRA sequence at different field strengths is demonstrated. The PETRA and GOSPEL sequence, and other ultrashort echo time sequences, have very limited gradient activities. Due to this, the measurements can be kept very silent. Acoustic noise measurements show that the acoustic noise level during PETRA examinations is only raised by one to five dB(A). It is demonstrated, that this might enable new applications. Comparing measurements between T1-weighted PETRA images and MPRAGE images lead to images with comparable contrast, resolution, SNR and measurement times. With the methods developed in this thesis, issues of existing ultrashort echo time approaches can be solved and answers to open questions are given. The outcomes could help to further establish the use of ultrashort echo time sequences in clinical routine applications. KW - Kernspintomographie KW - Spin-Spin-Relaxation KW - Magnetresonanz KW - Magnetresonanzbildgebung KW - Echozeit KW - MRI KW - echo time KW - magnetic resonance imaging Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71328 ER - TY - THES A1 - Wech, Tobias T1 - Compressed Sensing in der funktionellen kardialen Magnetresonanztomographie T1 - Compressed sensing in functional cardiac magnetic resonance imaging N2 - Die MRT des Herzens wird aufgrund hoher Reproduzierbarkeit und geringer Variabilität als Referenzstandard für die Bestimmung der kardialen Funktion betrachtet. Auch in der präklinischen Forschung bietet die MRT eine ausgezeichnete Charakterisierung der kardialen Funktion und ermöglicht eine exzellente Analyse modellierter Krankheitsbilder. In beiden Fällen besteht jedoch weiterhin Optimierungsbedarf. Die klinische Herz-MRT stellt ein aufwendiges Verfahren mit relativ langer Messzeit dar und ist dadurch mit hohen Untersuchungskosten verbunden. In der präklinischen Kleintierbildgebung müssen zum Erreichen der notwendigen höheren Orts- und Zeitauflösung ebenfalls lange Aufnahmezeiten in Kauf genommen werden. Um die kardiale MRT dort routinemäßig in großen Studienkollektiven anwenden zu können, ist eine schnellere Bildgebung essentiell. Neben einer Verbesserung der Tomographen-Hardware und der Optimierung von Bildgebungssequenzen standen im letzten Jahrzehnt vermehrt informationstheoretische Ansätze zur Beschleunigung der MR-Datenakquisition im Fokus der Entwicklung. Während zu Beginn des Jahrtausends die Parallele Bildgebung (PI) einen Forschungsschwerpunkt repräsentierte, spielte sich in den letzten fünf Jahren vermehrt die von Donoho und Candès eingeführte Compressed Sensing (CS) Theorie in den Vordergrund. Diese ermöglicht eine Signalrekonstruktion aus unvollständig gemessenen Koeffizienten einer linearen Messung (z.B. Fouriermessung) unter Ausnutzung der Sparsität des Signals in einer beliebigen Transformationsbasis. Da sich die MRT hervorragend für den Einsatz von CS eignet, wurde die Technik in der Forschung bereits vielfach angewendet. Die zur Rekonstruktion unterabgetasteter Aufnahmen nötigen CS-Algorithmen haben jedoch eine signifikante Veränderung des Bildgebungsprozesses der MRT zur Folge. Konnte dieser zuvor in guter Näherung als linear und stationär betrachtet werden, so repräsentiert die CS-Rekonstruktion eine nichtlineare und nichtstationäre Transformation. Objektinformation wird nicht mehr ortsunabhängig und proportional zur Intensität in die Abbildung transportiert. Das Bild ist viel mehr das Ergebnis eines Optimierungsprozesses, der sowohl die Konsistenz gegenüber der unterabgetasteten Messung als auch die Sparsität des Signals maximiert. Der erste Teil dieser Dissertation beschreibt eine Methode, die eine objektive Einschätzung der Bildqualität CS-rekonstruierter MR-Bilder ermöglicht. Die CS-Beschleunigung verspricht eine Verkürzung der Messzeit ohne Verlust an Bildqualität, wobei letztere bisher größtenteils qualitativ bzw. quantitativ nur unzureichend beurteilt wurde. Konnte der Bildgebungsprozess der klassischen MRT (linear und stationär) durch die Bestimmung einer Punktspreizfunktion (PSF) robust und effektiv validiert und optimiert werden, erlauben die CS-Algorithmen aufgrund ihres nichtlinearen und nichtstationären Verhaltens ohne Weiteres keine äquivalente Analyse. Um dennoch eine entsprechende Evaluierung des CS-Bildgebungsprozesses zu ermöglichen, wurde die Anwendung einer lokalen Punktspreizfunktion (LPSF) für den in der Folge verwendeten Iterative Soft Thresholding Algorithmus untersucht. Die LPSF berücksichtigt die Ortsabhängigkeit der CS-Rekonstruktion und muss daher für jeden Ort (Pixel) eines Bildes bestimmt werden. Darüber hinaus wurde die LPSF im linearen Bereich der CS-Transformation ermittelt. Dazu wurde das zu bewertende Bild nach Anwenden einer kleinen lokalen Störung rekonstruiert. Die Breite des Hauptmaximums der LPSF wurde schließlich verwendet, um ortsaufgelöste Auflösungsstudien durchzuführen. Es wurde sowohl der Einfluss typischer Unterabtastschemata für CS als auch der Einsatz diskreter Gradienten zur Sparsifizierung eines Phantombildes untersucht. Anschließend wurde die Prozedur zur Bestimmung der räumlichen und zeitlichen Auflösung in der Herzbildgebung getestet. In allen Beispielen ermöglichte das vorgeschlagene Verfahren eine solide und objektive Analyse der Bildauflösung CS-rekonstruierter Aufnahmen. Wurde zuvor meist ausschließlich auf Vergleiche mit einer vollständig abgetasteten Referenz zur Qualitätsbeurteilung zurückgegriffen, so stellt die vorgestellte Auflösungsbestimmung einen Schritt in Richtung einer standardisierten Bildanalyse bei der Verwendung der Beschleunigung mittels CS dar. Die Analyse der Abtastmuster zeigte, dass auch bei der Anwendung von CS die Berücksichtigung der nominell höchsten Frequenzen k_max unerlässlich ist. Frühere Publikationen schlagen Abtastfolgen mit einer teils starken Gewichtung der Messpunkte zum k-Raum-Zentrum hin vor. Die Ergebnisse der vorliegenden Arbeit relativieren ein derartiges Vorgehen, da zumindest bei den durchgeführten Untersuchungen ein Auflösungsverlust bei analoger Vorgehensweise zu verzeichnen war. Ebenso zeigten sich dynamische Aufnahmen, die unter Verwendung des x-f-Raums als sparse Basis rekonstruiert wurden, durchaus anfällig für zeitliches Blurring. Dieses resultiert aus der Unterdrückung hoher zeitlicher Frequenzen und konnte durch die ortsaufgelösten Auflösungskarten sichtbar gemacht werden. Neben der Auflösung ist für eine umfassende Analyse der Bildqualität auch die Untersuchung potentieller Aliasing-Artefakte sowie des Signal-zu-Rausch-Verhältnisses (SNR) notwendig. Während Aliasing mit Hilfe der Einträge der LPSF außerhalb des Hauptmaximums untersucht werden kann, wurde in Kap. 5 eine Modifikation der Multi-Replika-Methode von Robson et al. zur Rauschanalyse bei Verwendung nichtlinearer Algorithmen vorgestellt. Unter Einbeziehung aller genannten Qualitätsparameter ist eine robuste Bewertung der Bildqualität auch bei einer Verwendung von CS möglich. Die differenzierte Evaluierung ebnet den Weg hin zu einem objektiven Vergleich neuer Entwicklungen mit bisherigen Standard-Techniken und kann dadurch den Einzug von CS in die klinische Anwendung vorantreiben. Nach den theoretischen Betrachtungen der Bildqualität behandelt die Dissertation die erstmalige Anwendung von CS zur Beschleunigung der funktionellen Herzdiagnostik in der präklinischen MR-Kleintierbildgebung. Diese Studien wurden in Zusammenarbeit mit der British Heart Foundation Experimental Magnetic Resonance Unit (BMRU) der University of Oxford durchgeführt. Die Algorithmen für eine Beschleunigung mittels der CS-Theorie wurden anhand der dort am 9,4T Tomographen gemessenen (unterabgetasteten) Datensätze entwickelt und optimiert. Zunächst wurde eine Beschleunigung ausschließlich mittels CS untersucht. Dazu wurde die segmentierte, EKG- und Atemgetriggerte kartesische Cine-Aufnahme in Phasenkodierrichtung unterabgetastet und mittels CS rekonstruiert. Die sparse Darstellung wurde durch Ermitteln zeitlicher Differenzbilder für jede Herzphase erhalten. Durch Variation der Abtastmuster in der zeitlichen Dimension konnte ein vollständig abgetastetes zeitliches Mittelbild bestimmt werden, das anschließend von jedem einzelnen Herzphasenbild subtrahiert wurde. In einer Validierungsphase wurden an der Maus vollständig aufgenommene Cine-Akquisitionen retrospektiv unterabgetastet, um die maximal mögliche Beschleunigung mittels CS zu ermitteln. Es wurden u.a. funktionelle Herz-Parameter für jede Gruppe des jeweiligen Beschleunigungsfaktors bestimmt und mittels einer statistischen Analyse verglichen. Die Gesamtheit aller Ergebnisse zeigte die Möglichkeit einer dreifachen Beschleunigung ohne eine Degradierung der Genauigkeit der Methode auf. Die ermittelte Maximalbeschleunigung wurde in einer unterabgetastet gemessenen Bilderserie mit anschließender CS-Rekonstruktion validiert. Die Abtastschemata wurden dazu mit Hilfe der Transformations-Punktspreizfunktion weiter optimiert. In einer Erweiterung der Studie wurde zum Zweck einer noch höheren Beschleunigung die CS-Technik mit der PI kombiniert. Erneut fand eine Unterabtastung der Phasenkodierrichtung einer kartesischen Trajektorie statt. Die Messungen erfolgten mit einer 8-Kanal-Mäusespule an einem 9,4T Tomographen. Um das Potential beider Beschleunigungstechniken auszunutzen, wurden die Methoden CS und PI in serieller Weise implementiert. Für die PI-Beschleunigung wurde der vollständig abgetastete k-Raum zunächst gleichmäßig unterabgetastet. Auf dem resultierenden Untergitter wurde zusätzlich eine Unterabtastung nach Pseudo-Zufallszahlen durchgeführt, um eine Beschleunigung mittels CS zu ermöglichen. Die entwickelte Rekonstruktion erfolgte ebenfalls seriell. Zunächst wurde mittels CS das äquidistante Untergitter rekonstruiert, um anschließend mittels GRAPPA die noch fehlenden Daten zu berechnen. Um eine zusätzliche Messung zur Kalibrierung der GRAPPA-Faktoren zu umgehen, wurde das äquidistant unterabgetastete Untergitter von Herzphase zu Herzphase um je einen Phasenkodierschritt weitergeschoben. Dieses Vorgehen erlaubt die Ermittlung eines vollständig abgetasteten k-Raums mit einer geringeren zeitlichen Auflösung, der die notwendige Bestimmung der Wichtungsfaktoren ermöglicht. Folgende Kombinationen von Beschleunigungsfaktoren wurden mittels retrospektiver Unterabtastung eines vollständig aufgenommenen Datensatzes untersucht: R_CS x R_PI = 2 x 2, 2 x 3, 3 x 2 und 3 x 3. Die Analyse des Bildrauschens, des systematischen Fehlers und der Auflösung führte zu dem Schluss, dass eine sechsfache Beschleunigung mit Hilfe der hybriden Rekonstruktionstechnik möglich ist. Während mit steigender CS-Beschleunigung der systematische Fehler leicht anstieg, führte ein höherer PI-Beschleunigungsfaktor zu einer leichten Verstärkung des statistischen Fehlers. Der statistische Fehler zeigte jedoch ebenfalls eine Verringerung bei steigender Beschleunigung mittels CS. Die Fehler waren allerdings stets auf einem Niveau, das durchaus auch Beschleunigungen bis R_CS x R_PI =3 x 3 zulässt. Die LPSF-Analyse zeigte einen Verlust der räumlichen Auflösung von ca. 50 % bei R=6 sowie einen mittleren Verlust von 64 % bei R=9. Offensichtlich ging die ebenfalls beobachtete Minimierung des Bildrauschens durch den CS-Algorithmus im Falle der relativ stark verrauschten Kleintieraufnahmen zu Lasten der Bildauflösung. Die mit zunehmender Beschleunigung stärker geblurrten Grenzen zwischen Blutpool und Myokardgewebe erschweren die Segmentierung und stellen eine mögliche Fehlerquelle dar. Unter Beachtung aller Ergebnisse ist eine sechsfache Beschleunigung (R_CS x R_PI = 2 x 3, 3 x 2) vertretbar. Die Hinzunahme der PI ermöglicht somit im Vergleich zur alleinigen Verwendung von CS eine weitere Beschleunigung um einen Faktor von zwei. Zusammenfassend ermöglicht der Einsatz von CS in der präklinischen funktionellen Herzbildgebung am Kleintier eine deutliche Reduktion der Messzeit. Bereits ohne Vorhandensein von Mehrkanalspulen kann die notwendige Datenmenge ohne signifikante Beeinflussung der Messergebnisse auf ein Drittel reduziert werden. Ist der Einsatz von Spulenarrays möglich, kann die mit PI mögliche dreifache Beschleunigung um einen weiteren Faktor zwei mittels CS auf R=6 erweitert werden. Dementsprechend kann CS einen wesentlichen Beitrag dazu leisten, dass das Potential Herz-MRT am Kleintier in großen Studienkollektiven effektiver abgerufen werden kann. Im letzten Teil der Arbeit wurde eine Technik für die funktionelle klinische MR-Herzbildgebung entwickelt. Hier wurde eine Beschleunigung mittels CS verwendet, um die Aufnahme des gesamten Herzens innerhalb eines Atemstillstandes des Patienten zu ermöglichen. Bei der derzeitigen Standardmethode werden üblicherweise 10-15 2D-Schichten des Herzens akquiriert, wobei jede einzelne Aufnahme einen Atemstillstand des Patienten erfordert. Für die notwendige Beschleunigung wurde eine unterabgetastete 3D-Trajektorie verwendet. Durch Phasenkodierung einer Richtung sowie radiale Projektionen in den beiden anderen Dimensionen konnte eine effiziente Aufnahme unterhalb des Nyquist-Kriteriums erreicht werden. Die Sparsifizierung erfolgte, wie bereits in der beschriebenen präklinischen Anwendung, durch die Subtraktion eines zeitlichen Mittelbildes. In einer Simulation anhand eines retrospektiv unterabgetasteten Datensatzes konnte die theoretische Funktionalität der Rekonstruktionstechnik bei einer Beschleunigung bezüglich der Nyquist-Abtastung von R ~ 10 validiert werden. Die Unterschiede zum vollständig abgetasteten Datensatz waren vernachlässigbar klein, so dass die vorgeschlagene Abtastfolge am Tomographen implementiert wurde. Mit dieser Sequenz wurde anschließend eine funktionelle Bilderserie an einem gesunden Probanden mit vollständiger Herzabdeckung innerhalb eines Atemstopps aufgenommen. Fehlende Daten wurden analog zur Simulation mit Hilfe des vorgeschlagenen Algorithmus rekonstruiert. Im Vergleich zur Simulation ergaben sich aufgrund des Schichtprofils der 3D-Slab-Anregung zusätzliche Aliasing-Artefakte in den äußeren Partitionen. Die für radiale Aufnahmen typischen Streifenartefakte waren im rekonstruierten Bild, wenn auch mit sehr geringer Amplitude, noch erkennbar. Davon abgesehen wurde die Dynamik jedoch über das gesamte Herz hinweg gut dargestellt. Der hohe Kontrast zwischen Myokard und Blutpool bescheinigt den Bildern eine hervorragende Eignung für die Bestimmung funktioneller Herzparameter mittels einer Segmentierung. Zusammengefasst erlaubt die entwickelte Methode aufgrund der drastischen Reduktion der notwendigen Atemstopps des Patienten einen deutlich erhöhten Patientenkomfort sowie einen schnelleren Durchsatz aufgrund der verkürzten Messzeit. N2 - Because of its high reproducibility and its low variability, magnetic resonance imaging (MRI) of the heart is considered the gold-standard for assessing the cardiac function. In preclinical research, magnetic resonance imaging equally provides an accurate characterization of the cardiac function and enables an excellent analysis of modeled diseases. However, there is still a need for improvement in both applications. Clinical cardiac MRI represents a sophisticated procedure featuring long scan times. This renders the examination comparatively expensive. In preclinical imaging of small animals, long scan times have to be accepted to obtain the required high spatial and temporal resolution. Fast imaging is thus essential for an effective application of cardiac MRI in large collectives. Besides the improvement of the scanner hardware and the optimization of imaging sequences, research in the last decade concentrated on procedures to accelerate MR-data acquisition by exploiting information theory. While numerous publications were associated with parallel imaging (PI) at the beginning of this millennium, the compressed sensing theory (CS) recently gained more and more interest. The latter technique enables the reconstruction of signals from undersampled linear measurements (e.g. the Fourier basis) by exploiting the sparsity of the signal in any known transform domain. As MRI is perfectly qualified for an application of CS, a lot of publications already report on dedicated research. However, the algorithms needed for the reconstruction of undersampled data significantly alter the imaging process of MRI. Classical MRI could be assumed to be linear and stationary in a sufficiently good approximation. The introduction of CS into MRI means a change towards a non-linear and non-stationary transformation. Object information is no longer transferred into an image independently from its location and proportional to its intensity. The image is rather the result of an optimization process maximizing both the fidelity to measured data as well as the sparsity of the signal. The first chapter of this thesis describes a method to objectively evaluate the image quality of MR images reconstructed by CS algorithms. The acceleration with CS promises a reduction of scan time while preserving the image quality. The latter, however, has only been assessed qualitatively or in an insufficient quantitative manner. While classical (linear and stationary) MRI could be validated robustly and effectively by determining a point spread function (PSF), CS algorithms prohibit a corresponding analysis in an analogous manner due to their non-linear and non-stationary behavior. Therefore, the application of a local point spread function (LPSF) was investigated for the iterative soft thresholding (IST) algorithm used in this thesis, to enable a comparative evaluation for imaging systems including CS. The LPSF considers the local dependency of the CS algorithm and thus has to be determined in every location (pixel) of an image. In addition, the LPSF was defined in the linear part of the CS transformation. Small local perturbation on the image to be evaluated were reconstructed for this purpose. The width of the main lobe of the LPSF was used to perform spatially resolved studies on the resolution. The influence of typical undersampling schemes for CS as well as the usage of a discrete gradient transform for a further sparsification were investigated. Subsequently, the procedure was used to assess the spatial and temporal resolution in cardiac MRI. For all CS reconstructions performed in this work, the method allowed a solid and objective analysis of the image resolution. While up to now, comparisons to a fully sampled reference are widely used for a quality assessment, the proposed resolution evaluation represents a step towards a standardized analysis of images obtained by exploiting CS acceleration. The study on sampling schemes revealed, that also for CS accelerated acquisitions, the highest frequencies of the desired k-space have to be included. Former publications proposed undersampling patterns which partly featured a strong weight towards the center of k-space. The results of this thesis put these findings into perspective, as a loss in resolution has been observed for according approaches, at least for the simulations performed in this work. The dynamic acquisitions which were reconstructed exploiting x-f-sparsity proved to be prone to temporal blurring. This is substantiated by the suppression of high temporal frequencies and was analyzed by means of spatially resolved maps. Besides the resolution, an investigation of potential aliasing artifacts as well as the signal-to-noise-ratio (SNR) is essential for a comprehensive quality evaluation. While aliasing may also be investigated by means of the entries of the LPSF outside the main lobe, a modification of the multi-replica method proposed by Robson et al. was presented in chapter 5 to analyze the noise in CS reconstructed images. Taking into account all quality parameters, a robust evaluation of image quality is possible, even when CS is included in the imaging process. This allows a more objective comparison between new developments and present standard procedures and thus may aid the introduction of CS in clinical imaging. After the theoretical analysis on image quality, the next part of this thesis reports on the first application of CS to accelerate functional cardiac MRI of small animals. The studies were performed in cooperation with the British Heart Foundation Experimental Magnetic Resonance Unit (BMRU) of the University of Oxford. The algorithms needed for the CS acceleration were developed and optimized by means of the data acquired by the BMRU at their 9,4 T scanner.\\ An acceleration solely based on CS was investigated first. For this purpose, an ECG- and respiratory gated Cartesian cine acquisition was undersampled in phase encoding direction and reconstructed using CS. The dynamic time series was sparsified by determining temporal difference images for every time frame. A fully sampled temporal average image was obtained by varying the sampling pattern in the temporal dimension. Subsequently, this average image was subtracted from the images of individual heart phases, yielding the sparse temporal difference images. In the validation stage of the study, fully sampled cine acquisitions of mouse hearts were retrospectively undersampled in order to figure out the maximum possible CS acceleration. Cardiac functional parameters were determined for each group of a certain undersampling factor and compared by a statistical analysis. It was shown that a three-fold acceleration is possible without any degradation in the accuracy of the method. This undersampling factor was then validated in an accelerated measurement with a subsequent CS reconstruction. For this purpose, the sampling patterns were further optimized using the transform point spread function. In the subsequent chapter, the CS theory was combined with PI to further increase the acceleration. Again, the phase encoding direction of a Cartesian trajectory was undersampled. The acquisitions were performed using a 9,4 T scanner equipped with an 8 channel mouse coil. In order to exploit the potential of both techniques, CS and PI were combined in a serial manner. First, the k-space was equidistantly undersampled to enable the application of PI. An additional undersampling according to pseudo random numbers was then performed on the resulting sub-grid to allow an acceleration by CS. In consequence, the reconstruction was performed in a serial manner, too. CS was first applied to reconstruct the equidistantly undersampled sub-grid. GRAPPA was used subsequently to compute the still missing data. The equidistantly undersampled sub-grid was shifted from heart phase to heart phase in order to obtain a fully sampled low temporal resolution k-space for a calibration of the GRAPPA-weights. This procedure spares the acquisition time of a separate calibration scan. The following combinations were investigated by retrospectively undersampling a fully sampled cine dataset: R_CS x R_PI = 2 x 2, 2 x 3, 3 x 2 and 3 x 3. The analysis of the noise behavior, the systematic error and the resolution leads to the conclusion that a six-fold acceleration is possible using the proposed hybrid technique. While an increasing factor of the CS acceleration resulted in a slightly larger systematic error, a higher PI acceleration factor led to a slight noise enhancement. However, noise was suppressed for increasing CS acceleration at the same time. In summary, the deviations were at a level which allowed accelerations of up to R_CS x R_PI = 3 x 3. The determination of LPSFs showed a loss in spatial resolution of approximately 50% for a six-fold and up to 64% for nine-fold acceleration. Obviously, the observed suppression of noise was paid by a reduced image resolution for the comparatively noisy acquisitions in small animals. The increased blurring at the endocardial border impedes the segmentation and represents a possible source of error. Taking into consideration all results, a six-fold acceleration (R_CS x R_PI = 2 x 3, 3 x 2) seems reasonable. The additional usage of PI thus enables a further acceleration by a factor of 2 in comparison to an exclusive application of CS. In summary, CS enables a distinct reduction of scan time in preclinical functional cardiac MRI of small animals. Even if no phased-array-coils are available, the necessary amount of data can be reduced to one third without impairing the accuracy of left-ventricular volumes and mass measurements. For acquisitions performed with phased-array-coils, the three-fold acceleration by PI can be extended by an additional two-fold CS acceleration to a joint factor of R=6. Therefore, CS may contribute to an effective application of cardiac MRI in small animals for large collectives. In the last part of the thesis, a modality for clinical functional MRI of the heart was developed. CS was used to enable the acquisition of the whole heart in a single breath-hold of the patient. The current method of choice usually acquires 10-15 2D-slices of the heart, while each measurement requires a separate breath-hold. An undersampled 3D-trajectory was used to reach the necessary acceleration. Phase-encoding in one direction and radial projections in the two remaining ones allowed for an effective acquisition below the Nyquist-criterion. The sparsification of the image series was achieved by subtracting a temporal average image as performed for the preclinical studies. The functionality of the reconstruction technique at an acceleration factor of R ~ 10 was validated in a simulation based on a retrospectively undersampled dataset. The differences between the CS reconstructed and the fully sampled dataset were negligible and thus, the proposed trajectory was implemented at the scanner. An image series depicting the cardiac function with coverage of the full heart was acquired in a single breath-hold of a healthy volunteer using this sequence. Data not covered by the trajectory were reconstructed by the algorithm developed in the validation stage. Due to the slice profile of the fast excitation pulses, additional aliasing artifacts were present in the outer partitions with respect to the images obtained in the simulation. Streaking artifacts of a low intensity were still visible. Apart from that, the dynamics of the heart were excellently captured. The high contrast between the blood pool and the myocardium perfectly qualifies the images for the assessment of cardiac functional parameters. Therefore, the method allows for a higher patient comfort and throughput compared to the gold standard by drastically reducing the amount of necessary breath-holds to a single one. KW - Kernspintomografie KW - Magnetresonanztomographie KW - Kardiale MR-Bildgebung KW - Compressed Sensing KW - magnetic resonance imaging KW - cardiac magnetic resonance imaging KW - compressed sensing KW - Signalregenerierung KW - NMR-Tomographie Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77179 ER - TY - THES A1 - Werner, Anne T1 - Beiträge zu makromolekularen Kontrastmitteln für die Magnetresonanztomographie T1 - Contributions to the synthesis of macromolecular contrast agents for magnetic resonance imaging N2 - Die vorliegende Arbeit beschäftigt sich mit der Synthese heptadentater Ligandsysteme für die Magnetresonanztomographie. Neben der Synthese von Gadolinium- und Mangankomplexen stand die Entwicklung makromolekularer Kontrastmittel auf Dendrimerbasis im Mittelpunkt dieser Arbeit. N2 - This thesis deals with the synthesis of heptadentate ligand systems for magnetic resonance imaging. In addition to synthesizing gadolinium and manganese complexes, the development of macromolecular contrast agents based on dendrimers was the main goal of this work. KW - NMR-Tomographie KW - Kontrastmittel KW - Gadolinium KW - Mangan KW - magnetic resonance imaging KW - contrast agent KW - gadolinium KW - manganese Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56331 ER - TY - THES A1 - Karaus, Alexander T1 - Aufbau und Anwendung von Verfahren der Magnetresonanztomografie mit stimulierten Echos T1 - Development of MRI techniques using stimulated echoes N2 - Die vorliegende Dissertation befasst sich mit der Entwicklung und Anwendung von Schnellbild-Verfahren der Magnetresonanztomografie (MRT), die auf der Messung stimulierter Echosignale beruhen. Die schnellen STEAM (STEAM = stimulated echo acquisition mode) MRT-Technik leidet im Gegensatz zu alternativen Messtechniken auch bei hohen Magnetfeldstärken nicht unter Bildverzerrungen und Begrenzungen durch eine hohe Hochfrequenzbelastung. Da sie jedoch Bilder geringerer Signalintensität liefert, bestand das Primärziel dieser Arbeit in einer Verbesserung des Signal-zu-Rausch-Verhältnisses, um die Vorteile für die Herzbildgebung und die diffusionsgewichtete MRT des Gehirns besser nutzen zu können (Anwendungen am Menschen bei einer Feldstärke von 3 Tesla). Durch eine Kombination verschiedener physikalischer (Messtechnik, Ortskodierung, Unterabtastung) und mathematischer Maßnahmen (Bildrekonstruktion) konnte in dieser Arbeit eine erhebliche Signalsteigerung bei gleichzeitiger Verkürzung des Messzeit von Einzelbildern erreicht werden. Die Ergebnisse der STEAM-MRT am Herzen zeigen Schnittbilder des Herzmuskels ohne den störenden Einfluss der Signale des Blutes. Die diffusionsgewichtete MRT des Gehirns lieferte ohne Suszeptibilitätsartefakte eine verzerrungsfreie Kartierung des Diffusionstensors und – daraus abgeleitet – eine anatomisch korrekte, dreidimensionale Rekonstruktion von Nervenfaserbahnen etwa des Cingulums. N2 - This thesis deals with the development and application of a rapid magnetic resonance imaging (MRI) technique that is based on the acquisition of stimulated echoes. In contrast to alternative approaches, the rapid STEAM sequence (STEAM = stimulated echo acquisition mode) does not suffer from image distortions and RF power limitations, even at high magnetic field strengths. The primary goal of this thesis was the improvement of the relatively low signal-to-noise-ratio of the STEAM technique in order to exploit its advantages for cardiac imaging and diffusion-weighted MRI of the brain (human studies at a field strength of 3 Tesla). By combining a variety of physical (acquisition technique, spatial encoding, undersampling) and mathematical operations (image reconstruction), this work achieved a significant signal increase while reducing the measurement time of individual images. The results include rapid STEAM images of the heart which delineate the anatomy of the myocardial wall without disturbing signals from the blood. Moreover, the advances allow for diffusion-weighted MRI of the brain without susceptibility artifacts yielding distortion-free maps of the diffusion tensor at high spatial resolution. This information could be used for anatomically correct three-dimensional reconstructions of nerve fiber tracts such as the human cingulum. KW - NMR-Tomographie KW - Herzmuskel KW - Magnetresonanztomografie KW - stimuliertes Echo KW - Herz-MRT KW - Diffusions-MRT KW - Diffusion KW - magnetic resonance imaging KW - stimulated echo KW - black-blood KW - diffusion tensor imaging KW - steam Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49190 ER - TY - THES A1 - Ziener, Christian H. T1 - Suszeptibilitätseffekte in der Kernspinresonanzbildgebung T1 - Susceptibility effects in nuclear magnetic resonance imaging N2 - Das Dephasierungsverhalten und die daraus resultierende Relaxation der Magnetisierung sind Grundlage aller auf der Kernspinresonanz basierenden bildgebenden Verfahren. Das erhaltene Signalder präzedierenden Protonen wird wesentlich von den Eigenschaften des untersuchten Gewebes bestimmt. Insbesondere die durch magnetisierte Stoffe wie z. B. desoxygeniertes Blut (BOLD-Effekt) oder magnetische Nanopartikel erzeugten Suszeptibilitätssprünge gewinnen zunehmend Bedeutung in der biomedizinischen Bildgebung. In der vorliegenden Arbeit wurden die Einflüsse von Feldinhomogenitäten auf das NMR-Signal untersucht. N2 - The properties of dephasing and the resulting relaxation of the magnetization are the basic principle on which all magnetic resonance imaging methods are based. The signal obtained from the gyrating spins is essentially determined by the properties of the considered tissue. Especially the susceptibility differences caused by magnetized materials (for example, deoxygenated blood, BOLD-effect) or magnetic nanoparticles are becoming more important for biomedical imaging. In the present work, the influence of such field inhomogeneities on the NMR-signal is analyzed. KW - Magnetische Kernresonanz KW - Magnetische Suszeptibilität KW - NMR-Bildgebung KW - nuclear magnetic resonance KW - magnetic susceptibility KW - magnetic resonance imaging Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-35425 ER - TY - THES A1 - Offenberger, Wolfgang T1 - Hochaufgelöste Magnetresonanz-Bildgebung der Mäuseaorta zur Bestimmung der Dynamik funktioneller Parameter durch Laufrad-Training bei ApoE-Knock-Out-Mäusen T1 - High-Resolution Magnetic Resonance Imaging of the Murine Aorta in the evaluation of dynamic functional vessel changes through running wheel exercise in ApoE-knock-out mice. N2 - Einführung: Atherosklerose ist eine führende Ursache von Morbidität und Mortalität weltweit. Die ApoE-Knock-Out-Maus (ApoE-/-) ist das wichtigste Tiermodell für das Studium der Atherosklerose und von Interventionen auf diese Erkrankung. Mittels hochaufgelöster Magnet-Resonanz-Bildgebung ist es möglich, eine nicht-invasive in-vivo Gefäß-Charakterisierung bei Mäusen durchzuführen. In dieser Arbeit wurden die Auswirkungen von Sport auf die Gefäßfunktion der Aorta ascendens und abdominalis bei ApoE-/--Mäusen mittels hochaufgelöster MR-Cine-FLASH-Bildgebung untersucht. Methodik und Ergebnisse: 18 ApoE-/--Mäuse mit oder ohne Lipid-reicher „Western Type Diet“ (WTD) führten 4-6 Wochen lang Laufrad-Training durch. Vor Laufrad-Training wurde zweimal (Validität) und nach Laufrad-Training einmal mittels EKG- und Atmungs-getriggerter Magnet-Resonanz-Cine-FLASH-Bildgebung an einem 7-Tesla-Scanner unter Isofluran-Inhalationsnarkose die Compliance von Aorta ascendens und abdominalis gemessen. Aufnahme-Parameter: TR/TE = 4,3/1,4 ms; Field of View (FOV) = 3,0 x 3,0 cm2; Matrixgröße = 256 x 256; Pixel-Größe = (FOV / Matrix) = (30 mm / 256) = 0,0117 mm2; Schichtdicke = 1,0 mm, Auflösung von 0,0137 mm3. Die Resultate wurden verglichen mit 9 Wildtyp-Mäusen vom Stamm C57BL/6J, und mittels der Auswerte-Software Interactive Data Language (IDL) prozessiert. Es zeigten sich gewisse positive Effekte hinsichtlich Compliance der Aorta ascendens durch Sport, die Ergebnisse waren für ApoE-/--Mäuse ohne WTD jedoch wesentlich konsistenter als für ApoE-/--Mäuse mit WTD, wo die Ergebnisse teilweise widersprüchlich erscheinen. Dasselbe gilt für die Aorta abdominalis, die sich zudem in vielen MR-Untersuchungen nicht auswerten ließ, was zu nicht interpretierbaren Ergebnissen führte. Bezüglich der Validität zeigte sich eine sehr hohe Intra-Observer- und Inter-Observer-Übereinstimmung der Ergebnisse, dies zeigte sich auch für Messungen zu zwei Zeitpunkten. Schlussfolgerung: Die Ergebnisse erscheinen insgesamt kritisch beleuchtet nicht signifikant und zeigen allenfalls Besserungs-Tendenzen für die Compliance der Aorta ascendens und abdominalis bei ApoE-/--Mäusen durch Sport. Weitere MRT-Studien mit höheren Feldstärken und weiterentwickelten MR-Protokollen sind notwendig, um die Aussage dieser Doktorarbeit, dass Atherosklerose bei ApoE-/--Mäusen durch Sport teilweise reversibel ist, zu bestätigen. N2 - Introduction: Atherosclerosis is a leading cause of morbidity and mortality throughout the world. The apoE-knock-out mice is the most important animal model of studies on atherosclerosis and of interventions on atherosclerotic diseases. High-resolution magnetic resonance imaging (MRI) allows to non-invasively provide in-vivo murine vessel characterization. This work aims to determine the impact of sports training on vessel function of the ascending and abdominal aorta in hypercholesterinemic apoE-knock-out mice by high-resolution CINE MR-Flash-imaging. Methods and Results: 18 ApoE-knock-out mice with or without lipid-rich "Western Type Diet" (WTD) performed 4-6 weeks of running wheel training. Using ECG- and breathing-triggered CINE MR-Flash-imaging on a 7-Tesla-MR-Scanner under isofluran anesthesia the compliance of the ascending and abdominal aorta was examined twice (validity) before and once after running wheel training. MR-paramter: TR/TE = 4,3/1,4 ms; field of view 3,0 x 3,0 cm2; matric size 256-256; Pixel size = 0,0117 mm2; slice thickness 1,0 mm, resulting resolution 0,0137 mm3. The results were compared with 9 wild type mice (C57Bl/6J), and analyzed by means of software (Interactive Data Language, IDL). The results showed positive effects in respect to the compliance of the ascending aorta after training, being much more consistent for apoE-knock out mice without WTD than in mice with WTD, where the results seem contradictory. The same goes for the abdominal aorta, where many MRI-examinations were not evaluable. A high inter- and intra-observer-validity could be shown for analyzation of the results. Conclusion: The results do not seem to be significant and at most show a tendency of improvement in respect to the complicance of the ascending and abdominal aorta in apoE-knock-out mice after training. Further MRI studies with higher strengths of field and advanced MR-protocolls will be necessary to confirm the results of this work, that atherosclerosis can be partially reversible through exercise training. KW - Magnetresonanztomographie KW - NMR-Tomographie KW - Brustaorta KW - Arteriosklerose KW - Elastizität KW - Draisine KW - Sport KW - Training KW - ApoE-Knock-Out-Maus KW - hypercholesterinämie KW - compliance KW - MRI KW - magnetic resonance imaging KW - atherosclerosis KW - ApoE-knock-out mice KW - hypercholesterolemia KW - exercise KW - training KW - running wheel KW - thoracic aorta Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-35146 ER - TY - THES A1 - Wesemeier, Carmen Gudrun T1 - Eisenpartikelverstärkte Magnetresonanztomographie bei der Experimentellen-Autoimmun-Neuritis(EAN) T1 - Magnetic resonance imaging with Superparamagnetic iron oxide particels by experimental autoimmune neuritis N2 - In diesem experimentellen Ansatz ist es gelungen, durch Einsatz von eisenhaltigen Kontrastmittel die MRT-Spezifität bei peripheren autoimmunen Nervenentzündungen deutlich zu erhöhen. Es ist gelungen in vivo den zeitlichen Verlauf der Monozyten/Makropahgeninfiltration bei entzündliche Autoimmunerkrankungen des Peripheren Nervensystems zu demonstrieren. N2 - SPIO-enhanced MRI provides a novel in vivo tool to assess the timing of macrophage entry into target tissues during an immunopathologic attack and holds promise to monitor immunotherapeutic interventions. KW - Experimentelle allergische Neuritis KW - NMR-Tomographie KW - Peripheres Nervensystem KW - Makrophage KW - SPIO-Partikel KW - peripheral nervous system KW - superparamagnetic iron oxide particles KW - magnetic resonance imaging Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24626 ER - TY - THES A1 - Blaimer, Martin T1 - Selbstkalibrierende Verfahren in der parallelen Magnetresonanztomographie T1 - Self-calibrating methods for parallel magnetic resonance imaging N2 - In der klinischen Magnetresonanztomographie (MRT) spielt neben dem Bildkontrast und der räumlichen Auflösung, die Messzeit eine sehr wichtige Rolle. Auf Grund schneller Bildgebungsmethoden und technischer Fortschritte in der Geräteentwicklung konnten die Aufnahmezeiten bis auf wenige Sekunden reduziert werden. Somit wurde die MRT zu einem der wichtigsten Verfahren in der klinischen Diagnostik. Der größte Fortschritt für eine weitere Verkürzung der Aufnahmezeiten erfolgte durch die Einführung von Partiell-Parallelen-Akquisitions (PPA) Techniken in den späten 1990er Jahren. Inzwischen sind PPA-Verfahren etabliert und stehen auch für den Einsatz im klinischen Alltag zur Verfügung. Die Grundlage aller PPA-Verfahren bildet eine Anordnung von mehreren Empfangsdetektoren, welche gleichzeitig und unabhängig voneinander ein Objekt abbilden. Das Signal jedes einzelnen Detektors enthält dabei je nach Position eine gewisse räumliche Information. Eine Messzeitverkürzung wird im Allgemeinen dadurch erzielt, dass die Menge der aufzunehmenden Daten reduziert wird. Dies führt zu Fehler behafteten Bildern auf Grund von fehlenden Daten. Alle gängigen PPA-Verfahren benutzen die in der Detektoranordnung inhärente räumliche Information, um mit geeigneten Algorithmen die Fehler behafteten Bilder zu korrigieren. Die beiden erfolgreichsten Ansätze stellen momentan das "Sensitivity Encoding" (SENSE) Verfahren und die "Generalized Autocalibrating Partially Parallel Acquisitions" (GRAPPA) Methode dar. Die Leistungsfähigkeit von PPA-Methoden ist allerdings beschränkt. Zunächst begrenzt die Anzahl der Einzeldetektoren den maximal erreichbaren Messzeitgewinn. Weiterhin führt der Einsatz von PPA-Verfahren zu einer Verringerung des Signal-zu-Rausch-Verhältnis (englisch: signal-to-noise ratio, SNR). Im Allgemeinen ist das SNR um den Faktor der Wurzel des Beschleunigungsfaktors verringert. Ein zusätzlicher SNR-Verlust entsteht durch den Rekonstruktionsprozess und ist stark abhängig von der geometrischen Anordnung der Detektoren. Auf Grund dieser Verluste ist der Einsatz von PPA-Methoden auf Applikationen mit bereits hohem intrinsischen SNR beschränkt. In dieser Arbeit werden Erweiterungen von PPA-Verfahren vorgestellt, um deren Leistungsfähigkeit weiter zu verbessern. Der Schwerpunkt liegt dabei auf der selbstkalibrierenden GRAPPA-Methode, welche die fehlenden Daten im reziproken Bildraum, dem so genannten k-Raum, rekonstruiert. Zunächst wird der Einsatz von GRAPPA für die 3D-Bildgebung beschrieben. In der 3D-Bildgebung ist es für die Rekonstruktionsqualität von PPA-Methoden vorteilhaft, die Daten entlang zweier Raumrichtungen zu reduzieren. GRAPPA war bisher auf Experimente mit Datenrekonstruktion in nur einer Richtung beschränkt. Es wird gezeigt, dass sich durch Kombination mit SENSE der Vorteil einer zwei-dimensionalen Datenreduktion erstmals auch für GRAPPA benutzen lässt. Weiterhin wird eine Neuformulierung der GRAPPA-Rekonstruktion als Matrixoperation vorgestellt. Dieser Formalismus wird als GRAPPA-Operator Formalismus bezeichnet und erlaubt es, ein gemessenes Signal im k-Raum zu verschieben, um fehlende Daten zu rekonstruieren. Eigenschaften und Beziehungen zwischen unterschiedlichen Verschiebungen werden beschrieben und daraus resultierende Anwendungen für die 2D- und 3D-Bildgebung präsentiert. Im Allgemeinen arbeiten alle konventionellen PPA-Verfahren ausschließlich auf der Rekonstruktionsseite. Somit ist die Bildqualität und damit der erzielbare Messzeitgewinn nur durch die Geometrie der Detektoranordnung beeinflussbar. In der Mehrschicht-MRT lässt sich diese Abhängigkeit von der Detektoranordnung reduzieren, indem Bildartefakte bereits während der Datenaufnahme gezielt verändert werden. Auf diese Weise kann der SNR-Verlust aufgrund des Rekonstruktionsprozesses minimiert werden. Dieses Konzept der kontrollierten Einfaltungen (englisch: Controlled Aliasing in Parallel Imaging Results in Higher Acceleration, CAIPIRINHA) wird für den Einsatz in der dynamischen Herzbildgebung vorgestellt. Bei geringen Beschleunigungsfaktoren kann mit CAIPIRINHA im Gegensatz zu den üblichen PPA-Verfahren eine Bildqualität erzielt werden, welche keine signifikanten Einbußen gegenüber konventionellen Experimenten aufweist. N2 - In clinical magnetic resonance imaging (MRI) applications, scan time plays an important role. Due to the introduction of fast imaging sequences and hardware developments, acquisition times have been reduced to the order of several seconds and for this reason, MRI has become one of the most important techniques in clinical diagnosis. The greatest improvement in further reducing the acquisition times has been the development of partially parallel acquisition (PPA) strategies in the late 1990s. Today, PPA strategies have become established and are available for clinical routine examinations. The basis for all PPA methods is an array of mutiple detectors which allow the independent and simultaneous imaging of an object. According to its position, each detector receives signal predominantly from a localized region and therefore contains spatial information. In general, a scan time reduction is achieved by reducing the amount of acquired data. This results in imaging artifacts. PPA methods utilize the spatial information inherent in the detector array in order to remove these artifacts by using dedicated reconstruction algorithms. At present, the most successful PPA strategies are the "Sensitivity Encoding" (SENSE) method and the "Generalized Autocalibrating Partially Parallel Acquisitions" (GRAPPA) technique. However, the performance of PPA methods is limited. First, the achievable scan time reduction factor is limited by the number of detectors in the array. Second, compared with a conventional experiment the signal-to-noise ratio (SNR) is decreased by the square root of the scan time reduction factor. An additional decrease in SNR is introduced by the reconstruction process and is strongly dependent on the array geometry. For these reasons, the application of PPA methods is restricted to applications with a high intrinsic SNR. In this thesis, extensions of standard PPA methods are presented which improve their performance. Special emphasis is put on the autocalibrating GRAPPA technique, which reconstructs missing data in the reciprocal image space, the so-called k-space. First, the application of GRAPPA for 3D imaging is desribed. In 3D imaging, it is advantageous for the reconstruction quality of PPA methods to perform the data reduction in two spatial dimensions. However, until now GRAPPA has been restricted to experiments with data reduction in only one dimension. Here, a combination of GRAPPA and SENSE is presented which allows one to utilize the benefits of two-dimensional data reduction for the GRAPPA technique. Furthermore, a reformulation of the GRAPPA reconstruction process as a matrix operation is presented. This formalism is refered to as the GRAPPA-Operator formalism and it allows one to shift a received signal in k-space in order to reconstruct missing data. Several properties and relationships between different shifts are described and resultant implications for 2D and 3D imaging are presented. In general, all conventional PPA methods work on the reconstruction side. Therefore,the image quality and thus the achievable scan time reduction can only be controlled by the choice of the array geometry. In multi-slice MRI, this dependency on the array geometry can be reduced by modifying the appearence of imaging artifacts during the data acquisition period. In this way, the decrease in SNR introduced by the reconstruction process can be minimized. This concept is entitled "Controlled Aliasing in Parallel Imaging Results In Higher Acceleratrion" (CAIPIRINHA), and in this thesis its application for dynamic cardiac imaging is described. In contrast to previous PPA techniques with two-fold acceleration, the image quality using the CAIPIRINHA approach is not significantly decreased compared with conventional experiments. KW - Magnetische Resonanz KW - NMR-Tomographie KW - Detektor-Array KW - Bildrekonstruktion KW - Selbst-Kalibrierung KW - nuclear magnetic resonance KW - magnetic resonance imaging KW - phased-array KW - image reconstruction KW - self-calibration Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-24022 ER -