TY - THES A1 - Donat, Ulrike T1 - Detektion und Therapie von Metastasen des humanen Prostatakarzinoms durch das onkolytische Vaccinia-Virus GLV-1h68 T1 - Detection and therapy of human prostate carcinoma metastases with the oncolytic vaccinia virus GLV-1h68 N2 - Zurzeit sterben jährlich ca. 11.000 Männer in Deutschland am Prostatakarzinom. Damit stellt dies die zweithäufigste Krebstodesursache von Männern dar. Da das Prostatakarzinom häufig asymptomatisch verläuft, wird die Erkrankung oftmals erst so spät erkannt, dass zum Zeitpunkt der Diagnose bereits eine Metastasierung stattgefunden hat. Durch metastasierende Prostatakarzinomzellen werden Lymphknoten, Knochen und Lungen befallen. Es sind zwei unterschiedliche Verbreitungsarten von metastasierenden Tumorzellen beschrieben. Zum einen kann eine Migration über Lymphgefäße erfolgen, ein Prozess der als lymphatische Metastasierung bezeichnet wird. Zum anderen können Tumorzellen über das Blutsystem im Körper zirkulieren: die hämatogene Metastasierung. In dieser Arbeit wurde die lymphatische Metastasierung der humanen Prostatakarzinomzellline PC-3 im Detail analysiert und Teilaspekte der hämatogenen Verteilung untersucht. Ausgangspunkt der Untersuchungen bildete die Vergrößerung lumbaler und renaler Lymphknoten in PC-3-Tumor-tragenden Mäusen 60 Tage nach der Implantation von PC-3-Zellen. Es wurde daraufhin der zeitliche Verlauf der Vergrößerung untersucht und festgestellt, dass sowohl das Volumen als auch die Anzahl vergrößerter Lymphknoten von Woche zu Woche nach Implantation der PC-3-Tumore zunehmen. Anschließend wurden alle vergrößerten Lymphknoten bezüglich des Vorhandenseins von metastasierenden humanen PC-3-Zellen in den Mäusen untersucht. Dies geschah mit Hilfe einer RT-PCR unter Verwendung von Primern für humanes β-Aktin. Sechs Wochen nach Implantation konnten in 90 % der vergrößerten Lymphknoten PC-3-Zellen nachgewiesen werden. Weiterhin wurde durch lentivirale Transduktion das Gen für das rot fluoreszierende Protein (RFP) in die PC-3-Zellen inseriert, wodurch eine Visualisierung dieser Zellen in der Maus ermöglicht wurde. Es konnten metastasierende PC-3-RFP-Zellen in lumbalen und renalen Lymphknoten PC-3-RFP-Tumor-tragender Mäuse nachgewiesen werden. Ebenso konnte mittels RFP gezeigt werden, dass die Lymphknotenmetastasierung in Abhängigkeit von der Lokalisation des PC-3-RFP-Tumors erfolgt. Es kam zur Metastasierung jener Lymphknoten, in deren Einzugsgebiet sich der PC-3-Tumor befand. Es wurde eine PC-3-RFP-Zellmigration zwischen lumbalen und renalen Lymphknotenmetastasen nachgewiesen und bei immunhistologischen Untersuchungen stellte sich heraus, dass PC-3-RFP-Zellen tatsächlich in lymphatischen Bahnen zwischen lumbalen und renalen Lymphknotenmetastasen migrieren. Außerdem wurde gezeigt, dass es von Woche zu Woche nach Implantation von PC-3-Zellen zu einer Zunahme der Anzahl von Lymphgefäßen in PC-3-Tumoren kommt. Die Zunahme der Lymphgefäßdichte korrelierte hierbei positiv mit der Bildung von Lymphknotenmetastasen. Es konnten weiterhin neben Lymphknotenmetastasen hämatogene Mikrometastasen in den Lungen PC-3-RFP-Tumor-tragender Mäuse beobachtet werden. Da die Haupttodesursache von Prostatakarzinompatienten in der Bildung von Metastasen liegt, ist es von herausragender Bedeutung eine effektive Therapie gegen lymphatische und hämatogene Metastasen zu entwickeln. Aus diesem Grund erlangt die onkolytische Virustherapie große Bedeutung. Deshalb wurde als zweiter Aspekt in dieser Arbeit der Einfluss des onkolytischen Vaccinia-Virus GLV-1h68 auf den Prozess der PC-3-Zellmetastasierung untersucht. Dabei konnte zunächst gezeigt werden, dass GLV-1h68 in der Lage ist, erfolgreich sowohl migrierende PC-3-Zellen als auch metastasierende PC-3-Zellen in Lymphknoten zu kolonisieren. In der Folge wurde deshalb ein möglicher Metastasen-inhibierender Effekt von GLV-1h68 untersucht. Hierbei stellte sich heraus, dass GLV-1h68 drei Wochen nach intravenöser Injektion eine signifikante Reduktion der Anzahl der für PC-3-Zellen positiven Lymphknoten bewirkt. Des Weiteren konnte ein inhibierender Effekt von GLV-1h68 auf die im Blut zirkulierenden PC-3-Zellen und auf hämatogene Metastasen in den Lungen beobachtet werden. Durch intravenöse Injektion von GLV-1h68 in PC-3-RFP-Tumor-tragenden Mäusen konnte gezeigt werden, dass es zu einer präferentiellen Virus-Kolonisierung der Lymphknotenmetastasen im Vergleich zu den Tumoren kommt. Auch nach intraperitonealer und intratumoraler Injektion von GLV-1h68 konnte eine präferentielle Virus-Kolonisierung der Lymphknotenmetastasen gezeigt werden. Darüber hinaus wurden die Lymph- und Blutgefäße von PC-3-Tumoren und Lymphknotenmetastasen analysiert. Hierbei wurde gezeigt, dass es sieben Tage nach intravenöser Injektion von GLV-1h68 zu einer signifikanten Abnahme von beiden Gefäßarten kam. Es wurde in dieser Arbeit somit gezeigt, dass GLV-1h68 in der Lage ist, sowohl lymphatische als auch hämatogene Metastasen der Prostatakarzinomzelllinie PC-3 erfolgreich zu eliminieren. Folglich dürften onkolytische Vaccinia-Viren ein vielversprechendes Therapeutikum für die Behandlung des fortgeschrittenen Prostatakarzinoms darstellen. N2 - Every year about 11,000 men in Germany are dying because of prostate carcinoma. Thus, prostate carcinoma represents the second leading cause of cancer related death in men. Since the prostate carcinoma usually proceeds asymptomatically the diagnosis is often made when metastases have already formed. Human prostate cancer usually spreads to lymph nodes, bones and lungs. There are two ways for tumor cells to migrate to other parts of the body: through lymphatic vessels, a process called lymphatic metastasis, or through the blood system, the hematogenous metastasis. In this thesis the lymphatic metastasis of the human prostate carcinoma cell line PC-3 was analyzed in detail while the hematogenous spread was only partially investigated. The initial point of these investigations was the enlargement of lumbar und renal lymph nodes in PC-3 tumor-bearing mice 60 days post implantation of PC-3 cells. Thereafter the time course of the enlargement was assessed. It turned out that the volume as well as the number of enlarged lymph nodes increased from week to week post implantation of PC-3 tumors. Subsequently, all enlarged lymph nodes were tested for the presence of human PC-3 cells in mice. This was done with the help of an RT-PCR using primers for human β-actin. Six weeks post implantation 90% of all enlarged lymph nodes were positive for PC-3 cells. Furthermore, the gene of the red fluorescent protein (RFP) was inserted into PC-3 cells via lentiviral transduction. By using fluorescence microscopy PC-3-RFP cells could be detected in lumbar and renal lymph nodes of PC-3-RFP tumor-bearing mice. With the help of RFP it could also be shown that lymph node metastases depend on the PC-3 tumor location. Metastases occurred in draining lymph nodes next to the tumor. Moreover, a PC-3-RFP cell migration between lumbar and renal lymph node metastases was shown. In the following immunohistochemical analysis it was proven that PC-3-RFP cells are indeed migrating in lymphatic vessels between these lumbar and renal lymph node metastases. Additionally, an increasing number of lymphatic vessels in PC-3 tumors was shown from week to week post implantation of PC-3 cells. This enhancement positively correlates with the formation of lymph node metastases. Besides lymph node metastases hematogenous micro metastases in the lungs of PC-3-RFP-tumor-bearing mice could be detected, too. The major cause of death in prostate cancer patients is the formation of metastases. Therefore, the development of effective therapies for lymphatic and hematogenous metastases is of major importance. One of the most promising novel cancer therapies for humans is oncolytic virotherapy. According to that, the second aspect of this thesis was to investigate the influence of the oncolytic vaccinia virus GLV-1h68 on the process of PC-3 cell metastasis. Thereby, it was initially shown that GLV-1h68 can efficiently colonize both migrating PC-3 cells and metastasized PC-3 cells in the lymph nodes. Ensuing, a possible metastasis inhibiting effect of GLV-1h68 was analyzed. It was shown that GLV-1h68 reduces the volume and the number of enlarged lymph nodes in PC-3 tumor-bearing mice three weeks after intravenous injection. It could also be shown that GLV-1h68 significantly reduces the number of lymph nodes that are positive for PC-3 cells. Additionally, GLV-1h68 has an inhibiting effect on PC-3 cells that are circulating in the blood of PC-3 tumor-bearing mice and on hematogenous metastases of the lungs. In analysing the intravenous injection of GLV-1h68 in PC-3-RFP tumor-bearing mice it turned out that there is a preferential viral colonisation of lymph node metastases compared to the tumors. At early points after injection renal lymph node metastases were colonized more thoroughly by GLV-1h68 than lumbar ones. The same preferential viral colonisation of lymph node metastases was shown upon intraperitoneal und intratumoral viral injection. Further, lymphatic and blood vessels of PC-3 tumors and lymph node metastases were analyzed. There was a significant reduction of lymphatic and blood vessels seven days post intravenous injection of GLV-1h68. This could explain the effect of GLV-1h68 on the reduction of the number of lymph node metastases, because the supply of nutrients as well as of oxygen is reduced due to the decrease of blood vessel density. Also, migration of PC-3 cells is minimized upon the reduction of lymphatic vessels. Thus, it was shown that GLV-1h68 has a great potential in eliminating lymphatic and hematogenous metastases of the human prostate carcinoma PC-3. Therefore, oncolytic vaccinia viruses apparently represent promising therapeutic agents for the treatment of advanced human prostate carcinoma. KW - Prostatakrebs KW - Metastase KW - Vaccinia-Virus KW - Metastasen KW - onkolytische Virustherapy KW - metatsases KW - oncolytic virotherapy Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56421 ER - TY - THES A1 - Schäfer, Simon T1 - Wirkung der Vaccinia-viral kodierten Proteine Relaxin 1 und Matrixmetalloproteinase 9 auf die extrazelluläre Matrix und die virale Ausbreitung im Tumorgewebe T1 - Effect of the Vaccina virus-encoded proteins relaxin 1 and matrix metalloproteinase 9 on the extracellular matrix and viral spreading within the tumor tissue N2 - Die heute in der Krebstherapie vorherrschenden konventionellen Therapiemethoden weisen Defizite bezüglich ihrer Wirksamkeit auf und rufen oftmals gravierende Nebenwirkungen hervor. Eine Alternative für die Behandlung von Tumoren ist der Einsatz onkolytischer Viren. Um einen erfolgreichen klinischen Einsatz onkolytischer Viren zu ermöglichen, ist eine Verstärkung von deren Wirksamkeit durch die Insertion therapeutischer Gene wünschenswert. Im Rahmen der vorliegenden Arbeit sollte der Abbau von Proteinen der extrazellulären Matrix durch die Insertion des Relaxin- oder Matrixmetalloproteinase 9-Gens (MMP-9) in das Vaccinia-Virus Genom erreicht und dadurch die Virusausbreitung im Tumorgewebe erleichtert werden. Hierfür wurden die rekombinanten Vaccinia-Viren GLV-1h169, codierend für das Hormon Relaxin und GLV-1h255, codierend für das Enzym MMP-9, eingesetzt. Es wurde analysiert, ob die Expression dieser Proteine zu einem Abbau von Matrixproteinen führt, dies die Virusausbreitung erleichtert und die Lyse infizierter Tumorzellen gegenüber dem parentalen Virus GLV-1h68 verstärkt. GLV-1h169 wurde in DU145-, PC3- und C33A-Tumor-tragende Mäuse injiziert und die Wirkung des viral-codierten Relaxins auf die extrazelluläre Matrix und die virale Ausbreitung im Tumorgewebe analysiert. In Zellkultur-Experimenten wurde ermittelt, dass die Insertion des Relaxin-Gens in das GLV-1h169-Genom das Replikationsverhalten in DU145-Zellen gegenüber dem des parentalen Virus GLV-1h68 nicht negativ beeinflusst. In DU145-, PC3- und C33A-Tumorschnitten konnte eine Expression von Relaxin in GLV-1h169-infizierten Bereichen nachgewiesen werden. Die Expression von Relaxin soll durch die Aktivierung des Relaxin-Signalweges zur Translation von MMP-9 führen. Das Enzym wird von infizierten Zellen sezerniert und spaltet Proteine der extrazellulären Matrix. Der Gehalt der MMP-9 Substrate Collagen IV und Laminin in GLV-1h169 behandelten DU145- und C33A-Tumoren wurde analysiert und mit jenem in GLV-1h68- und PBS- behandelten Tumoren verglichen. In Virus-behandelten DU145-Tumoren zeigte sich im Vergleich mit PBS-behandelten Tumoren ein signifikant verringerter Collagen IV- und Laminingehalt. Weiterhin war der Collagen IV-Gehalt in GLV-1h169 infizierten Tumoren signifikant niedriger als in GLV-1h68 infizierten. Dies führte jedoch nicht zu einer Erhöhung des Virustiters und nicht zu einer verbesserten Virusausbreitung. GLV-1h68- und GLV-1h169-infizierte Tumore zeigten gegenüber PBS-behandelten Tumoren eine starke Regression. Die GLV-1h169-vermittelte Relaxin-Expression führte jedoch nicht zu einer weiteren Verstärkung der Tumorregression. In Virus-behandelten C33A-Tumoren wurde eine signifikante Erhöhung des Collagen IV- und Laminingehalts gegenüber PBS-behandelten Tumoren nachgewiesen. Dies könnte durch eine Virus-induzierte Inflammationsreaktion hervorgerufen werden, die eine Fibroblasten-vermittelte Collagenablagerung nach sich zieht. Das MMP-9 Expressionsle-vel war in Virus-behandelten Tumoren gegenüber PBS-behandelten signifikant erhöht, jedoch bewirkte die GLV-1h169-vermittelte Expression von Relaxin keine zusätzliche MMP-9 Expression. In Tumorrandbereichen erfolgte eine Expression von Relaxin und MMP-9, im Tumorinneren jedoch nur eine Expression von Relaxin. Hingegen wurde eine Korrelation zwischen der MMP-9-Expression und der Präsenz MHC II-positiver Zellen beobachtet. Diese Zellen migrieren von außen in das Tumorgewebe und exprimieren dort MMP-9. Bei der Analyse der Virustiter und –ausbreitung im Tumorgewebe zeigten sich keine signifikanten Unterschiede zwischen GLV-1h68- und GLV-1h169-injizierten Tieren. Die Injektion von beiden onkolytischen Viren in C33A-Tumor-tragende Mäuse führte zu einer starken Tumorregression. Diese wurde jedoch nicht durch die GLV-1h169-vermittelte Relaxin-Expression beeinflusst. Da die Aktivierung des Relaxin-Signalweges zu einer Expression des vascular endothelial growth factors (VEGF) führen kann, welcher die Angiogenese stimuliert, wurde die Blutgefäßdichte in C33A-Tumoren ermittelt. Die Expression von Relaxin führte nicht zu einer erhöhten Blutgefäßdichte. Die Basalmembran von Blutgefäßen enthält Collagen IV, deshalb wurde untersucht, ob die Relaxin-Expression eine erhöhte Permeabilität der Gefäße bewirkt. In den Virus-behandelten Tumoren zeigte sich eine gegenüber PBS-behandelten Tumoren signifikant erhöhte Gefäß-Permeabilität, jedoch bewirkte die Expression von Relaxin keine weitere Erhöhung der Gefäß-Permeabilität... N2 - The currently dominating conventional cancer therapy methods are facing limitations regarding their efficacy and often cause severe side effects. An alternative for the treatment of tumors is the use of oncolytic viruses. To ensure a successful clinical application of oncolytic viruses, an enhanced efficacy by the insertion of therapeutic genes is desirable. In the scope of this thesis, a degradation of extracellular matrix proteins should be achieved by the insertion of the relaxin or matrix metalloproteinase 9 gene into the vaccinia virus genome, facilitating increased viral spreading in the tumor tissue. To this end, the recombinant vaccinia viruses GLV-1h169, encoding the hormone relaxin and GLV-1h255, encoding the enzyme MMP-9 were used. It was analyzed whether the expression of these proteins causes a degradation of matrix proteins and leads to an increased viral spreading and an enhanced lysis of infected tumor cells, when compared to the parental virus GLV-1h68. DU145, PC3 and C33A tumor-bearing mice, respectively, were injected with GLV-1h169 and the effect of virus-encoded relaxin on the extracellular matrix and viral spreading inside the tumor mass was analyzed. Tissue culture experiments confirmed that the inser-tion of the relaxin gene into the GLV-1h169 genome does not negatively influence the virus replication in DU145 cells when compared to that of the parental virus GLV-1h68. An expression of relaxin in GLV-1h169-infected tumor areas in DU145, PC3 and C33A tumor sections was shown. The expression of relaxin should activate the relaxin pathway, inducing the translation of MMP-9. The enzyme is secreted by infected cells and cleaves proteins of the extracellular matrix. The content of the MMP-9 substrates collagen IV and laminin in GLV-1h169-treated DU145 and C33A tumors was analyzed and compared to that of GLV-1h68- and PBS-treated tumors. Virus-treated tumors showed a significantly lower collagen IV and laminin content than those treated with PBS. Furthermore, the collagen IV content in GLV-1h169-treated tumors was significantly lower than in those treated with GLV-1h68. This did not lead to higher virus titers or to an enhanced virus spreading. Compared to PBS-treated tumors, those infected with GLV-1h68 or GLV-1h169 regressed significantly. The GLV-1h169-mediated relaxin expression did not further enhance tumor regression. Virus-treated C33A tumors showed a significantly increased collagen IV and laminin con-tent compared to those treated with PBS. This could be due to a virus-induced inflamma-tion, leading to a fibroblast-mediated collagen deposition. The MMP-9 expression level in virus-treated tumors was significantly higher than in those treated with PBS. However, the GLV-1h169-mediated expression of relaxin did not further increase MMP-9 expression. In outer tumor areas relaxin and MMP-9 were expressed, in inner tumor areas only relaxin was expressed. In contrast, a correlation between the expression of MMP-9 and the presence of MHC II-positive cells was observed. These cells migrate from the outside into the tumor tissue where they express MMP-9. The analysis of virus titers and spreading inside the tumor mass revealed no significant differences between GLV-1h68- and GLV-1h169-injected mice. The injection of both oncolytic viruses led to a pronounced tumor regression, which was not further enhanced by the GLV-1h169-mediated expression of relaxin... KW - Relaxin KW - Vaccinia-Virus KW - Prostatakrebs KW - MMP-9 KW - Cervix-Karzinom KW - onkolytische Virustherapie KW - MMP-9 KW - Cervix carcinoma KW - oncolytic virotherapy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69592 ER - TY - THES A1 - Sturm, Julia T1 - Effekte von Hyper-IL-6 in der Vaccinia-Virus-vermittelten Krebstherapie T1 - Effects of Hyper-IL-6 in vaccinia virus-mediated cancer therapy N2 - In der vorliegenden Arbeit wurde ein onkolytisches Vaccinia-Virus unter Ausnutzung seiner Eigenschaft als Vektorsystem mit dem Designer-Zytokin Hyper-IL-6 ausgestattet (GLV 1h90). Bei Hyper IL 6 handelt es sich um ein Fusionsprotein bestehend aus humanem Interleukin-6 und der Liganden-Bindungsdomäne des löslichen Interleukin-6-Rezeptors, welche kovalent über einen flexiblen Linker miteinander verbunden sind. Dieses chimäre Designer-Zytokin erlaubt die Untersuchung von IL-6-Effekten, welche über das IL-6-Trans-Signaling vermittelt werden. Daraus ergibt sich einerseits eine beträchtliche Erweiterung des Wirkspektrums und darüber hinaus weist Hyper-IL-6 sowohl in vitro als auch in vivo eine 100-1000fach verstärkte biologische Aktivität auf. Aufgrund der Tatsache, dass Hyper-IL-6, neben seiner Tumor-inhibierenden Wirkung, eine Vielzahl weiterer Effekte zugeschrieben wird, wurde in dieser Arbeit durch die Kombination des Designer-Zytokins mit einem onkolytischen Vaccinia-Virus nicht nur additive Effekte auf die Tumorregression, sondern darüber hinaus auch mögliche systemisch-vermittelte Hyper-IL-6-Effekte untersucht. Nach intravenöser Injektion von GLV-1h90 in DU-145-Tumor-tragende Mäuse konnte neben der intratumoralen Replikation des Virus und der Expression des Markerproteins Ruc-GFP zusätzlich die Expression des integrierten Designer-Zytokins Hyper-IL-6 im Tumor nachgewiesen werden. Von entscheidender Bedeutung war der zusätzliche Nachweis des Designer-Zytokins in Serum-Proben von GLV-1h90-injizierten Mäusen. Nach einer aktiven Hyper-IL-6-Sekretion von infizierten Tumorzellen, bildet der Transport in die Blutbahn die Voraussetzung für systemisch-vermittelte Hyper-IL-6-Effekte. In dieser Arbeit wurde untersucht, ob sich durch die Überexpression von Hyper-IL-6 im Tumor, zusätzlich zu den onkolytischen Eigenschaften des Vaccinia-Virus, additive anti-Tumor-Effekte ergeben. Eine systemische Injektion von GLV 1h90 bzw. GLV 1h68 in DU-145-Tumor-tragende Mäuse führte zu einer signifikanten Reduktion des Tumorvolumens im Vergleich zu PBS-injizierten Mäusen. Neben Effekten, welche mit Entzündungsprozessen assoziiert sind, wie eine Rotfärbung der Haut, eine signifikanten Vergrößerung der Leber sowie eine massive Stimulation der Akute-Phase-Antwort in der Leber, konnte in GLV-1h90-injizierten Mäusen ein verbesserter Gesundheitszustand auf der Basis einer signifikanten Gewichtszunahme, verbunden mit einer beschleunigten Wundheilung Virus-induzierter Schwanzläsionen, beobachtet werden. Darüber hinaus konnte für Hyper-IL-6 eine Stimulierung der Megakaryopoese im Knochenmark nachgewiesen werden, welche zu einer signifikanten Erhöhung der Thrombozyten-Zahl im Blutkreislauf von GLV-1h90-injizierten Mäusen führte. Es ist von entscheidender Bedeutung anzumerken, dass alle beobachteten systemischen Hyper-IL-6-Effekte eine zeitliche Limitierung aufwiesen, welche sich höchstwahrscheinlich auf die Virus-bedingte Zerstörung Hyper IL 6-produzierender Tumorzellen zurückführen lässt. Dies impliziert zudem, dass eventuelle Komplikationen, welche durch die Überexpression des Designer-Zytokins hervorgerufen werden können, ebenfalls selbstlimitierend sind. Es konnte bereits mehrfach gezeigt werden, dass eine Kombinationstherapie aus onkolytischen Viren und Chemotherapie über synergistische Effekte zu einer signifikant verbesserten Tumorregression führt. Allerdings kommt es in Folge einer Chemotherapie oft zu einer Vielzahl von gefährlichen Nebenwirkungen, da alle schnell proliferierenden Zellen des Körpers betroffen sind. Thrombozytopenie ist eine der am häufigsten vorkommenden Nebenwirkung und beschreibt eine massive Reduktion der Thrombozyten-Zahl im Blut. Im Hinblick auf eine mögliche klinische Anwendung von GLV 1h90 wurde deshalb untersucht, ob in einer Kombinationstherapie mit Mitomycin C, neben einer Verstärkung der therapeutischen Effekte des Virus, basierend auf den beobachteten Hyper-IL-6-Effekten, zusätzlich der Gesundheitszustand der behandelten Mäuse verbessert werden kann. Die Experimente belegen, dass eine Kombination onkolytischer Vaccinia-Virus-Konstrukte mit Mitomycin C zu einer signifikant verbesserten Tumorregression im Vergleich zu den jeweiligen Monotherapien führt. Von bedeutender Relevanz war die Beobachtung, dass in einer Kombinationstherapie von Mitomycin C und GLV-1h90, im Gegensatz zu GLV-1h68, eine signifikante zeitliche Verkürzung der auftretenden Thrombozytopenie erreicht wird. Zusammenfassend konnte in dieser Arbeit gezeigt werden, dass eine systemische Injektion von GLV-1h90 zu einer funktionellen Expression des Designer-Zytokins Hyper-IL-6 führte, welches in der Lage ist eine erfolgreiche Kombinationstherapie aus einem onkolytischen Vaccinia-Virus und dem Chemotherapeutikum Mitomycin C durch eine Reduktion der Nebenwirkungen zusätzlich zu optimieren. N2 - In this thesis, an oncolytic vaccinia virus was armed with the designer cytokine Hyper-IL-6 by recombinant integration (GLV-1h90), exploiting its features as a vector system. Hyper IL-6 is composed of human interleukin-6 (IL-6) and the cytokine-binding domain of its soluble receptor sIL-6R which are bond covalently by a flexible peptide linker. Hyper-IL-6 is a multifunctional cytokine which exhibits not only anti-tumor activity, but also a variety of other effects. For this reason, the combination of the designer cytokine and an oncolytic vaccinia virus was used to study possible improvements regarding tumor regression and more importantly additional systemically mediated Hyper IL-6 effects. In addition to intratumoral replication and visualization of the marker gene ruc-gfp, intratumoral expression of the inserted designer cytokine Hyper-IL-6 could be detected after systemic administration of GLV-1h90 into DU-145-tumor-bearing mice. Of special interest was the presence of hyper-IL-6 in blood serum samples of GLV-1h90-injected mice. Following active hyper-IL-6 secretion of infected tumor cells, the transport into the blood circulation is essential for its ability to induce signal transduction pathways outside the tumor. IL-6 is a pro-inflammatory cytokine which is postulated to exhibit both, tumor promoting as well as tumor inhibiting effects. However, growth or proliferation inhibition of tumors could only be observed after addition of soluble IL-6 receptor and is consequently associated with the IL 6-trans-signaling pathway. Therefore, the thesis deals with the question of whether overexpression of hyper-IL-6 can further enhance the pre-existing oncolytic effects of vaccinia virus. Systemic administration of either GLV-1h90 or GLV-1h68 led to significant tumor regression compared to PBS-treated mice. Comparison of the two viral constructs demonstrated a slightly increased oncolytic activity of GLV-1h90. However, further studies have to clarify to which extend this improvement is resulting from an intratumoral overexpression of hyper IL 6. Following the detection of hyper-IL-6 in the blood circulation as a consequence of GLV 1h90-mediated overexpression in the tumor, functionality of the designer cytokine was analyzed regarding systemically mediated effects. Besides effects which can be associated with inflammatory processes, such as red skin, significant enlargement of the liver as well as enormous stimulation of the acute-phase-response, GLV-1h90-injected mice showed improved healthiness. Health status was assessed by significant gain in body weight associated with accelerated epithelial barrier repair of virus-induced tail lesions. Moreover, it could be demonstrated that Hyper-IL-6 stimulates megakaryopoiesis in the bone marrow, which in turn leads to significantly elevated levels of blood platelets in GLV-1h90-injected mice. It is particularly important to note that all observed systemic Hyper-IL-6 effects occurred only temporarily, which could be explained by virus-mediated oncolysis, reducing the amount of viable Hyper-IL-6 producing tumor cells. The results also implicate that potential complications associated with the overexpression of the designer cytokine can be self-limiting due to the destruction of the virus replication site. Recently, we and others demonstrated that the combination of oncolytic virotherapy and chemotherapy could lead to synergistic interactions that ultimately result in enhanced tumor regression. On the other hand, chemotherapy is often associated with serious side effects, since all fast proliferating cells are affected. Among the most frequently observed adverse effects is thrombocytopenia, which is characterized by a massive reduction of blood platelets. With regard to a possible clinical application of GLV 1h90, combination therapy of the hyper IL 6 encoding vaccinia-virus strain and the chemotherapeutic agent mitomycin C was investigated. Besides therapeutic effects of the virus, the issue was addressed, whether the health status of mice can be improved based on the observed hyper-IL-6 effects. Experimental results clearly demonstrated that combination therapy of mitomycin C and oncolytic vaccinia viruses led to a significantly improved DU-145 tumor regression compared to the respective monotherapies. Of particular importance was the finding that as compared to GLV-1h68, a combination of GLV-1h90 and mitomycin C reduced the time interval during which treated mice suffered from thrombocytopenia significantly. Taken together, this thesis revealed that systemic injection of GLV-1h90 leads to functional expression of the designer cytokine hyper-IL-6, which is able to further optimize the already effective combination therapy of the oncolytic virus GLV-1h90 and the chemotherapeutic agent mitomycin C by reducing of serious adverse effects. KW - Prostatakrebs KW - Vaccinia-Virus KW - Interleukin 6 KW - Chemotherapie KW - Mitomycin C KW - Onkolytische Virotherapie KW - Hyper-IL-6 KW - Thrombozytopenie KW - oncolytic virotherapy KW - Hyper-IL-6 Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66831 ER -