TY - THES A1 - Huggenberger, Alexander T1 - Optimierung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren T1 - Optimization of site-controlled In(Ga)As quantum dots for the integration into semiconductor micro resonators N2 - Diese Arbeit beschäftigt sich mit der Herstellung von positionierten In(Ga)As-Quantenpunkten zur Integration in Halbleiter-Mikroresonatoren. Dazu wurden systematisch die optischen Eigenschaften - insbesondere die Linienbreite und die Feinstrukturaufspaltung der Emission einzelner Quantenpunkte - optimiert. Diese Optimierung erfolgt im Hinblick auf die Verwendung der Quantenpunkte in Lichtquellen zur Realisierung einer Datenübertragung, die durch Quantenkryptographie abhörsicher verschlüsselt wird. Ein gekoppeltes Halbleitersystem aus einem Mikroresonator und einem Quantenpunkt kann zur Herstellung von Einzelphotonenquellen oder Quellen verschränkter Photonen verwendet werden. In dieser Arbeit konnten positionierte Quantenpunkte skalierbar in Halbleiter-Mikroresonatoren integriert werden. In(Ga)As-Quantenpunkte auf GaAs sind ein häufig untersuchtes System und können heutzutage mit hoher Kristallqualität durch Molekularstrahlepitaxie hergestellt werden. Um die Emission der Quantenpunkte gerichtet erfolgen zu lassen und die Auskoppeleffizienz der Bauteile zu erhöhen, wurden Mikrosäulenresonatoren oder photonische Kristallresonatoren eingesetzt. Die Integration in diese Resonatoren erfolgt durch Ausrichtung an Referenzstrukturen, wodurch dieses Verfahren skalierbar. Die Strukturierung der Substrate für die Herstellung von positionierten Quantenpunkten wurde durch optische Lithographie und Elektronenstrahllithographie in Kombination mit unterschiedlichen Ätztechniken erreicht. Für den praktischen Einsatz solcher Strukturen wurde ein Kontaktierungsschema für den elektrischen Betrieb entwickelt. Zur Verbesserung der optischen Eigenschaften der positionierten Quantenpunkte wurde ein Wachstumsschema verwendet, das aus einer optisch nicht aktiven In(Ga)As-Schicht und einer optisch aktiven Quantenpunktschicht besteht. Für die Integration einzelner Quantenpunkte in Halbleiter-Mikroresonatoren wurden positionierte Quantenpunkte auf einem quadratischen Gitter mit einer Periode von 200 nm bis zu 10 mum realisiert. Eine wichtige Kenngröße der Emission einzelner Quantenpunkte ist deren Linienbreite. Bei positionierten Quantenpunkten ist diese häufig aufgrund spektraler Diffusion größer als bei selbstorganisierten Quantenpunkten. Im Verlauf dieser Arbeit wurden unterschiedliche Ansätze und Strategien zur Überwindung dieses Effekts verfolgt. Dabei konnte ein minimaler Wert von 25 mueV für die Linienbreite eines positionierten Quantenpunktes auf einem quadratischen Gitter mit einer Periode von 2 μm erzielt werden. Die statistische Auswertung vieler Quantenpunktlinien ergab eine mittlere Linienbreite von 133 mueV. Die beiden Ergebnisse zeugen davon, dass diese Quantenpunkte eine hohe optische Qualität besitzen. Die FSS der Emission eines Quantenpunktes sollte für die direkte Erzeugung polarisationsverschränkter Photonen möglichst klein sein. Deswegen wurden unterschiedliche Ansätze diskutiert, um die FSS einer möglichst großen Zahl von Quantenpunkten systematisch zu reduzieren. Die FSS der Emission von positionierten In(Ga)As-Quantenpunkten auf (100)-orientiertem Galliumarsenid konnte auf einen minimalen Wert von 9.8 mueV optimiert werden. Ein anderes Konzept zur Herstellung positionierter Quantenpunkte stellt das Wachstum von InAs in geätzten, invertierten Pyramiden in (111)-GaAs dar In (111)- und (211)-In(Ga)As sollte aufgrund der speziellen Symmetrie des Kristalls bzw. der piezoelektrischen Felder die FSS verschwinden. Mit Hilfe von Quantenpunkten auf solchen Hochindex-Substraten konnten FSS von weniger als 5 mueV gemessen werden. Bis zu einem gewissen Grad kann die Emission einzelner Quantenpunkte durch laterale elektrische Felder beeinflusst werden. Besonders die beobachtete Reduzierung der FSS positionierter In(Ga)As-Quantenpunkte auf (100)-orientiertem GaAs von ca. 25 mueV auf 15 mueV durch ein laterales, elektrisches Feld ist viel versprechend für den künftigen Einsatz solcher Quantenpunkte in Quellen für verschränkte Photonen. Durch die Messung der Korrelationsfunktion wurde die zeitliche Korrelation der Emission von Exziton und Biexziton nachgewiesen und das Grundprinzip zum Nachweis eines polarisationsverschränkten Zustandes gezeigt. In Zusammenarbeit mit der Universität Tokyo wurde ein Konzept entwickelt, mit dem künftig Einzelquantenpunktlaser skalierbar durch Kopplung positionierter Quantenpunkte und photonischer Kristallkavitäten hergestellt werden können. Weiterhin konnte mit Hilfe eines elektrisch kontaktierten Mikrosäulenresonators bei spektraler Resonanz von Quantenpunktemission und Kavitätsmode eine Steigerung der spontanen Emission nachgewiesen werden. Dieses System ließ sich bei geeigneten Anregungsbedingungen auch als Einzelphotonenquelle betreiben, was durch den experimentell bestimmten Wert der Autokorrelationsfunktion für verschwindende Zeitdifferenzen nachgewiesen wurde. N2 - The present thesis is about the fabrication of site-controlled In(Ga)As quantum dots for the scalable integration into devices. The optical properties of these quantum dots were systematically optimized with special care regarding the optical linewidth and the fine structure splitting of single quantum dots. This optimization was accomplished in order to use the quantum dots in light sources for quantum key distribution By coupling semiconductor microcavities and quantum dots one is able to realize single photon sources or sources of entangled photons. This work demonstrates the scalable integration of site-controlled quantum dots into semiconductor microresonators. The growth of In(Ga)As quantum dots on GaAs substrates is a field of vivid research nowadays and can be fabricated with high quality by molecular beam epitaxy. The emission from single quantum dots exhibits lines that resemble the discrete emission spectra of atoms. This thesis uses micropillar cavities and photonic crystal cavities to direct the emission of quantum dots and to increase the extraction efficiency. The integration into these resonator systems was done by adjusting the quantum dots’ positions to reference structures on the samples. This allows for a scalable fabrication of many spatially coupled quantum dot resonator systems The substrates were patterned using a combination of optical and electron beam lithography followed by wet or dry etching. Electrical carrier injection was realized by developing a contact scheme. The quantum dots were fabricated using a stacked growth scheme that consists of a seeding layer and an optical active quantum dot layer. Quantum dots on square lattices with a period of up to 10 mum were fabricated to enable the integration of single quantum dots into semiconductor microresonators. On the other hand, it was possible to realize periods of only 200 nm which is promising for the investigation of superradiance effects in the ensemble emission of quantum dots. The optical properties of site-controlled quantum dots were investigated by studying the photoluminescence. The emission linewidth of single quantum dots is an important benchmark for the optical quality. Site-controlled quantum dots are known to exhibit large linewidths due to the effect of spectral diffusion. Different strategies to overcome this obstacle were investigated during this work. A linewidth as low as 25 mueV was observed for a single site-controlled quantum dot (on a square lattice of 2 mum period). The statistical evaluation yields a mean value of 133 mueV for this kind of quantum dots. Both results prove the high optical quality of the site-controlled quantum dots fabricated in this work. The fine structure splitting of the quantum dot emission should be close to zero for the direct observation of polarization entangled photons. Different concepts were investigated during this work to reduce the fine structure splitting of the quantum dot ensemble. The lowest splitting obtained for site-controlled In(Ga)As quantum dots on (100) GaAs was 9.8 mueV. By growing quantum dots into inverted pyramids etched into (111) GaAs one should be able to further reduce the splitting due to the threefold symmetry of (111) GaAs. Furthermore, the piezoelectric field in (211) GaAs should compensate the fine structure splitting. Using quantum dots on these high index materials the fine structure splitting was reduced to values below 5 mueV during this work. Another concept to reduce the fine structure splitting is the application of a lateral electric field which was shown to reduce the splitting from 25 mueV to 15 mueV. For the future measurement of the degree of entanglement of photons, an experimental setup was established and its functionality was proven by measuring the temporal characteristics of an biexciton-exciton-cascade. In cooperation with the group of Prof. Arakawa from Tokyo University a concept was developed to realize single quantum dot lasers by combining site-controlled quantum dots and two- or three-dimensional photonic crystal cavities in the near future. Furthermore, with the help of an electrically driven micropillar resonator the enhancement of the spontaneous emission for spectral resonance of the cavity mode with the emission of a site-controlled quantum dot was shown. This system could be used as a single photon source which is proven by the measurement of the autocorrelation function for zero time delay. KW - Quantenpunkt KW - Einzelphotonenemission KW - Drei-Fünf-Halbleiter KW - quantum dot KW - semiconductor KW - molecular beam epitaxy KW - single photon emission KW - optical resonator KW - Halbleiter KW - Molekularstrahlepitaxie KW - Optischer Resonator KW - Linienbreite Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78031 ER - TY - THES A1 - Schneider, Christian T1 - Konzepte zur skalierbaren Realisierung von effizienten, halbleiterbasierten Einzelphotonenquellen T1 - Concepts for the scalable realization of efficient semiconductor single photon sources N2 - Dem Einsatz niederdimensionaler Nanostrukturen als optisch aktives Medium wird enormes Potential vorausgesagt sowohl in den klassischen optoelektronischen Bauteilen (wie z.B. Halbleiterlasern) als auch in optischen Bauteilen der näachsten Generation (z.B. Einzelphotonenquellen oder Quellen verschränkter Photonenpaare). Dennoch konnten sich quantenpunktbasierte Halbleiterlaser, abgesehen von einigen wenigen Ausnahmen (QDLaser inc.), im industriellen Maßstab bisher nicht gegen Bauelemente mit höherdimensionalen Quantenfilmen als optisch aktivem Element durchsetzen. Deshalb scheint der Einsatz von Quantenpunkten (QPen) in nichtklassischen Lichtquellen gegenwärtig vielversprechender. Um jedoch solche Bauteile bis zur letztendlichen Marktreife zu bringen, müssen neben der starken Unterdrückung von Multiphotonenemission noch wesentliche Grundvoraussetzungen erfüllt werden: In dieser Arbeit wurden grundlegende Studien durchgeführt, welche insbesondere dem Fortschritt und den Problemen der Effizienz, des elektrischen Betriebs und der Skalierbaren Herstellung der Photonenqullen dienen sollte. Zum Einen wurden hierfür elektrisch betriebene Einzelphotonenquellen basierend auf gekoppelten QP-Mikroresonatoren realisiert und de ren Bauteileffizienz gezielt optimiert, wobei konventionelle selbstorganisierte InAs-QPe als aktives Medium eingesetzt wurden. Für die skalierbare Integration einzelner QPe in Mikroresonatoren wurde des Weiteren das gesteuerte QP-Wachstum auf vorstrukturierten Substraten optimiert und auf diese Art ortskontrollierte QPe in Bauteile integriert. Für die Realisierung hocheffizienter, elektrisch gepumpter inzelphotonenquellen wurde zunächst das Wachstum von binären InAs-QPen im Stranski-Krastanov-Modus optimiert und deren optische Eigenschaften im Detail untersucht. Durch das Einbringen einer Schicht von Siliziumatomen nahe der QP-Schicht konnten die Emitter negativ geladen werden und der helle Trionenzustand der QPe als energetischer Eigenzustand des Systems zur effizienten Extraktion einzelner Photonen ausgenutzt werden. Durch die Integration dieser geladenen QPe in elektrisch kontaktierte, auf Braggspiegel basierte Mikrotürmchen konnten Einzelphotonenquellen realisiert werden, in denen gezielt Licht-Materie- Wechselwirkungseffekte zur Steigerung der Bauteileffizienz ausgenutzt wurden. Basierend auf theoretischen Überlegungen wurde die Schichtstruktur soweit optimiert, dass letztendlich experimentell eine elektrisch gepumpte Einzelphotonenquelle mit einer Photonenemissionsrate von 47 MHz sowie einer zuvor unerreichten Bauteileffizienz von 34 % im Regime der schwachen Licht-Materie-Kopplung demonstriert werden konnte. Da Effekte der Licht-Materie-Wechselwirkung zwischen QP und Resonator neben der spektralen Resonanz ebenfalls von der relativen Position von Resonator und QP zueinander abhängen, ist eine Kombination von positionierten QPen und Bauteilausrichtung nahezu unumg¨anglich für die skalierbare, deterministische Herstellung von Systemen aus perfekt angeordnetem Emitter und Resonator. Deshalb wurden bestehende Konzepte zum geordneten Wachstum von QPen weiterentwickelt: Hierbei wurde geordnetes InAs-QP-Wachstum mit Perioden realisiert, die vergleichbare Abmessungen wie optische Resonatoren aufweisen, also Nukleationsperioden zwischen 500 nm und 4 μm. Durch ein genaues Anpassen der Wachstums- und Prozessbedingungen konnte des Weiteren die Bildung von QP-Molekülen auf den Nukleationsplätzen nahezu unterdrückt beziehungsweise gesteuert werden. Durch eine systematische Optimierung der optischen Eigenschaften der QPe konnten Emitter mit Einzelquantenpunktlinienbreiten um 100 μeV realisiert werden, was eine Grundvoraussetzung zur Studie ausgeprägter Licht-Materie-Wechselwirkungseffekte in Mikroresonatoren darstellt. Letztendlich konnten durch die Integration derartiger QPe in optisch sowie elektrisch betriebene Mikroresonatoren erstmals Bauteile realisiert werden, welche einige der prinzipiellen, an eine Einzelphotonenquelle gestellten Anforderungen erfüllen. Insbesondere konnten deutliche Signaturen der schwachen Licht-Materie-Kopplung einzelner positionierter QPe in photonische Kristallresonatoren, Mikroscheibenresonatoren sowie Mikrotürmchenresonatoren festgestellt werden. Darüberhinaus konnte an einem spektral resonanten System aus einem positionierten QP und der Grundmode eines Mikrotürmchenresonators eindeutig Einzelphotonenemission unter optischer Anregung demonstriert werden. Ebenfalls konnten Mikrotürmchenresonatoren mit integrierten positionierten QPen erstmals elektrisch betrieben werden und somit die Grundvoraussetzung für eine der skalierbaren Herstellung effizienter Einzelphotonenquellen geschaffen werden. N2 - Employing low dimensional nanostructures as active medium in classical optoelectronic devices (for instance semiconductor laser diodes) as well as optical devices of the next generation (such as single photon sources or sources of entangled photon pairs promises enormous potential. Yet, despite some exceptions (for example QDLasers inc.), quantum dot (QD)-based semiconductor lasers can hardly compete with devices exploiting higher dimensional gain material so far. Hence, using QDs as single photon emitters seems very promising. In order to achieve compatibility on the market, some urgent pre-requisites still need to be met in such devices besides the surpression of multiphoton emission: • Efficiency: Only a highly efficient single photon source can be reasonably employed in applications. • Electrical operation: In order to achieve a high integration density and for reasons of user friendlyness, the device needs to be driven electrically. • Scalability: The scalable fabrication of single photon sources is pre-requisite and one of the greatest technological challenges. • Temperature: Eventually, single photon sources will only be established in the wide field of secure data transmission if their operation at room temperature can be assured. In this work, basic studies were carried out especially devoted to the progress in the first three challenges. On the one hand, electrically driven single photon sources based on coupled QD-microcavities were realized and optimized by employing conventional self organized InAs QDs as active material. On the other hand, in order to facilitate a scalable integration of single QDs into microcavities, directed QD nucleation on pre-patterned substrate was optimized. These site-controlled QDs were at last integrated into resonator devices. In order to realize highly efficient, electrically driven single photon sources, at first the growth of binary Stranski-Krastanov InAs QDs was optimized and their emission properties were investigated in detail. By introducing Silicon atoms in the vicinity of the QD-layer, the emitters could be negatively charged. The resulting bright trion state of the QDs can subsequently be exploited as the energetic eigenstate of the system for the extraction of single photons. By integrating these charged QDs in contacted, Bragg-reflector based micropillars, single photon sources were realized exploiting light-matter coupling to enhance the device’s efficiency. Based on theoretical considerations, the grown layer sequence was optimized to an extent that eventually an electrically driven single photon source with an emission rate of 47 MHz and an unprecedented device efficiency of 34 % in the weak coupling regime could be demonstrated. Since the effects of light-matter coupling between QD and resonator rely on the QD’s position in the device, a combination of site-controlled QD-growth and device alignment is almost inevitable for a scalable, deterministic fabrication of perfectly aligned emittercavity systems. Therefore, existing concepts for ordered QD-growth were adapted and improved [KH07]: Ordered QD-growth on periods comparable to dimensions of optical resonators between 500 nm und 4 μm was realized. By carefully adjusting the growth and process conditions, formation of QD-molecules on nucleation sites could be controlled and supressed almost entirely. Carrying out a systematic optimization of the QD’s optical properties, emitters with single QD-linewidth around 100 μeV were realized. This is pre-requsite for the study of pronounced light-matter interaction in microcavities. Finally, the integration of such QDs in optically and electrically driven microresonators resulted in devices demonstrating some of the fundamental properties requested from a single photon source. Pronounced signatures of the weak light-matter coupling between a site-controlled QD in a photonic crystal cavity, a microdisk cavity and micropillar cavities were observed. Furthermore, single photon emission of a spectrally resonant system of sitecontrolled QD and micropillar cavity under pulsed optical excitation was unambigiously demonstrated. Beyond this, micropillar cavities with site-controlled QDs were electrically driven for the first time, which is pre-requisite for the scalable fabrication of efficient single photon sources. KW - Einzelphotonenemission KW - Quantenpunkt KW - Positionierung KW - Drei-Fünf-Halbleiter KW - Optischer Resonator KW - Mikrokavität KW - Single photon emission KW - quantum dot KW - site-controlled KW - semiconductor KW - microcavity Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73506 ER - TY - THES A1 - Stahl, Andreas T1 - Röntgenstrukturuntersuchungen an spintronischen Halbleiter- und Halbmetall-Dünnschichtsystemen T1 - X-ray analysis of spintronic semiconductor and half metal thin film systems N2 - In dieser Arbeit wurden die strukturellen Eigenschaften von spintronischen Halbleiter- und Halbmetall-Dünnschichtsystemen untersucht. Mit Röntgenreflektivitätsmessungen konnten die Schichtdicken und Grenzflächenrauigkeiten der Mehrschichtsysteme sehr genau bestimmt werden. Hierfür wurde die Software Fewlay verwendet, welche den Parratt-Formalismus zur Berechnung der Reflektivität nutzt. An reziproken Gitterkarten, die an möglichst hoch indizierten Bragg-Reflexen gemessen wurden, konnte das Relaxationsverhalten der Schichtsysteme untersucht werden. N2 - In this work the structural properties of spintronic semiconductor and halfmetalic thinfilm systems were investigated. The layer thicknesses and interface routhnesses of the multi-layer systems were estimated by X-ray reflectivity measurements. The fits were performed using the software Fewlay which uses the parratt formalism to calculate the reflectivities. The relaxation of the films was analyzed by reciprocal space mapping on preferably highly indexed bragg reflexes. KW - Halbleiterschicht KW - Spintronik KW - Röntgenstrukturanalyse KW - Halbmetall KW - Röngenbeugung KW - semiconductor KW - half metal KW - x-ray diffraction Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49309 ER - TY - THES A1 - Scheibner, Michael T1 - Über die Dynamik lokal wechselwirkender Spinträger T1 - About the dynamics of locally interacting spin carriers N2 - In dieser Arbeit wurde die Dynamik spintragender Teilchen (Elektronen, Löcher, Exzitonen) in selbstorganisierten Cd(Mn)Se/ZnSe Quantenpunkten sowie leicht dotiertem GaAs untersucht. Die unterschiedlichen Materialgruppen boten die Möglichkeit verschiedene Einflüsse auf Spinzustände zu studieren. Die Injektion definierter Spinzustände in die Halbleiterstrukturen erfolgte ausschließlich auf optischem Weg. Ebenfalls optisch wurde auch die zeitliche Entwicklung der Spinzustände detektiert. Die Anwendung von zeitaufgelöster Photolumineszenzspektroskopie sowie zeitaufgelöster Kerr-Rotation, ermöglichte den Zugriff sowohl auf longitudinale wie auch transversale Spinrelaxationsprozesse. Desweiteren wurde eine Kopplung der Quantenpunkten über ihr Strahlungsfeld diskutiert. N2 - In this thesis the dynamics of spin carrying particles like electrons, holes and excitons in self-organized Cd(Mn)Se/ZnSe quantum dots and lightly doped GaAs has been studied. The different materials offered the possibility to investigate various influences on spin states. The injection of defined spin states into the semiconductor structures was achieved exclusively by optical means. Likewise, the temporal evolution of the spin states was detected optically. The application of time resolved photoluminescence spectroscopy and time resolved Kerr rotation gave access to longitudinal as well as transverse spin relaxation processes. In addition a coupling of the quantum dots through their radiation field was discussed. KW - Quantenpunkt KW - Spindynamik KW - Quantenpunkte KW - Spindynamik KW - Magneto-optik KW - semimagnetisch KW - Halbleiter KW - zeitafgelöst KW - Strahlungskopplung KW - CdSe KW - GaAs KW - Quantum dots KW - spindynamics KW - magneto optics KW - semi-magnetic KW - semiconductor KW - time resolved KW - radiative coupling KW - CdSe KW - GaAs Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20127 ER - TY - THES A1 - Richter, Georg T1 - Nachweis der elektrischen Spin-Injektion in II-VI-Halbleiter mittels Messung des elektrischen Widerstandes T1 - Experimental proof of electrical spin injection into II-VI semiconductors by measuring the electric resistance N2 - Die bisherigen Ergebnisse der elektrischen Spininjektion in Halbleiter im diffusivem Regime werden mit dem Modell von Schmidt et. al gut beschrieben. Eine Folgerung aus diesem Modell ist, dass n-dotierte, verdünnte magnetische Halbleiter ("diluted magnetic semiconductors", DMS) als Injektor-Materialien für die elektrische Spininjektion in Halbleiter gut geeignet sind. Im Jahr 1999 wurde darüber hinaus die elektrische Injektion von einem DMS in einem nicht magnetisch dotierten Halbleiter ("non magnetic semiconductors", NMS) mit optischen Mitteln nachgewiesen. Die elektrischen Eigenschaften des Metall-Halbleiter-Kontaktes vom Materialsystem n-(Be,Zn,Mn)Se - n-(Be,Zn)Se wurden untersucht und optimiert, wobei spezifische Kontakwiderstände von bis zu ca. 2 10^-3 Ohm cm^2 bei 4 K erreicht wurden. Der Kontakt zwischen n-(Be,Zn,Mn)Se und n-(Be,Zn)Se ist unkritisch, weil der auftretende Leitungsband-Offset lediglich 40 meV beträgt. Die Spininjektionsmessungen wurden an Bauteilen mit einem adaptiertem Design der Transmission-Line Messungen ("TLM") durchgeführt. Bei diesem Materialsystem wurde am Gesamtbauteil ein positiver Magnetowiderstand von bis zu 25 % detektiert. Da sowohl der intrinsische Magnetowiderstand der einzelnen Halbleiterschichten negativ bzw. konstant war, als auch kein besonderes Magnetowiderstandsverhalten an der Metall-Halbleiter-Grenzschicht festgestellt werden konnte, kann dieser Magnetowiderstand als erster elektrischer Nachweis einer Spininjektion in einen Halbleiter angesehen werden. Die bei geringeren Temperaturen (300 mK und 2 K) bereits bei kleineren B-Feldern eintretende Sättigung des Widerstandes ist darüberhinaus mit der Temparaturabhängigkeit der Zeeman-Aufspaltung des DMS in Einklang zu bringen. Eine systematische Untersuchung dieses "Large Magnetoresistance" Effektes von der Dotierung der beteiligten Halbleiter zeigt hingegen ein komplexeres Bild auf. Es scheint ein optimales Dotierregime, sowohl für den DMS als auch für den NMS zu geben. Höhere oder geringere Dotierung reduzieren die relative Größe des positiven Magnetowiderstandes. Auch bei stark unterschiedlich dotierten DMS- und NMS-Schichten tritt eine (partielle) Unterdrückung des Magnetowiderstandes auf, in Übereinstimmung mit dem Modell. Dies lässt den Schluss zu, dass neben einer, der Spininjektion abträglichen, großen Differenz der Ladungsträgerdichten, evtl. auch die Bandstrukturen der beteiligten Halbleiter für die Spininjektionseffekte von Bedeutung ist. Um die elektrische Spininjektion auch in der technologisch wichtigen Familie der III/V Halbleiter etablieren zu können, wurde die elektrische Spininjektion von n-(Cd,Mn)Se in n-InAs untersucht. Basierend auf den Prozessschritten "Elektronenstrahlbelichtung" und "nasschemisches Ätzen" wurde eine Ätztechnologie entwickelt und optimiert, bei der die Ätzraten über die zuvor durchgeführte EBL kontrollierbar eingestellt werden können. Mesas mit Breiten von bis zu 12 nm konnten damit hergestellt werden. Untersuchungen zur elektrischen Spininjektion von (Cd,Mn)Se in InAs wurden mit Stromtransport senkrecht zur Schichtstruktur durchgeführt. Erste Messungen deuten bei niedrigen Magnetfeldern (B< 1,5 T) auf eine ähnliche Abhängigkeit des Gesamtwiderstand vom externen Feld hin wie im Materialsystem (Be,Zn,Mn)Se - (Be,Zn)Se. Allerdings tritt bei höheren Feldern ein stark negativer Magnetowiderstand des Gesamtbauteils auf, der qualitativ einen ähnlichen Verlauf zeigt wie die (Cd,Mn)Se-Schicht allein. Da die I/U Kennlininen des Gesamtbauteils Nichtlinearitäten aufweisen, können Tunneleffekte an einer oder mehrerer Barrieren eine wichtige Rolle spielen. Ob durch diese Tunneleffekte eine elektrische Spinijektion induziert wird, kann noch nicht abschließend geklärt werden. Wünschenswert ist daher eine weitere Charakterisierung der Einzelschichten. Ein weiteres Ziel ist, in Verbindung mit den oben angeführten technologischen Vorbereitungen, eine durch Nanostrukturierung ermöglichte, delokale Messung des Magnetowiderstand. Durch dieses Messverfahren könnten etwaige Tunnel-Effekte an der Metall-DMS Schicht zwanglos von denen an der DMS-NMS Grenzschicht getrennt werden. N2 - This work deals with electrical spin injection in the diffusive regime. Results published up to now can be satisfactorily explained by the model of Schmidt et. al. As a consequence of the model, n-doped diluted magnetic semiconductors (DMS) are expected to be particularly suitable as injectors for electrical spin injection into non magnetic semiconductors (NMS). Furthermore electrical spin injection from a DMS into a NMS was confirmed by optical means in 1999. The electrical properties of the metal-semiconductor contact of the n doped (Be,Zn,Mn)Se and (Be,Zn)Se were investigated and optimized. Specific contact resistance values down to approx. 2 10^{-3} Ohm cm^2 could be reached at 4 K. The resistance at the interface between n-(Be,Zn,Mn)Se and n-(Be,Zn)Se can be neglected due to a small conduction band offset of only 40 meV. For spin injection experiments, devices with an adapted tranmission line design were fabricated. A relative magnetoresistance of the device of up to +25 % was achieved. In contrast, the intrinsic magnetoresistance of the individual semiconductor layers was negative or constant. In addition, no magnetoresistance at the metal semiconductor interface could be observed. Hence, the magnetoresistance of the device can be regarded as the first electrical proof of spin injection into a semiconductor. At low temperatures (300 mK and 2 K) saturation of the magnetoesistance takes place at lower fields. This can be assigned to the temperature dependence of the Zeeman-splitting in the DMS. A systematic study of this "Large Magnetoresistance" effect yields a complex dependency on the doping level. It appears that an optimal doping regime exists, both for the DMS and the NMS layer. Departures from these values reduce the relative magnitude of the magnetoresistance. Moreover very different doping levels of the DMS and NMS Layers result in a (partial) suppression of the magnetoresistance, consistent with the model. Thus, not only large differences of the doping levels, but also the band structures of the involved layers may have an impact on electrical spin injection. In order to establish electrical spin injection in III/V semiconductors the material system n-(Cd,Mn)Se / n-InAs was investigated. A new etching technology was developed for InAs-(Al,Ga)Sb, combining the steps of "electron beam exposure" and "wet chemical etching". This combination leads to etch rates which can be reproducibly adjusted by prior electron beam exposure. Mesas with widths down to 12 nm were achieved. Experiments for electrical spin injection from (Cd,Mn)Se into InAs were performed with current direction perpendicular to the layers. First measurements up to moderate fields (B< 1,5 T) indicated a dependency of the resistance on the external field similiar to that of the material (Be,Zn,Mn)Se - (Be,Zn)Se. Indeed, at higher fields the device exhibits a large negative magnetoresistance comparable to the single (Cd,Mn)Se layer. The I/V curves of the device are nonlinear, so tunneling effects in one or several of the interfaces may play a major role. It is not clear yet if these effects induce an electrical spin injection. Hence, further electrical characterization of the involved layers are called for. Furthermore a non-local measurement of the magnetoresistance could help in distinguishing between tunneling effects at the metal semiconductor interface and those between DMS and NMS. KW - Zwei-Sechs-Halbleiter KW - Elektronenspin KW - Diffusionsverfahren KW - Spin-Injektion KW - Halbleiter KW - Magnetowiderstand KW - Spin-Polarisation KW - spin injection KW - semiconductor KW - magnetoresistance KW - spin polarization Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10911 ER - TY - THES A1 - Schumacher, Claus T1 - Herstellung und Charakterisierung von Nanostrukturen auf der Basis von II-VI-Materialien mittels der Schattenmaskentechnologie T1 - Fabrication and characterisation of nano structures based on II-VI-materials utilising the shadow mask technology N2 - Warum eigentlich Schattenmasken als neues alternatives Verfahren zur lateralen Strukturierung? Alle bislang üblichen Verfahren zur Herstellung lateral begrenzter Halbleiter-Kristalle strukturieren die zuvor epitaktisch flächig aufgewachsenen Schichten nachträglich. Hierdurch können Probleme entstehen. Etwa erzeugen nach einem nasschemischen Ätzprozess freistehende Quantentröge im Randbereich Oberflächenzustände, die zu nicht strahlender Rekombination führen können und daher die Lichtausbeute reduzieren. Der Prozess des erneuten Überwachsens solcher nachträglich geätzter Strukturen ist bislang noch nicht reproduzierbar. Weitere alternative Techniken, wie das Wachstum selbstorganisierter Quantenpunkte oder das it in-situ Spalten, bieten entweder noch keine befriedigende Kontrollmöglichkeit der Strukturgröße oder sind für eine industrielle Anwendung nur wenig praktikabel. Deshalb richtete sich der Blick auf das aus der III-V-Epitaxie bekannte Schattenmasken-Verfahren zur Herstellung makroskopischer sogenannter ,,nipi-Strukturen''. Diese zeigen den interessanten Effekt, dass sich die durch eine Schattenmaske wachsende Struktur in Wachstumsrichtung während des Wachstums von selbst zuspitzt. Die Größe der Masken-Apertur kann dadurch in einer Größenordnung bleiben, wie sie durch ein ultra-violett optisch lithographisches Verfahren hergestellt werden kann. Durch die Maske wächst dennoch, unterstützt von Schatten- und Selbstorganisationseffekten, ein Halbleiter-Kristall, der an seiner Spitze die Ausdehnung einer Nanostruktur hat. Im Rahmen dieser Arbeit gelang es erstmals mittels der Schattenmaskentechnologie eine ZnSe-Draht-Struktur herzustellen, deren Ausdehnung an der Spitze nur noch 25~nm beträgt. Da dieses Verfahren erstmals zur Herstellung von II-VI-Halbleiter-Schichten etabliert wurde, konnte auf keinerlei Vorarbeiten zurückgegriffen werden. Vor der Herstellung geeigneter Schattenmasken mussten zunächst geeignete Belichtungs-Masken für die optische Lithographie entworfen werden, bevor die Ätztechniken zur Herstellung der Schattenmasken selbst optimiert werden konnten. Am Ende der Schattenmaskenentwicklung stand ein Verfahren zur Präparation einer verlässlichen Startoberfläche für die anschließende II-VI-Epitaxie, ohne die ein reproduzierbares Wachstum durch die Schattenmaske nicht möglich ist. Nachdem die technologische Seite abgearbeitet war, mussten anhand geeigneter Epitaxieexperimente die Einflüsse durch die geänderten Wachstumsbedingungen erforscht werden. Insbesondere spielen beim Wachstum durch Schattenmasken Oberflächeneffekte wie Diffusion oder die Orientierung der Masken-Apertur bzgl. der Kristallrichtung eine wesentliche Rolle. Für die in dieser Arbeit verwendete Geometrie des Wachstums (Gruppe-II- und Gruppe-VI-Spezies werden aus bzgl. der Masken-Apertur spiegelbildlichen Raumwinkelbereichen angeboten) wurde herausgefunden, dass die Maskenöffnung entlang der [1-10]-Kristallrichtung orientiert sein sollte. Entlang dieser Richtung sind die Se-Dimere einer Se-reich rekonstruierten Oberfläche orientiert und somit verläuft die Vorzugsdiffusionsrichtung senkrecht zum Draht. Hierdurch können diffusionsgestützt schärfer definierte Flanken des Drahtes wachsen, als bei einer um 90° gedrehten Geometrie. Eigentlich soll nicht nur eine binäre Drahtstruktur entstehen, sondern es soll zum Beispiel ein ZnCdSe-Quantentrog in einen Draht aus einem geeigneten Barriere-Material eingebettet werden. Bei diesen Versuchen stellte sich anhand von Tieftemperatur-PL- und charakteristischen Röntgenphotonen-Spektren heraus, dass Cadmium in einem epitaktisch gewachsenen Draht stärker als andere Spezies auf der Wachstumsoberfläche diffundiert. Eine kontrollierte Deposition eines ZnCdSe-Quantentroges ist nicht möglich. Um Diffusionseffekte zu vermeiden kann statt eines ternären Troges ein binärer in eine nun quaternäre Barriere eingebettet werden. Dieser Ansatz wird bereits in einer parallel zu dieser Arbeit begonnenen Dissertation erfolgreich verfolgt. Bei der Etablierung eines neuen Verfahrens zur Herstellung von Halbleiter-Kristallen müssen auch Aussagen über die strukturellen Eigenschaften der gewachsenen Strukturen getroffen werden. Hierzu wurden die mittels eines ,,Lift-Off''-Prozesses nun freistehenden Drahtstrukturen einer Röntgenstrukturanalyse unterzogen. Die reziproken Gitterkarten zeigen bei senkrechter Orientierung der Beugungsebene relativ zum Draht, dass der Schichtreflex nicht auf der Relaxationsgeraden liegt. Bei einer rein plastischen Relaxation eines Halbleiter-Kristalls müsste dies jedoch für beide Orientierungen der Beugungsebene (senkrecht und parallel zum Draht) der Fall sein. Der Schichtreflex ist in Richtung des Substratreflexes verschoben. Der Netzebenenabstand ist somit also verkleinert. Eine mögliche Erklärung hierfür ist die zylinderförmige ,,Verbiegung'' der Atomebenen im Realraum und somit der Netzebenen im reziproken Raum. Die Überlegungen führen somit auf eine zusätzlich elastische anstelle auschließlich plastischen Relaxation des Kristalls. Um eine solche These erhärten zu können wurde auf der Basis der aus den REM- und AFM-Bildern ausgewerteten Geometrie der Drahtstrukturen ein atomares Modell eines verspannten Kristalls erstellt. Mittels eines Monte-Carlo-Algorithmus' kann dieses Modell seine eingeprägte Verspannungsenergie elastisch abbauen. Die Fouriertransformierte des Realraumbildes des elastisch relaxierten Drahtes lässt sich direkt mit den reziproken Gitterkarten vergleichen. Mittels dieser Simulation konnte die vertikale Verschiebung des Schichtreflexes unmittelbar den zylindrisch ,,verbogenen'' Kristallebenen zugeordnet werden. Ferner ermöglichen die Simulationen erstmalig die qualitative Interpretation der Beugungsmessungen an den Schattenmasken selbst. Die im Rahmen der Dissertation von H.R.~Ress vorgenommenen Beugungsmessungen an den Schattenmasken zeigen neben der vertikalen Verschiebung des AlGaAs-Schichtreflexes charakteristische diffuse Streifen um den Schichtreflex, die bislang unverstanden waren. Die Simulationen zeigen, dass diese Streifen erst bei der elastischen Relaxation des Drahtes durch die konvexe Wölbung der Drahtflanke entstehen. Diese diffusen Streifen lassen sich in den in dieser Arbeit gewachsenen Drähten aus II-VI-Halbleitern nicht unmittelbar nachweisen. Da die Schattenmasken bedingt durch das Herstellungsverfahren eine Rauigkeit der Schattenkanten von bis zu 150~nm aufweisen sind auch die Flanken der durch die Masken gewachsenen Strukturen stark aufgeraut. Deshalb streuen die den Draht begrenzenden Fassetten nicht kohärent und bieten entsprechend keine definierte Abbruchbedingung der Fouriertransformation. N2 - What is the motivation for the establishment of an alternative technique for lateral structuring? Till date, for definition of semiconductor nano structures, the established technology relies on the post-growth, ex-situ structuring of layer samples. The processes involved in this technology may cause a number of problems. For instance, wet chemical etching of quantum wires generate surface states which result in non radiative recombination of carriers and hence reduce the optical efficiency. Secondly, the process of overgrowth of such etched structures is not well controlled so far. Further alternative techniques like self organised growth of quantum dots or in-situ cleaved edge overgrowth either do not provide a satisfying size control or are too laborious for them to be industrially practicable. Thus, efforts were directed towards the use of shadow mask technique, a process well established for the fabrication of III-V n-i-p-i structures. These structures exhibit the interesting effect of an acuminating crystal during growth. A standard optical lithography process which achieves mask apertures down to 300~nm is sufficient: Driven by the effect of shadow and self organisation, the structure growing within the growth cavity has nano scale dimension at its tip. In the course of the work we succeeded, for the first time, to fabricate a ZnSe wire structure with a tip width of only 25nm. Since this technique was applied to the II-VI semiconductors for the first time, no relevant literature was available for the the preparatory work. Prior to the fabrication of suitable shadow masks, it is required to (a) design lithographic masks and (b) establish appropriate etching procedures. Additionally, the procedure requires the preparation of a reliable III-V surface for the subsequent II-VI growth. After successful implementation of the techniques, suitable experiments were developed which enabled the investigation of the growth conditions for the growth within a growth cavity. In particular, surface effects, like diffusion or the orientation of the mask aperture with respect to the symmetry directions of the crystal, play an considerable role. For the samples dicussed in this work, an alignment of the effusion cells was performed such that, group II and VI molecular beams impinged on the substrate at equal incident angles with respect to the surface normal. In this geometry, it was found that the highest lateral precision is achieved with mask apertures parallel to the [1-10] crystal direction. The selenium dimers are oriented along this direction and hence the main diffusion occures perpendicular to the wire. Hence the edges of the forming wire are more pronounced in this orientation. Originally, not only binary but also ternary quantum structures, for instance ZnCdSe quantum wells embedded into ZnSe barriers, were planned. Low temperature PL and EDAX experiments revealed that the cadmium diffusion coefficient is much larger than those of zinc and selenium. Therefore, a homogeneous cadmium distribution inside the ternary quantum well alloy, could not be achieved. To overcome this problem of segregation, a binary well can be embedded within a quaternary barrier. This approach was successfully pursued in a parallel endeavour. When a novel technique for fabrication of semiconductor structures is established, it is indespensable to provide evidence of high structural quality of the grown crystals. Therefore, the free standing wire structures were probed by high resolution x-ray diffraction analysis after the removal of the mask (lift-off process). The reciprocal space maps acquired in these experiments exhibit that the layer reflection does not lie on the line of relaxation only when the plane of diffraction is aligned perpendicular to the wire. Considering only plastic relaxation of the lattice, a deviation from the line of relaxation should occur for neither parallel nor perpendicular orientation. The layer reflection has moved towards the substrate reflection. The distance of lattice planes has therefore decreased. One possible explanation for this is a cylindrically shaped ''bending'' of atom planes in real space and consequentially of the lattice planes in reciprocal space. In conclusion, an additional elastic, instead of solely plastic relaxation, of the crystal has to be considered. To substantiate such a thesis, an atomic model was developed. The geometry of the modelled wire structures was choosen, based on the SEM and AFM images. The strain incorporated into the modelled crystal was relaxed by means of a Monte Carlo algorithm. The fourier transform of the real space image is related to the reciprocal space map directly. Based one this simulations, the vertically displacement of the layer reflection can be attributed to cylindrically bending of the lattice planes. Furthermore, these simulations enabled a qualitative interpretation of the diffractograms of the shadow masks themselves. In the course of this work, diffraction measurements were carried out on the III-V shadow masks by H.R. Ress. Apart from the vertical displacement of the AlGaAs layer reflection they were found to exhibit a characteristic cross-shaped diffuse reflection surrounding the layer reflection. This effect was not understood until now. The simulations clarified these features as due to a convex curvature of the wire's edges. Due to the low scattering volume of the II-VI wire structures fabricated in this work, these diffuse intensity is not observeable. Additionally, the fabrication technique itself brings in a roughness of the mask's shadow edges of roughly 150~nm, which in turn affects the roughness of wire structure. Hence the bounding facets of the wire do not scatter coherently and hence no defined termination condiction of the fourier transform is defined. KW - Zwei-Sechs-Halbleiter KW - Nanostruktur KW - Molekularstrahlepitaxie KW - Fernsehmaske KW - Schattenmaske KW - Halbleiter KW - MBE KW - Quantendraht KW - Nanostruktur KW - shadow mask KW - semiconductor KW - mbe KW - quantum wire KW - nano structure Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8754 ER - TY - THES A1 - Wagner, Joachim T1 - Optische Charakterisierung von II-VI-Halbleiter-Oberflächen in Kombination mit First-Principles-Rechnungen T1 - Optical Characterisation of II-VI Semiconductor Surfaces in Combination with First Principles Calculations N2 - In dieser Arbeit sind Methoden der optischen Spektroskopie, insbesondere die Ramanspektroskopie (RS) und die Reflexions-Anisotropie-Spektroskopie (RAS), angewandt worden, um die Oberflächen von II-VI Halbleitern zu charakterisieren. Für die experimentellen Untersuchungen wurde eine eigens für diesen Zweck entwickelte UHV-Optikkammer benutzt. Diese einzigartige Möglichkeit, II-VI Halbleiterproben aus einer state-of-the-art MBE-Anlage mit einer UHV-Optikanlage zu kombinieren hat gezeigt, dass optische Spektroskopie sehr gut dafür geeignet ist, strukturelle Eigenschaften, z.B. Rekonstruktionen, und chemische Bindungen an Oberflächen, sowie die damit verbundene Schwingungsdynamik zu analysieren. Neben den experimentellen Arbeiten wurden u. a. first principles Rechnungen mittels der Dichtefunktionaltheorie im Rahmen der Lokalen-Dichte-Approximation durchgeführt. Damit konnten für die Oberflächen einerseits ihre geometrischen Eigenschaften, d.h die atomare Anordnung der Oberflächenatome, und andererseits auch ihre Dynamik, d.h. die Schwingungsfrequenzen und die Auslenkungsmuster der an der Rekonstruktion beteiligten Atome der Oberfläche und der oberflächennahen Schichten, im Rahmen der Frozen-Phonon-Näherung bestimmt werden. Die Kombination von experimenteller und theoretischer Vibrationsbestimmung von Oberflächen bietet also, neben den klassischen Oberflächen-Analysemethoden wie RHEED, LEED, XPS, Auger und SXRD, ein zusätzliches Werkzeug zur Charakterisierung von Oberflächen. Da die Frozen-Phonon-Näherung nicht elementarer Bestandteil des hier benutzten DFT-Programmcodes fhi96md ist, wurde diese Erweiterung im Rahmen dieser Arbeit durchgeführt. Die theoretische Berechnung von Schwingungsfrequenzen mit dynamischen Matrizen ist in einem Unterkapitel dargestellt. Die so berechneten Schwingungsfrequenzen für verschiedene Oberflächen-Rekonstruktionen konnten erfolgreich am Beispiel der reinen BeTe(100)-Oberfläche mit den experimentell mit der UHV-Ramanspektroskopie beobachteten Frequenzen verglichen werden. So gelang erstmalig die optische identifizierung von rekonstruktionsinduzierten Eigenschwingungen einer Oberfläche. Nach detaillierter Kenntnis der BeTe(100)-Oberfläche wurde die Ramanspektroskopie als Sonde benutzt, um die Entwicklung der BeTe-Oberfläche bei unterschiedlichen Behandlungen (Modifikation) zu verfolgen. Dabei dienten die früheren Ergebnisse als Referenzpunkte, um die modifizierten Spektren zu erklären. Zusätzlich wurde ein Konzept zur Passivierung der Te-reichen BeTe(100)-Oberfläche entwickelt, um diese Proben ohne einen technisch aufwendigen UHV-Transportbehälter über grössere Entfernungen transportieren zu können (z.B. zu Experimenten an einem Synchrotron). Mit der RAS wurden auch die Oberflächen von weiteren Gruppe II-Telluriden, nämlich die Te-reiche (2x1) CdTe(100)-Oberfläche, die Te-reiche (2x1) MnTe(100)-Oberfläche und die Hg-reiche c(2x2) HgTe(100)-Oberfläche untersucht. Schließlich wurde der Wachstumsstart von CdSe auf der BeTe(100)-Oberfläche im Bereich weniger Monolagen (1-5 ML) CdSe analysiert, wobei die hohe Empfindlichkeit der Ramanspektroskopie bereits den Nachweis einer Monolage CdSe erlaubte. N2 - In this thesis optical spectroscopy, especially Raman spectroscopy (RS) and reflection anisotropy spectroscopy (RAS), was used for characterisation of II-VI-semiconductor surfaces. For the experimental studies a specially designed UHV-optical chamber was applied. The unique combination of a state of the art molecular beam epitaxy (MBE) facility with this UHV-optical chamber distinctly proved that optical spectroscopy is a powerfull tool for analyzing the structural properties (e.g. reconstructions) and the chemical bindings at a surface, as well as its dynamical properties. Beside the experimental activities, first principles calculations within the framework of density functional theory (DFT) and local density approximation (LDA) were performed. Therefore the geometrical, statical properties (e.g. atomic positions) of the surface and near-surface atoms could be determined. Additionally, their dynamical properties (e.g. displacement patterns and vibrational frequencies) were calculated with the frozen phonon approximation. This combination of experimental and theoretical determination of the surface dynamics offers an additional tool for surface characterisation beside the classical methods for surface analysis like RHEED, LEED, XPS, Auger and SXRD. Because frozen phonon calculations do not constitute an integral part of the available DFT programm code fhi96md, the extension was performed as a part of this thesis. The theoretical calculation of vibration frequencies with dynamical matrices is described in one of the subsections. The frequencies calculated in this way for different surface reconstructions were successfully compared with the experimentally observed frequencies in the case of pure BeTe(100) surfaces. Thus, the first optical identification of reconstruction-induced surface eigenvibration modes was realized. After this detailed knowledge of the BeTe(100) surface Raman spectroscopy was used as a probe to track the changes of the BeTe surface under different modifications. In doing so the previous result on the pure BeTe surfaces served as references to explain the modified spectra. Besides a concept for passivation of the tellurium rich BeTe(100) surface was developed to ease the transport to far away laboratories without using extensive UHV facilities. Additionally the surfaces of further group II-tellurides (e.g. Te-rich (2x1) CdTe(100), Te-rich (2x1) MnTe(100) and Hg-rich c(2x2) HgTe) has been investigated with the RAS. Finally the start of the CdSe growth on the BeTe(100) surface was analyzed in the region of 1-5 monolayers of CdSe. Within these experiments a high sensitivity for detecting even one monolayer of CdSe was achieved by Raman spectroscopy. KW - Zwei-Sechs-Halbleiter KW - Halbleiteroberfläche KW - Optische Eigenschaft KW - optisch KW - spektroskopie KW - Halbleiter KW - Oberfläche KW - DFT KW - optical KW - spectroscopy KW - semiconductor KW - surface KW - DFT Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8722 ER -