TY - THES A1 - Pabel, Christian Thomas T1 - Fraktale Charakterisierung pharmazeutischer Schüttgutoberflächen T1 - Fractal characterization of pharmaceutical bulk solid surfaces N2 - Schüttgüter in Form von Pulvern oder Granulaten stellen sowohl eigenständige Arzneiformen als auch häufige Zwischenprodukte bei der Arzneimittelherstellung dar. Um die Einheitlichkeit der Dosierung zu gewährleisten, ist die Fließfähigkeit als eines der zentralen Qualitätsmerkmale anzusehen. In der vorliegenden Arbeit wurde die Veränderung der fraktalen Dimension D der Partikeloberflächen in binären Mischungen von α-Lactose-Monohydrat (GranuLac® 200) und hydrophilem hochdispersem Sili-ciumdioxid (Aerosil® 200) in Abhängigkeit von der Mischzeit untersucht. Hierbei kamen sowohl die Ras-terkraftmikroskopie als auch verschiedene Adsorptionsmethoden zur Anwendung. Ziel war es, die prin-zipielle Durchführbarkeit der beschriebenen Techniken sowie deren Anwendbarkeit auf das vorliegende Modellsystem zu prüfen und die ggf. bestehende Korrelation zwischen D und den Ergebnissen der Zug-spannungstests aufzuzeigen. N2 - Bulk solids like powders or granulates are dosage forms of their own as well as regular intermediates in pharmaceutical production. Flowability is considered a key prerequisite for uniformity of dosage. In the survey reported here the effect of blending time on particle surface fractal dimension D of binary mixtures of α-lactose monohydrate (GranuLac® 200) and hydrophilic highly dispersible silicon dioxide (Aerosil® 200) was investigated by use of atomic force microscopy as well as several adsorption tech-niques. Aim of the study was to test the described methods for applicability to the current model and to identify the correlation between D and the tensile strength, if any. KW - Schüttgut KW - Teilchen KW - Festkörperoberfläche KW - Fraktale Dimension KW - bulk solid KW - particle KW - particle surface KW - fractal dimension Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66562 ER - TY - THES A1 - Jarre, Gerald T1 - Funktionalisierte Nanodiamanten - Diels-Alder-Reaktion auf Nanodiamantpartikeln T1 - Functionalized Nanodiamonds - Diels Alder reaction on nanodiamond particles N2 - Für Diamantpartikel basiert diese Funktionalisierungschemie auf den bereits vorhanden Oberflächengruppen, die durch die Synthese und Reinigung entstanden sind. Die stabilste Anbindung wäre eine C-C-Verknüpfung der Diamantatome auf der Oberfläche mit den organischen Reagenzien. Um diese Verknüpfung zu erreichen, wurde die Oberfläche mittels Diels-Alder-Reaktion funktionalisiert. Grundvoraussetzung hierfür ist eine Oberfläche, die über eine ausreichende Menge an C=C-Doppelbindungen verfügt. Dies wurde durch eine thermische Behandlung erreicht. Die gewonnenen Ergebnisse zeigen, dass ab einer Behandlungstemperatur von 750 °C keine funktionellen Gruppen durch die eingesetzten Analysemethoden mehr nachgewiesen werden können. Die Elementaranalyse der einzelnen Proben zeigt einen deutlichen Anstieg des Kohlenstoffgehaltes. Nach erfolgreicher thermischer Behandlung des Diamanten wurde durch die Verwendung von Cyclopentadien und Anthracen als Dien gezeigt, dass eine Funktionalisierung über eine Diels-Alder-Reaktion generell möglich ist. Daher wurde als alternatives Dien ein o-Chinodimethan eingesetzt. Hierzu wurde eine systematische Untersuchung der Umsetzung der unterschiedlichen thermisch behandelten Proben mit α,α’-Dibrom-o-xylol durchgeführt. Hierdurch wurde gezeigt, dass der Ausgangsdiamant bei mindestens 750 °C behandelt werden muss, um eine messbare Oberflächenbelegung zu erhalten. Im Anschluss wurde die Funktionalisierbarkeit der eingeführten Arylgruppen überprüft. Durch die Einführung unterschiedlicher funktioneller Gruppen ist es dann möglich, Moleküle für spezielle Anwendungen anzubinden. Durch die Anwendung der klassischen Aromatenchemie war es möglich, die aromatischen Oberflächen zu nitrieren und sulfonieren. Die Sulfonsäuregruppe konnte partiell zum Thiol reduziert werden. Durch Umsetzung dieser Thiolgruppen war es möglich, einen mannosemodifizierten sowie einen farbstoffmodifizierten Diamanten herzustellen. Da die nachträgliche Einführung von Carboxylgruppen mit hohem synthetischem Aufwand verbunden ist, wurde alternativ ein carboxyltragender Vorläufer mit dem thermisch behandelten Diamant umgesetzt. Hierbei wurde eine Oberflächenbelegung von ca. 0.8 mmol g-1 erreicht (Ausgangsdiamant thermisch behandelt bei 750 °C). Im Anschluss wurde die Säuregruppe mit einem einfach geschützten Diamin weiterfunktionalisiert. Hierbei wurden unterschiedliche Methoden zur Amidbildung getestet. Als effektivste Methode stellte sich die Synthese über ein Säurechlorid heraus. Infolgedessen war eine weitgehende Umsetzung (ca. 94 - 88 %) der Säuregruppe möglich. Eine weitere wichtige funktionelle Gruppe für die Anbindung größerer Einheiten stellen die Amine dar. Diese lassen sich einfach darstellen, z. B. durch Reduktion von Cyanogruppen. Daher wurde 2,3-Bis-(brommethyl)-5,6-dicyanopyrazin als Edukt für die Funktionalisierung eingesetzt. Nach anschließender Reduktion der Cyanogruppen wurden primäre Amine erhalten. Die so erzeugte Aminogruppe wurde mit Biotin weiter funktionalisiert. Die bisher eingesetzten o-Chinodimethane sind ausschließlich durch 1,4-Eliminierung zugänglich. Eine sinnvolle Alternative zu diesem Vorläufer ist die Verwendung eines Cyclobutenderivates. Der Vorteil liegt in einer einfacheren Reinigung des Produktdiamanten. Als Testverbindung wurde 2,4-Bis-(methylsulfonyl)-5,6-dihydro-cyclobuta-[d]-pyrimidin verwendet. Nach erfolgreicher Umsetzung mit dem Diamanten wurden die Thioethergruppen in Sulfone überführt und in 2-Position wurde das Sulfon gegen eine Aminogruppe ausgetauscht. Neben den durchgeführten Funktionalisierungsreaktionen wurde eine nasschemische Nachweismethode zur Quantifizierung von primären Aminen entwickelt. Ein Vorteil des Verfahrens ist, dass der Nachweis auf einfache Weise durchführbar ist und nur 1 – 2 mg Diamantprobe nötig sind. Die gewonnen Ergebnisse zeigen, dass durch den Nachweis verlässliche Angaben über die genaue Aminmenge erhalten werden. N2 - For nanodiamond particles the functionalisation chemistry is based on the already existing surface groups, which were introduced during synthesis and cleaning. The most stable grafting would be a C-C coupling of the diamond atoms on the surface with organic reagents. To achieve this linkage the surface is func-tionalized via Diels-Alder reaction. Basic prerequisite for this is a surface which has a sufficient amount of C=C double bonds. This was achieved by thermal treatment. The obtained results show, that above a treatment temperature of 750 °C no functional groups can be detected anymore by the used analytic methods. The elemental analysis of each sample shows a significant increase in carbon content. This is also an indication of a successful removal of most oxygen containing surface groups. After successful thermal treatment of the diamond it was shown by the usage of cyclopentadiene and anthracene, that in general a functionalization via Diels-Alder reaction is possible. Because of this as an alternative diene an o-quinodimethane was applied. For this purpose a systematic study of the reaction of the different thermally annealed diamond samples with α,α’-di-bromo-o-xylene was performed. This has shown that pristine diamond has to be treated at least at 750 °C to obtain a measurable surface coverage. Subsequently, the functionalization of the introduced aryl groups was investigated. By the introduction of different functional groups it is possible to bind molecules for specific applications. By applying classical aromatic chemistry, it was possible to nitrate and sulfonate the aromatic moieties. The sulfonic acid was partially reduced to a thiol. By reacting the thiol group it was possible to synthesize a mannose and dye modified nanodiamond Because the subsequent introduction of carboxylic groups is connected with a high synthetic effort an alternative carboxylic group carrying precursor was reacted with thermally annealed diamond. A surface coverage of 0.8 mmol g-1 was achieved (pristine diamond annealed at 750 °C). Subsequently, the carboxylic group was modified by introducing a Boc-protected diamine. Different methods for amide formation have been tested. As the most effective method the reaction using an acid chloride as an intermediate was identified. Using this coupling method, an almost complete conversion (about 94 – 88 %) of the acid group was possible. Another important functional group for the grafting of larger moities are the amines. They can easily be formed by e. g. the reduction a cyano group. Here 2,3-bis-(bromomethyl)-5,6-dicyanopyrazine was used as a precursor for the functionalization of the diamond. After subsequent reduction of the cyano groups, primary amines were obtained. The generated amino group have been reacted with biotin. So far the used o-quinodimethanes were solely accessible by 1,4-elimination. A reasonable alternative for these precursors is the use of a cyclobutene derivative. The advantage is an easier purification of the product. As a test compound 2,4-bis(methylsulfonyl)-5,6-dihydrocyclobuta-[d]-pyrimidine was used. After reaction with the diamond the thioether group was transformed into sulfones and in the 2-position the sulfone was replaced by an amino group. In addition to the functionalization reactions carried out in this work, a wet chemical method was developed for the quantification of primary amines on the diamond surface. An advantage of the developed method is that it can be easily carried out and only 1 - 2 mg of the diamond sample is needed. The obtained results show that through this detection method a reliable value of the exact amount of amine groups can be made. KW - Funktionalisierung KW - Festkörperoberfläche KW - Diels-Alder-Reaktion KW - Chinodimethane KW - Synthesediamant KW - Nanodiamant KW - Nanodiamond KW - Functionalisation KW - Diels-Alder reaction KW - o-Quinodimethane Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56229 ER -