TY - THES A1 - Somorowsky, Ferdinand T1 - Entwicklung von nanoporösen Gläsern mit kontrollierten Sorptionseigenschaften zur Verbesserung des Innenraumklimas T1 - Development of nanoporous glasses with controlled sorption characteristics to improve the climate of living rooms N2 - Im Rahmen der vorliegenden Arbeit wurde die prinzipielle Eignung von porösen Vycor®-Gläsern als Feuchteregulierungsmaterial für den Einsatz im Baubereich erarbeitet. Im Speziellen wurden die Einflüsse der Herstellungsparameter auf die Glaseigenschaften entwickelt und optimiert. Die porösen Glasflakes wurden in angepasste Putzsysteme implementiert und praxisnahe Untersuchungen der Wirksamkeit durchgeführt. Unterstützt wurden die Ergebnisse durch auf Messwerten basierte Simulationen des Gebäudeklimas, welche auch die Auswirkungen bei verschiedenen klimatischen Bedingungen berücksichtigen. Der verwendete Prozess zur Herstellung der porösen Gläser basiert auf dem 1933 patentierten Vycor®-Verfahren [HOO34][HOO38]. Durch eine Temperaturbehandlung entmischt das homogene Natrium-Borosilicatglas in zwei perkolierende, interpenetrierende Phasen. Diese weisen deutlich unterschiedliche chemische Beständigkeiten auf. Durch Auflösen der instabileren Phase verbleibt ein poröses, fast reines Siliciumdioxidgefüge, dessen Struktur und Eigenschaften durch die Wahl der Prozessparameter eingestellt werden kann. Erstmals konnte gezeigt werden, dass poröse Vycor®-Gläser in der Lage sind, Wasser bei Raumtemperatur reversibel aufzunehmen, im Porensystem zu speichern und wieder abzugeben. Basierend auf dieser unerlässlichen Eigenschaft, konnten die Vycor®-Gläser durch eine Optimierung und ein besseres Verständnis der Herstellungsparameter hin zu einem Material mit wirklichen Feuchteregulierungseigenschaften qualifiziert werden. Im ersten Teil der vorliegenden Arbeit (Kapitel 4.1 und 4.2) wurde der Einfluss der strukturbestimmenden Parameter Glaszusammensetzung, Partikelgröße bzw. -form und Entmischungsbedingungen auf das Sorptionsverhalten von Wasser dargestellt. Um die Wasseraufnahme und -abgabe sowie das Zusammenspiel (Zyklisierbarkeit) bei unterschiedlichen Luftfeuchtigkeiten zu untersuchen, wurde in einem Klimaschrank ein realitätsnahes Feuchte- und Temperaturprofil generiert. Hiermit konnte die Zyklisierbarkeit der porösen Gläser in Abhängigkeit der Glaseigenschaften beobachtet werden. Ergänzt wurde die Charakterisierung durch Stickstoffsorptionsuntersuchungen und REM-Aufnahmen. Bei der Glaszusammensetzung wurde der Einfluss des Siliciumdioxid-Anteils und des Boroxid zu Natriumoxid Verhältnisses auf das finale poröse Glas betrachtet. Es zeigte sich, dass Gläser mit einem geringeren SiO2 Anteil zu Gläsern mit einer höheren Porosität, einer höheren spezifischen Oberfläche und als Folge daraus zu einer besseren Zyklisierbarkeit führen. Die praktische Einsatzfähigkeit wird allerdings von einer ungenügenden mechanischen Beständigkeit von Gläsern mit Siliciumdioxidgehalten unterhalb von 50 MA% begrenzt. Das B2O3/Na2O-Verhältnis wirkt sich vor allem auf den Grad des Entmischungsverlaufs und damit auf die sich bildende interpenetrierende Struktur aus. Erkennbar ist dies an der zum Boroxidanteil indirekt proportionalen Transformationstemperatur. Dies zeigt sich ebenfalls bei den Zyklisierungsversuchen, bei denen sich die Wasseraufnahme bzw. -abgabe bei gegebener Temperatur und unterschiedlichem B2O3/Na2O-Verhältnis deutlich unterscheidet. Anhand der entsprechenden Stickstoffsorptionsuntersuchungen konnte gezeigt werden, dass das Reaktionsvermögen eines porösen Glases auf einen Temperatur- und Feuchtezyklus, ein Zusammenspiel aus passendem Porendurchmesser und hoher spezifischer Oberfläche ist. Einen besonderen Aspekt der vorliegenden Arbeit stellt die Untersuchung von Glasflakes, flache Plättchen mit Dicken von einigen µm und Durchmessern von bis zu 1000 µm, dar. Diese können z. B. mittels eines Rotationsflakers hergestellt werden. Es konnte gezeigt werden, dass die mit den Flakes versehenen Wandanstriche nicht nur bessere Verarbeitungseigenschaften aufweisen, sondern auch im Vergleich zu annähernd isotropen Partikeln signifikant verbesserte Sorptionseigenschaften besitzen. Die Ausbildung der Porengröße und damit der spezifischen Oberfläche verläuft hauptsächlich über den einstellbaren thermischen Entmischungsvorgang. Um die optimalen Parameter für die Feuchtigkeitsaufnahme und -abgabe zu finden, wurde in dieser Arbeit neben der Plateautemperatur auch die Entmischungsdauer variiert. Oberhalb von ca. 520 °C ist die charakteristische Phasenseparation energetisch begünstigt. Diese verstärkt sich mit steigender Temperatur, wodurch größere Entmischungsbezirke entstehen. Oberhalb von ca. 650 °C kommt es zum Zusammensintern der Glasflakes, sodass deren ursprüngliche Geometrie zerstört wird. Für Untersuchungen oberhalb dieser Temperaturen muss also das Rohglas entmischt und erst im nachfolgenden Prozess zu Pulver aufgemahlen werden. Glasflakes sind durch diesen Verarbeitungsprozess jedoch nicht mehr herstellbar. Ein entscheidendes neues Ergebnis dieser Arbeit ist, dass die Porengröße innerhalb dieses Temperaturbereiches durch Anpassung der Entmischungstemperatur annähernd nanometer-genau eingestellt werden kann. Dies zeigt auch den großen Vorteil poröser Vycor®-Gläser im Vergleich zu anderen porösen Materialien. Für die Feuchteregulierung erwies sich ein Porendurchmesser von 3,8 nm, welcher durch eine Entmischungstemperatur von 533 °C generiert wird, als optimal. Die Dauer der Entmischung hat vor allem einen Einfluss auf den Fortschritt des Porenwachstums, nicht jedoch auf die Porengröße selbst. Nach ca. 30 Minuten kann das Entstehen der Poren erstmals eindeutig nachgewiesen werden. Der Entmischungsprozess ist nach ca. 24 Stunden abgeschlossen. Eine Verlängerung der Entmischungszeit hat keine weitere Veränderung der Porenstruktur zur Folge. In Kombination mit den Ergebnissen der Untersuchungen zum Einfluss des B2O3/Na2O-Verhältnisses konnte gezeigt werden, dass durch die Wahl der passenden Entmischungstemperatur die gewünschte Porengröße, in weiten Bereichen unabhängig vom B2O3/Na2O-Verhältnis, gezielt eingestellt werden kann. Im zweiten Teil der Arbeit wurde die Auslaugung hinsichtlich technischer Funktionalität und Umweltfreundlichkeit optimiert. Hierbei konnte gezeigt werden, dass neben Schwefelsäure auch Salzsäure zur vollständigen Auslaugung verwendet werden kann. Salzsäure kann im Gegensatz zu Schwefelsäure deutlich einfacher wieder aufgearbeitet werden (geringere Temperatur und Druck im Falle einer destillativen Aufarbeitung), was für die wirtschaftliche Anwendung von hoher Bedeutung ist. Weiterhin wurde die Konzentration der Säure verringert. Hierbei konnten bis zu einer Verdünnung auf 0,75 molare Salzsäure noch poröse Gläser mit vergleichbaren Zyklisierungswerten erhalten werden. Erst bei weiterer Verdünnung wurden die entmischten Glasflakes unvollständig ausgelaugt. Ein weiterer Einfluss der verwendeten Säureart oder der Konzentration auf die Porenstruktur bzw. die Porengröße konnte nicht gefunden werden. Wie in der Literatur beschrieben, wurde die Auslaugung der entmischten Gläser zunächst bei hohen Temperaturen oberhalb von 95 °C durchgeführt, sodass dieser Teilschritt viel Energie verbraucht [JAS01]. Um den Prozess ressourcenschonender aufzustellen, wurde im Kapitel 4.3 untersucht, welche Temperatur zwingend benötigt wird. Hierbei wurden die Temperatur und die Säurekonzentration variiert. Diese Parameter verändern den Anteil der Poren, jedoch nicht die Porengröße. Durch eine geringere Temperatur und geringere Säurekonzentrationen nimmt die Porosität ab. Eine Verlängerung der Auslaugedauer auf drei Stunden verbessert den Grad der Auslaugung erheblich. Da die Auslaugung bei 0,40 molarer Salzsäure nicht vollständig verläuft, wurde bei dieser Konzentration die Auslaugedauer nochmals einzeln betrachtet. Hierbei bestätigte sich, dass eine längere Auslaugung den Anteil der in der Entmischung eingestellten Poren vergrößert und auch die Zyklisierbarkeit (Massenhub) zunimmt. Die Werte von den mit 1,5 molarer Salzsäure ausgelaugten Gläsern können, trotz einer Dauer von bis zu acht Stunden, jedoch nicht erreicht werden. Eine alternative Möglichkeit um die Auslaugung ressourcenschonender zu gestalten, wurde mit dem neuen Ansatz die Synthese unter hydrothermischen Bedingungen durchzuführen, entwickelt. Hierbei wurden die entmischten Gläser entweder mit verdünnter Säure (0,75 mol/l HCl) oder mit Wasser in einem Autoklaven bei Temperaturen von 100 °C bis 200 °C, einem Reaktionsdruck von bis zu 30 bar und für bis zu 20 Stunden behandelt. Im Fall der Salzsäure verursachen alle drei Parameter eine Veränderung der Porenstruktur. In der Porengrößenbetrachtung mittels Stickstoffsorption erkennt man einen zweiten Peak bei größerem Durchmesser, wobei der ursprüngliche Peak abnimmt. Dies deutet auf ein Auflösen der ursprünglichen Porenwände hin. Die Zunahme des Porenvolumens und die Abnahme der spezifischen Oberfläche bestätigt diese Annahme. Da die resultierende Porenstruktur und die spezifische Oberfläche stark verändert werden, ist diese hydrothermale Methode zur Fertigung von Glasflakes für die Anwendung als Feuchtespeichermaterial nicht geeignet. Für andere Anwendungsfelder (siehe Seite 85) könnte diese Möglichkeit dennoch sehr interessant sein, da so leicht ein bimodales Porensystem hergestellt werden kann. Das Kapitel „Variation der Auslaugebedingungen“ wird mit Untersuchungen zur Wiederverwertbarkeit von Auslaugemedium und Borsäure abgeschlossen. Hierzu wird die gelöste Borsäure aus dem Auslaugemedium bei Raumtemperatur ausgefällt. Eine anschließende destillative Aufreinigung kann zu einem nahezu vollständigen Recycling, sowohl des Auslaugemediums als auch der Borsäure, führen. Neben dem Einfluss der Glasherstellung und der Herstellungsparameter auf die Wasserauf- und -abgabefähigkeit der porösen Gläser, wurden auch die Parameter der Klimaprofile (Raumtemperaturschwankungen, Änderung der Feuchtigkeit) genauer betrachtet. Die Sorption hängt stark von der Temperatur ab. Die Wasserabgabe wird durch eine höhere Temperatur (50 °C) erhöht und beschleunigt. Dieser Effekt zeigt sich auch bei der Zyklisierung. Der Massenhub beträgt bei 50 °C 12,1 MA%, bei 20 °C nur noch 3,3 MA% bei identischem Feuchte- und Zeitprofil. Die Kinetik der Wasseraufnahme und -abgabe wurde anhand von Klimaprofilen mit unterschiedlichen Änderungsraten untersucht. Hierbei fand die Feuchteänderung von 30 % auf 90 % innerhalb von einer Stunde, zwei Stunden und vier Stunden statt. Untersucht wurden die für den Einsatz als Feuchteregulierungsmaterial optimierten Glasflakes sowie Flakes mit größeren und kleineren Porendurchmessern. Bei allen Proben findet die Aufnahme deutlich schneller statt als die Desorption. Ein Grund hierfür ist der Flaschenhalsporeneffekt (siehe Seite 37). Des Weiteren ist bei den optimierten Glasflakes die Steigung der Massenänderung, unabhängig von der Feuchteänderungsrate, immer am größten. Diese Gläser sprechen also am direktesten auf Änderungen der Luftfeuchtigkeit an und es bestätigt sich, dass die Einstellung der richtigen Porengröße entscheidend ist. Dies konnte im Rahmen der vorliegenden Arbeit realisiert werden. Darüber hinaus ermöglichen die Ergebnisse der Experimente zur Sorptionskinetik einen umfassenderen Blick auf die Sorption und dabei insbesondere auf die Poreneigenschaften und auf die Sorptionsvorgeschichte. Ebenfalls wurde die Alterung der Sorptionsfähigkeit untersucht. Bei bis zu 20 Wiederholungszyklen konnte kein negativer Effekt beobachtet werden. Die Wasseraufnahme und -abgabe hat neben dem feuchtigkeitsregulierenden auch eine energetische Auswirkung auf den Energiehaushalt in einem Gebäude. Da bei jeder Sorption Energie verbraucht bzw. frei wird, kann ein wärmeregulierender Effekt auftreten. Um diesen Effekt genauer zu quantifizieren, wurde die Desorption von konditionierten Gläsern mittels Differenzkalorimetrie untersucht. Der Energiebetrag kann sowohl bei den Glasflakes als auch bei den mit Flakes versetzten Putzen detektiert werden und korreliert mit der gespeicherten Wassermenge. Auch wenn die Einzelenergiemenge pro Vorgang sehr gering ist, so summiert sich diese bei den vielen Vorgängen über das Jahr hinweg zu einem erheblichen Gesamtenergiebetrag (ca. 6 % des Energieverbrauchs in einem Wohnhaus), welcher eine interessante Ergänzung zur Feuchtigkeitsregulierung darstellen kann. Mit den für die Wasserauf- und -abgabe optimierten porösen Gläsern wurden Wandanstriche (Putze und Farben) hergestellt (siehe Seite 112) und diese auf ihre Eignung als Feuchteregulierungsmaterial untersucht. Im Vergleich mit den Standardputzen haben die Klimaputze mit dem Zusatz von Glasflakes aktuell noch geringere mechanische Kennwerte, insbesondere Druckfestigkeit und Dynamisches E-Modul. Dies ist vor allem auf das lockere Gefüge durch die Beimischung der Glasflakes zurückzuführen. Die Beimengung führt umgekehrt aber zu einer Steigerung der Porosität und der spezifischen Oberfläche. REM-Aufnahmen belegen dies. Durch Optimierung der Putzzusammensetzung gibt es jedoch eine gute Chance, die mechanischen Eigenschaften der Klimaputze noch zu verbessern. Um den Feuchteregulierungseffekt besser einschätzen zu können, wurde in Zyklisierungsversuchen der Vycor®-Putz mit kommerziellen Putzen mit und ohne zusätzliche Regulierungsfunktionalität und anderen Feuchteregulierungsmaterialien, wie Zeolithen und Holzfaserplatten, verglichen. Dabei zeigte der Putz mit den optimierten Glasflakes eine deutlich höhere Wasseraufnahmekapazität, ein direkteres Ansprechverhalten auf Feuchtigkeitsschwankungen und einen sehr viel höheren Massenhub. Erkennbar wird dies vor allem beim realitätsnahen Vergleich von zwei Wandstücken. Hierfür wurden Trägerplatten als Basis sowohl mit einem Standardputz als auch mit dem Vycor®-Klimaputz aufgebaut. Das Vycor®-Wandsystem konnte den Feuchtigkeitssprung im Klimaschrank von 72 % r. L. auf 40 % r. L. vollständig abpuffern. Der Massenhub betrug mit ca. 13 g Wasser pro m2 Wandfläche sogar das Dreifache der eigentlich zu bindenden Wassermenge. In Zusammenarbeit mit der Universität Bayreuth konnten die im Labor gewonnen Ergebnisse mittels Simulationsberechnungen untermauert werden. Mit dem Software-Tool WUFI (Wärme und Feuchte instationär) konnte sowohl eine Regulierung der jahreszeitlichen Feuchteschwankungen als auch ein positiver Effekt auf das Wohlbefinden der Bewohner gezeigt werden. Durch die Simulationen, deren Eingangswerte auf realen Messwerten basieren, konnte nachgewiesen werden, dass sowohl poröse Gläser als auch die mit porösen Glasflakes versetzen Baustoffe einen deutlich messbaren positiven Effekt auf das Raumklima haben. Der direkte Nachweis, also ein positiver Effekt des porösen Glases auf das Raumklima, wurde bisher nur in Simulationen modelliert und ist unter realen Versuchsbedingungen noch zu prüfen. Hierzu müsste ein Testraum aufgebaut und über längere Zeit vermessen werden. Im Rahmen dieser Arbeit wurde an Hand der voran beschriebenen Ergebnisse das poröse Glassystem der Vycor®-Gläser hinsichtlich seiner kontrollierten Sorptionseigenschaften für eine Anwendung als Feuchteregulierungsmaterial entwickelt. Im Zuge dessen wurde ein besseres Verständnis für die Abläufe und Mechanismen der auftretenden spinodalen Entmischung erarbeitet. Weiterhin konnten die Zusammenhänge zwischen den Poreneigenschaften und der Sorption von Wasser tiefgehender verstanden werden, sodass wichtige Erkenntnisse gewonnen werden konnten, um poröses Vycor®-Glas als Modellsystem für Entmischung und Sorption weiter zu etablieren. N2 - In the present work, the principles of the application of porous Vycor®-glass as a humidity regulation material for civil engineering applications were investigated. First, the influences of production process parameters on the glass properties were developed and optimized. Then, the adapted porous glass flakes were implemented in customized plaster systems. These plasters were characterized in application-oriented studies. The results were supported by simulations of the indoor climate, based on measured data. Within these simulations the impact of different climatic conditions were regarded. The production process of the porous glasses is based on the 1933 patented Vycor®-method [HOO34][HOO38]. The homogeneous alkali borosilicate glass separates into two percolating phases by a heat treatment, one phase is almost pure SiO2 glass, and the other an almost pure sodium borate glass. The two phases have a different chemical resistance towards acids and after dissolving the unstable sodium-borate phase, an almost pure silicon dioxide framework remains. The structure and the properties of this porous SiO2-structure depend significantly on the process parameters. In the first part of this thesis (Chapter 4.1 and 4.2), the influence of structural determining parameters (the glass composition, the particle size and particle shape and the conditions of the phase separation) on the water sorption properties were investigated. To determine the water absorption and release, as well as the interaction (cyclisation) at different relative humidities, a realistic humidity and temperature profile was generated in a climate chamber. Hereby, the cyclisation of the porous glasses could be correlated with the glass properties. These investigations were complemented by nitrogen sorption measurements and SEM investigations. To further consider the influence of the glass composition on the porous glass, the silica content and the ratio of boron oxide to sodium oxide were varied. It was found that a lower SiO2 content causes a higher porosity, a higher specific surface area and, hence, a better cyclisation behavior of the final product. But this effect is limited by the mechanical durability of the glass which is only stable up to 50 MA%. The ratio of B2O3/Na2O especially affects the degree of the phase separation at a given temperature. This can be already perceived by the transformation temperature, which decreases with increasing boron content in the glass. This was also confirmed by the water sorption experiments: The water uptake and release at a given temperature differs significantly with different B2O3/Na2O ratios in the initial glass. Regarding the corresponding nitrogen sorption measurements, it was shown that a high sorption capacity towards a temperature and humidity cycle is triggered by a combination of suitable pore diameter and high specific surface. A very important and also new aspect of this thesis is the investigation of glass flakes, with a thickness of a few μm and diameters of up to 1000 μm. These flitters can be produced by means of a rotary flaker. The wall paints made with these glass flakes show a better handling than with isotropic particles, additional these wall paints also have significantly improved sorption properties in comparison to similar glass powders with an isotropic particle size. The formation of the pores and hence the specific surface area of the porous SiO2-network is mainly determined by the adjustable thermal phase separation process. In order to find the optimum parameters to guarantee high water absorption and release capacity, the plateau temperatures as well as the time of this heat treatment were varied. Above 520 °C, the formation of the characteristic phase separation is entropically favored. With increasing temperature the kinetics of the demixing is accelerated and the size of the phase separated domains increase. Above approximately 650 °C the glass flakes sinter and thus their original geometry is destroyed. To investigate the influence of higher temperatures, the raw glass must be phase separated and grinded to powder in a subsequent process step. However, only spherical particles can be produced this way, but no particles in a flake shape. A new and also a key result of this work is, that the pore size, within the range of 2 to 35 nm, can be adjusted with a reproducibility less than one nanometer by adjusting the separation temperature precisely. This tunability is a great advantage of the porous Vycor®-glass in comparison to other porous materials. To regulate the humidity very effective, a pore diameter of 3.8 nm, which is generated by a phase separation temperature of 533 °C, was proved to be the best. The duration of the separation process has mainly an impact on the progress of the pore growth, but less on the pore size itself. After about 30 minutes phase separation time, the formation of pores can be detected. This process is completed after 24 hours. Any additional extension of the phase separation time has no further impact on the pore structure of the phase separated glass. In combination with the results of studies on the influence of the B2O3/Na2O ratio it was shown that any desired pore size can be adjusted in a wide range by selection of the phase separation temperature almost independent of the B2O3/Na2O ratio. In the second part of this work, the leaching step was optimized with regard to technical applicability and environmental friendliness. It was shown that the acid needed to dissolve the sodium borate glass could be changed from sulfuric acid to hydrochloric acid without any loss in function. Hydrochloric acid can be much better recycled, e. g. by a distillation process, than sulfuric acid. Furthermore, the concentration of the acid was reduced in comparison to the standard procedure. Above a dilution of 0.75 molar hydrochloric acid, comparable cyclisation properties could be obtained for the porous glasses. Only when the acid is further diluted, the separated glass flakes were leached out incomplete. In addition no effect on the pore structure and the pore size of the type of acid or the concentration was found. As described in the literature, the leaching of separated glasses is performed at high temperatures (usually more than 95 °C). Obviously, this process step consumes a lot of energy [JAS01]. In order to reduce the energy consumption, the leaching was examined as a function of the temperature in Chapter 4.3. Besides the temperature, also the concentrations of the acids investigated here were reduced to significant lower values. The variation of these parameters does not change the pore size, but the number of pores: Applying a lower temperature and lower acid concentration, the porosity decreases. An extension of the leaching time up to 3 hours improves the degree of leaching. Since the leaching with 0.40 molar HCl is far from complete, the influence of the time of leaching was investigated at this concentration. It can be confirmed that a longer leaching time increases the fraction of pores, generated in the phase separation, and subsequently the cyclisation properties of the final material were ameliorate. However, the values obtained from the porous glasses leached with 1.5 molar HCl cannot be achieved, even after 8 hours of leaching. An alternative route for a more resource-efficient leaching process can be the new concept of a leaching under hydrothermal conditions. In order to investigate this process, the glasses were separated and treated with a dilute acid (0.75 mol/l HCl), as well as with pure water in an autoclave at temperatures of 100 °C to 200 °C, a reaction pressure of up to 30 bar and for up to 20 hours. In the case of hydrochloric acid, all three parameters cause a change of the pore structure. In the pore size distribution as obtained from the nitrogen sorption measurements, a second peak occurs at larger diameters, while the height of the initial peak decreases. This indicates a considerable dissolution of the original pore walls. The increase of the pore volume and the decrease of the specific surface area confirm this assumption. Because of the extreme change of the resulting pore structure, this method is not suitable for the preparation of porous glass for the moisture regulation. Nevertheless, due to the bimodal pore system, porous glass obtained by a leaching under hydrothermal conditions can be of interest for other applications. Chapter 4.3 is completed with an examination of the recyclability of leaching medium and boric acid, the latter being the most precious medium in the process. For this purpose, the dissolved boric acid is precipitated from the leaching medium at room temperature. A subsequent purification by atmospheric distillation completes the recycling of the leaching medium as well as the boric acid. Besides the impact of the glass production process and the production parameters on the water uptake and release, the dynamics of the moisture uptake and releases under conditions relevant for building applications were investigated. The sorption is strongly influenced by the temperature. The release of water is similarly accelerated and increased by a higher operation temperature (50 °C). This effect can also be observed by an increased cyclisation. The difference between the mass maximum and the mass minimum with an identical humidity and time profile is 12.1 MA% at 50 °C and only 3.3 MA% at 20 °C. The kinetics of the water uptake and release was investigated in experiments, where the humidity changes (from 30 % to 90 %) were performed within 1 hour, 2 hours and 4 hours. For this study, glass flakes with optimized pore size (3.8 nm), as well as flakes with larger and smaller pores were investigated. All samples show a significantly faster water adsorption than desorption. One reason for this observation is the “bottleneck pore effect” (see page 37). Furthermore, the slope of the mass change of the optimized glass flakes is always larger irrespective of the moisture gradient. This confirms that the proper pore size is very decisive for the cyclisation dynamics and could be realized in this thesis. Moreover these results provide the possibility to a more comprehensive picture of the sorption, in particular not only as a function of the pore properties, but also on the sorption history. Besides the moisture-regulation, the sorption of water also causes an energetic effect in a living room. The adsorption consumes energy, while the desorption release energy and so an additional heat-regulating effect may occur. In order to quantify this effect, the desorption of conditioned glasses were examined with DSC. These experiments were performed for the pure glass flakes, as well as for the finery system containing these flakes. The results were correlated with the amount of water, which can be stored in the porous system. Although the amount of energy per single sorption step is very low, due to the large number of cyclisations during a year, the total amount of energy can be about 6 % of the energy consumption of a dwelling. So the energy effect is an interesting surplus to the moisture regulation of porous glasses, in particular since it is a “passive” effect. Using porous glasses optimized for the moisture regulation, wall coatings were prepared (see page 112). The whole system was investigated for its suitability as a moisture regulating material. Currently, the plasters with the glass flakes have still a lower mechanical performance in comparison with the standard plasters, especially the compressive strength and the dynamic Youngs-modulus (3268 N/mm² to 1099 N/mm2) are significantly decreased. This is mainly due to the loose structure, resulting from the addition of the glass flakes. On the other hand, this incorporation also leads to an increase in the porosity. Nevertheless, there is a good chance to improve the mechanical properties by optimizing the finery composition. To classify the moisture regulating performance of the Vycor®-finery, benchmark tests were performed where the materials was incorporated into commercial plasters (with and without regulatory functions), zeolite and fiberboard wall plates were selected. These very different materials were compared in cyclisation tests. Here the plaster with the optimized glass flakes show a significantly higher water adsorption capacity, a quicker response to humidity changes and much higher dynamics of water uptake and release in comparison to the other materials. This was verified practically by investigating two wall pieces constructed by using the Vycor®-glass containing concrete. Samples with classical finery and Vycor®-finery were applied on a support plate and exposed to a climate profile. Hereby the Vycor®-wall system was able to adsorb the water amount completely, originating mitted from a humidity change of 72 % r. h. to 40 % r. h. With about 13 g of absorbed water per m2 wall, the water regulation capacity of the wall system was even three times higher than necessary for a typical residential building. In cooperation with the University of Bayreuth, the obtained experimental results were supported by simulation experiments. The commercial tool WUFI (Wärme und Feuchte instationär) confirms a significant equilibration of seasonal humidity fluctuations, even for buildings in different climatic regions, for buildings where the walls were setup by plasters containing the porous glass. In addition, due to the more balanced humidity, there is also a positive effect on the wellbeing of the residents. The simulations, based on real measured data, demonstrated that not only the porous glass flakes itself, but also the finery with the porous glass additives have a significant effect on the indoor climate. This effect, a positive effect of the porous glass on the indoor climate has been modeled in simulations and must be examined in a real experimental setup e.g. by investigating a model room or building. In this work, the porous glass system obtained by thermal separation of the Vycor®-glasses was optimized with regard to its controlled sorption properties for the application as a moisture control material. In this course, a better understanding of the underlying processes and mechanisms of the spinodal separation was developed. In addition, the interaction between pore properties and the sorption of water could be understood more in detail, so that important findings could be gained in order to establish porous Vycor®-glass as a model system for phase separation and sorption. KW - Glas KW - Poröse Medien KW - Raumklima KW - Raumklima KW - Poröser Stoff Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148100 ER - TY - THES A1 - Baus, Johannes Armin T1 - Synthese, Struktur und Eigenschaften neuer Silicium(II)- und Silicium(IV)-Komplexe T1 - Syntheses, Structure and Properties of new Silicon(II) and Silicon(IV) Complexes N2 - Die vorliegende Arbeit stellt einen Beitrag zur Chemie höherkoordinierter Silicium(II) und Silicium(IV)-Verbindungen dar. Ein wesentlicher Teilaspekt der durchgeführten Untersuchungen betraf das Studium der Reaktivität der beiden donorstabilisierten Silylene 1 und 2. Im Einzelnen wurden die folgenden Teilprojekte bearbeitet: Die neutrale, hexakoordinierte Silicium(IV)-Verbindung 10 und die ionische, pentakoordinierte Silicium(IV)-Verbindung 11 wurden Umsetzung von 5 (dem Chloro-Analogon von 10) mit Me3SiBr bzw. Me3SiI in Transsilylierungsreaktionen dargestellt. Die mit 10 verwandten Verbindungen 5–9 wurden bereits früher synthetisiert und im Rahmen dieser Arbeit zusammen mit 10 erstmalig bezüglich ihrer Moleküldynamik in Lösung untersucht. Die Verbindungen 5–10 zeigten in Lösung bei Raumtemperatur unterschiedlich stark ausgeprägte Dynamikphänomene, die mittels VT-NMR-Experimenten untersucht wurden. Die neutralen, hexakoordinierten Silicium(IV)-Verbindungen 12 und 16 wurden durch sequentielle Umsetzung der entsprechenden sekundären Amine Ph2NH bzw. iPr2NH mit n-Butyllithium und Kohlenstoffdisulfid sowie anschließende Umsetzung mit Tetrachlorsilan dargestellt und als die Acetonitrilsolvate 12·MeCN bzw. 16·MeCN isoliert. Es handelt sich hierbei um die ersten hexakoordinierten Silicium(IV)-Komplexe mit einem SiS4Cl2-Gerüst. Die neutrale, hexakoordinierte Silicium(IV)-Verbindung 17 mit einem SiN4Cl2-Gerüst wurde durch Umsetzung des Silylens 2 mit Chlor dargestellt. Im Gegensatz zu dieser oxidativen Addition schlug die Synthese von 17 durch Umsetzung von Tetrachlorsilan mit zwei Moläquivalenten des entsprechenden Lithiumguanidinats [iPrNC(NiPr2)NiPr]Li fehl: Es entstand lediglich der entsprechende pentakoordinierte Mono(guanidinato)silicium(IV)-Komplex mit drei Chloroliganden. Die Umsetzung von 1,2-Diphenylethin mit dem Silylen 1 lieferte den neutralen, hexakoordinierten Silicium(IV)-Komplex 19. Der neutrale, pentakoordinierte Silicium(IV)-Komplex 20 wurde in einer Redoxreaktion durch Umsetzung des Silylens 2 mit Dimangandecacarbonyl dargestellt. Dabei wurde das Silicium(II)- zu einem Silicium(IV)-Fragment oxidiert und das Dimanganfragment unter Verlust von zwei Carbonylliganden reduziert. Die neutralen, tetrakoordinierten Silicium(II)-Übergangsmetallkomplexe 22, 23 und 24 (isoliert als 24·THF) konnten durch Umsetzung des Silylens 2 mit den entsprechenden Übergangsmetalldibromiden bzw. Nickel(II)-bromid–1,2-Dimethoxyethan dargestellt werden. Im Fall von Nickel gelang die Umsetzung mit dem freien NiBr2 nicht. Die Verbindungen 22 und 23 stellen paramagnetische Komplexe mit jeweils tetraedrisch koordinierte Übergangsmetallatomen dar. Das Nickelatom in Verbindung 24·THF ist dagegen quadratisch-planar koordiniert und damit diamagnetisch, wie es für d8-Metalle auch zu erwarten ist. Den drei Verbindungen 22, 23 und 24·THF gemeinsam ist der besondere Bindungsmodus einer der beiden Guanidinatoliganden, der das Siliciumatom und das Übergangsmetallatom miteinander verbrückt, was zur Ausbildung einer spirocyclischen Struktur führt. Der neutrale, pentakoordinierte Zink–Silylen-Komplex 25 wurde in einer Lewis-Säure/Base-Reaktion durch Umsetzung des Silylens 2 mit Zink(II)-bromid dargestellt und als das Solvat 25·0.5Et2O isoliert. Obwohl sich das Reaktionsprodukt wie auch bei den Verbindungen 22–24 als ein Lewis-Säure/Base-Addukt verstehen lässt, ist der Koordinationsmodus von Verbindung 25 anders: Beide Guanidinatoliganden sind bidentat an das Siliciumatom gebunden. Die neutralen Bis(silylen)palladium(0)- bzw. Bis(silylen)platin(0)-Komplexe 28 und 29 repräsentieren die ersten homoleptischen, dikoordinierten Bis(silylen)-Komplexe dieser Metalle mit N-heterocyclischen Silylenliganden und im Fall des Platin(0)-Komplexes 29 den ersten homoleptischen, dikoordinierten Platin(0)–Silylen-Komplex überhaupt. Verbindung 28 wurde durch Umsetzung von drei Moläquivalenten des Silylens 2 mit dem Palladium(II)-Komplex [PdCl2(SMe2)2] dargestellt. Dabei reduziert ein Moläquivalent des Silylens den Palladium(II)-Komplex und wird selbst zu Verbindung 17 oxidiert und die beiden verbliebenen Moläquivalente des Silylens substituieren die Dimethylsulfidliganden am Palladiumatom. Dieselbe Synthesestrategie ließ sich jedoch nicht auf die Darstellung von Verbindung 29 übertragen. Offenbar reicht das Reduktionspotenzial des Silylens 2 hier nicht aus. Zur Darstellung von Verbindung 29 wurde zunächst der Platin(II)-Komplex [PtCl2(PiPr3)2] mit Natrium/Naphthalin reduziert und anschließend wurden die beiden Triisopropylphosphanliganden durch Silylenliganden substituiert. N2 - This thesis represents a contribution to the chemistry of higher-coordinate silicon(II) and silicon(IV) compounds. A major part oft he investigations performed concerned reactivity studies with the donor-stabilised silylenes 1 and 2. The following subprojects were carried out: The neutral six-coordinate silicon(IV) compound 10 and the ionic five-coordinate silicon(IV) compound 11 were synthesised via transsilylation reactions by treatment of 5 (the chloro analogue of 10) with Me3SiBr and Me3SiI, respectively. The derivatives of 10, compounds 5–9, were already synthesised before and were investigated in this study for the first time (together with 10) for their molecular dynamics in solution. Compounds 5–10 showed interesting dynamic phenomena in solution at ambient temperature, which were studied by VT NMR experiments. The neutral six-coordinate silicon(IV) complexes 12 and 16 were synthesised by sequential treatment of the respective secondary amine Ph2NH and iPr2NH, respectively, with n-butyl¬lithium and carbon disulfide and subsequent treatment with tetrachlorosilane and were isolated as the acetonitrile solvates 12·MeCN and 16·MeCN, respectively. Compounds 12 and 16 represent the first six-coordinate silicon(IV) complexes with an SiS4Cl2 skeleton. The neutral six-coordinate silicon(IV) compound 17 with an SiS4Cl2 skeleton was synthesised by treatment of silylene 2 with chlorine. In contrast to this oxidative addition, the synthesis of 17 by treatment of tetrachlorosilane with two molar equivalents of the respective lithium guanidinate [iPrNC(NiPr2)NiPr]Li failed. Instead, the corresponding five-coordinate mono(guanidinato)silicon(IV) complex with three chloro ligands was obtained. Treatment of 1,2-diphenylethyne with silylene 1 furnished the neutral six-coordinate silicon(IV) complex 19. The neutral five-coordinate silicon(IV) complex 20 was synthesised in a redox reaction by treatment of silylene 2 with dimanganesedecacarbonyl. In this reaction, the silicon(II) fragment was oxidised to a silicon(IV) fragment and the dimanganese moiety was reduced, accompanied by loss of two carbonyl ligands. The neutral four-coordinate transition-metal–silicon(II) complexes 22, 23 and 24 (isolated as 24·THF) were synthesised by treatment of silylene 2 with the respective transition-metal dibromides and the nickel(II)-bromide 1,2-dimethoxyethane adduct, respectively. In case of nickel, the treatment with free NiBr2 was not successful. Compounds 22 and 23 represent paramagnetic complexes with tetrahedrally coordinated transition metal atoms. In contrast, the nickel atom of 24·THF is coordinated in a square-planar fashion, resulting in diamagnetism as expected for d8 metals. The three compounds 22, 23 and 24·THF have the special binding mode of one of the two guanidinato ligands in common; which bridges the silicon atom and the transition metal, resulting in a spirocyclic structure. The neutral five-coordinate zinc–silylene complex 25 was synthesised in a Lewis acid/base reaction by treatment of silylene 2 with zinc(II)-bromide and isolated as the solvate 25·0.5Et2O. Although the product of this reaction can be understood as a Lewis acid/base adduct (as in the case of compounds 22, 23 and 24·THF) the coordination mode of 25·is different: both guanidinato ligands bind in a bidentate fashion to the silicon atom. The neutral bis(silylene)palladium(0) and bis(silylene)platinum(0) complexes 28 and 29, respectively, represent the first homoleptic two-coordinate bis(silylene) complexes of these metals with N-heterocyclic silylene ligands, and the platinum(0) complex is even the first homoleptic two-coordinate silylene–platinum(0) complex at all. Compound 28 was prepared by treatment of three molar equivalents of silylene 2 with the palladium(II) complex [PdCl2(SMe2)2]. In this reaction, one molar equivalent of the silylene reduces the palladium(II) complex and is oxidised itself to compound 17, and the remaining two molar equivalents of silylene 2 substitute the dimethylsulfide ligands at the palladium atom. However, the same synthetic strategy could not be applied to the preparation of compound 29. Obviously, the reduction potential of silylene 2 was sufficient in this case. For the preparation of 29, the platinum(II) complex [PtCl2(PiPr3)2] was reduced by sodium/naphthalene, followed by substitution of the two triisopropylphosphine ligands by two silylene 2 ligands. KW - Siliciumverbindungen KW - Koordinationslehre KW - Silylen KW - Silicium(II) KW - Silicium(IV) KW - Bis(guanidinato)silylen KW - Bis(amidinato)silylen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143910 ER - TY - THES A1 - Mück, Felix Maximilian T1 - Synthese, Struktur und Eigenschaften neuer Silicium(II)- und Silicium(IV)-Komplexe mit Guanidinato-Liganden T1 - Synthesis, structure, and properties of novel silicon(II) and silicon(IV) complexes with guanidinato ligands N2 - Die vorliegende Arbeit stellt einen Beitrag zur Chemie Donor-stabilisierter Silylene mit Guanidinato-Liganden dar. Im Vordergrund standen die Synthese, Charakterisierung und Reaktivitäts-Untersuchungen der beiden neuartigen Silicium(II)-Komplexe 23 und 24, die sterisch unterschiedlich anspruchsvolle Ligand-Systeme besitzen. Ein weiterer Schwerpunkt betrifft die Charakterisierung daraus resultierender tetra-, penta- und hexakoordinierter Silicium(II)- bzw. Silicium(IV)-Komplexe. Im Rahmen dieser Arbeit wurden die Donor-stabilisierten trikoordinierten Silylene 23 und 24, die neutralen tetrakoordinierten Silicium(II)-Komplexe 25·C4H8O und 26, die neutralen tetrakoordinierten Silicium(IV)-Komplexe 27–36, 38, 47–49 und 51, die neutralen penta-koordinierten Silicium(II)-Komplexe 39·0.5C6H5CH3, 40–42 und 46, die neutralen pentakoordinierten Silicium(IV)-Komplexe 18, 19, 37 und 56, die kationischen penta-koordinierten Silicium(IV)-Komplexe 52 und 53 sowie die neutralen hexakoordinierten Silicium(IV)-Komplexe 20, 55·0.5C6H5CH3, 57 und 58 erstmalig dargestellt. Die Charakterisierung dieser Verbindungen erfolgte durch Elementaranalysen (außer 33), NMR-Spektroskopie im Festkörper (15N-, 29Si-, 31P- (nur 27) und 77Se-VACP/MAS-NMR (nur 32, 35, 50 und 53) sowie 11B- (nur 39·0.5C6H5CH3), 27Al- (nur 40 und 41) und 125Te-HPDec/MAS-NMR (nur 33, 36 und 51)) und in Lösung (außer 39, 40, 52 und 53; 1H-, 13C-, 27Al- (nur 41), 29Si-, 31P- (nur 27), 77Se- (nur 32, 35 und 50) und 125Te-NMR (nur 33, 36 und 51)) sowie durch Kristallstrukturanalysen. Synthese und Charakterisierung zweier neuartiger Donor-stabilisierter Mono- und Bis(guanidinato)silylene Die Donor-stabilisierten Silylene 23 und 24 wurden im Sinne einer reduktiven HCl-Eliminierung durch Umsetzung des pentakoordinierten Dichlorohydrido(guanidinato)-silicium(IV)- (18) bzw. hexakoordinierten Chlorohydridobis(guanidinato)silicium(IV)-Komplexes (20) mit Kaliumbis(trimethylsilyl)amid dargestellt. Die entsprechenden Vorstufen 18 und 20 wurden durch Umsetzung von Trichlorsilan mit einem Moläquivalent Lithium-N,N´´-bis(2,6-diisopropylphenyl)-N´N´-dimethylguanidinat bzw. zwei Moläquivalenten N,N´,N´,N´´-tetraisopropylguanidinat erhalten. Jegliche Versuche, das Donor-stabilisierte Silylen 22 durch Reduktion des entsprechenden pentakoordinierten Trichloro(guanidinato)-silicium(IV)-Komplexes 19 mit Alkalimetallen zu erhalten, schlugen fehl. Die Si-Koordinationspolyeder der pentakoordinierten Silicum(IV)-Komplexe 18 und 19 sind stark verzerrte trigonale Bipyramiden mit einem Chlor- und Stickstoff-Atom in den axialen Positionen. Das Si-Koordinationspolyeder von 20 ist ein stark verzerrter Oktaeder mit dem Chloro- und Hydrido-Liganden in cis-Stellung. Das Silicium-Atom der beiden Silylene 23 und 24 ist verzerrt pseudotetraedrisch von drei Stickstoff-Atomen sowie dem freien Elektronenpaar als vierten „Liganden“ umgeben. Beide Verbindungen liegen sowohl im Festkörper als auch in Lösung trikoordiniert vor (ein bidentater Guanidinato- und ein monodentater Amido-/Guanidinato-Ligand). Die Trikoordination von 24 in Lösung wurde auch durch quantenchemische Rechnungen bestätigt. Im Unterschied zu 24 ist das analoge Bis(amidinato)silylen 1 im Festkörper trikoordiniert und in Lösung tetrakoordiniert. Reaktivitätsstudien des Donor-stabilisierten Mono(guanidinato)silylens 23 Ausgehend von dem Silylen 23 wurden die tetrakoordinierten Silicium(II)-Komplexe 25 und 26, die tetrakoordinierten Silicium(IV)-Komplexe 27–36 und 38 sowie der pentakoordinierte Silicium(IV)-Komplex 37 dargestellt. Die Bildung dieser Produkte basiert auf Lewis-Säure/Base- (25, 26) bzw. oxidativen Additionsreaktionen (27–38). Mit Ausnahme der Bildung von 25, 27 und 34–36 ist das typische Reaktivitätsspektrum des Silylens 23 an zusätzliche Reaktivitätsfacetten gekoppelt: (i) eine Änderung des Koordinationsmodus von einem bidentat an ein Koordinationszentrum bindenden zu einem bidentat an zwei Koordinationsstellen bindenden Guanidinato-Liganden (26), (ii) eine 1,3-SiMe3-Verschiebung einer der beiden SiMe3-Gruppen des Amido-Liganden (28–33) oder (iii) eine nukleophile Reaktion einer der beiden Stickstoff-Ligand-Atome des Guanidinato-Liganden als Teil einer Umlagerungs-reaktion (38). Silylen 23 reagierte mit Zink(II)chlorid und Diethylzink unter Bildung der neutralen tetrakoordinierten Silicium(II)-Verbindungen 25 (isoliert als 25·C4H8O) bzw. 26 mit einer Silicium–Zink-Bindung. Hierbei reagiert 23 mit Zink(II)chlorid und Diethylzink im Sinne einer Lewis-Säure/Base-Reaktion unter Bildung des Lewis-Säure/Base-Adduktes 25 und – nach einer zusätzlichen Umlagerung – Verbindung 26. Die Si-Koordinationspolyeder von 25·C4H8O und 26 im Kristall sind (stark) verzerrte Tetraeder, wobei im Falle von 25·C4H8O der Guanidinato-Ligand bidentat und bei 26 monodentat an das Silicium-Atom gebunden ist. Die tetrakoordinierten Silicium(IV)-Komplexe 27–36 und 38 sowie der pentakoordinierte Silicium(IV)-Komplex 37 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von 23 mit Diphenylphosphorylazid (→ 27), 2,4-Hexadiin (→ 28), 1,4-Diphenyl-butadiin (→ 29), Distickstoffmonoxid (→ 30), Diphenyldisulfid (→ 31), Diphenyldiselenid (→ 32), Diphenylditellurid (→ 33), Schwefel (→ 34), Selen (→ 35), Tellur (→ 36), Kohlenstoffdioxid (→ 37) bzw. Kohlenstoffdisulfid (→ 38) dargestellt. Verbindung 37 konnte außerdem durch Umsetzung von 30 mit Kohlenstoffdioxid synthetisiert werden. Die Reaktion von 23 mit Diphenylphosphorylazid verläuft unter Eliminierung von Stickstoff und Bildung von Verbindung 27 mit einer Silicium–Stickstoff-Doppelbindung, wobei 27 als ein intramolekular Donor-stabilisiertes Silaimin beschrieben werden kann. Bei den Verbindungen 28 und 29 handelt es sich um Donor-stabilisierte Silaimine mit einer an das Silicium-Atom gebundenen dreifach substituierten Vinylgruppe. Es wird angenommen, dass 23 zunächst mit einer der beiden C–C-Dreifachbindungen der Diine in einer [2+1]-Cycloaddition zu den entsprechenden Silacyclopropenen reagiert, welche danach zu 28 bzw. 29 umlagern. Hierbei wandert jeweils eine der beiden SiMe3-Gruppen in einer 1,3-Verschiebung vom Stickstoff-Atom des Amido-Liganden zum Kohlenstoff-Atom des intermediär gebildeten Silacyclopropenringes. Die Verbindungen 30–33 stellen die ersten thermisch stabilen Donor-stabilisierten Silaimine mit einem SiN3El-Gerüst dar (El = O, S, Se, Te). Es wird angenommen, dass bei der Reaktion von 23 mit Distickstoffmonoxid unter Eliminierung von Stickstoff, zunächst ein tetrakoordinierter Silicium(IV)-Komplex mit einer Silicium–Sauerstoff-Doppelbindung gebildet wird, der dann im Sinne einer 1,3-SiMe3-Verschiebung vom Stickstoff- zum Sauerstoff-Atom zu Verbindung 30 umlagert. Für die Bildung von 31–33 postuliert man zunächst eine homolytische El–El-Bindungsaktivierung (El = S, Se, Te) der entsprechenden Diphenyldichalcogenide (Bildung von zwei Si–ElPh-Gruppen). Die anschließende 1,3-Verschiebung einer der beiden SiMe3-Gruppen des Amido-Liganden zu einem der beiden ElPh-Liganden führt dann unter Abspaltung von Me3SiElPh zur Bildung von 31–33. Die Reaktion von 23 mit den elementaren Chalcogenen Schwefel, Selen und Tellur verläuft ebenfalls im Sinne einer oxidativen Addition unter Bildung der Verbindungen 34–36 mit einer Silicium–Chalcogen-Doppelbindung. Für die Bildung von 37 wird ein dreistufiger Mechanismus postuliert, wobei in einem ersten zweistufigen Schritt durch Reaktion von 23 mit einem Molekül Kohlenstoffdioxid unter Eliminierung von Kohlenstoffmonoxid zunächst Verbindung 30 als Zwischenstufe gebildet wird. Durch Addition eines zweiten Moleküls Kohlenstoffdioxid an die Silicium–Stickstoff-Doppelbindung von 30 resultiert dann der pentakoordinierte Silicium(IV)-Komplex 37 mit einem N,O-chelatisierenden Carbamato-Liganden. Der postulierte Mechanismus wird von der Tatsache gestützt, dass 37 ebenfalls durch Umsetzung von 30 mit einem Überschuss an Kohlenstoffdioxid synthetisiert werden kann. Aus der Reaktion des Silylens 23 mit Kohlenstoffdisulfid resultiert die cyclische Verbindung 38. Die Si-Koordinationspolyeder von 27–36 im Kristall sind stark verzerrte Tetraeder mit einem bidentaten Guanidinato-, einem Amido- (nur 27 und 34–36) bzw. Imino-Liganden (nur 28–33) sowie einer Si–El-Einfachbindung (28, 29: El = C; 30: El = O; 31: El = S; 32: El = Se; 33: El = Te) bzw. Si–El-Doppelbindung (27: El = N, 34: El = S; 35: El = Se; 36: El = Te). Das Si-Koordinationspolyeder von 37 ist eine stark verzerrte trigonale Bipyramide, wobei sich das Sauerstoff-Atom des Carbamato-Liganden und ein Stickstoff-Atom des Guanidinato-Liganden in den axialen Positionen befinden. Das Si-Koordinationspolyeder von 38 lässt sich als verzerrtes Tetraeder beschreiben. Reaktivitätsstudien des Donor-stabilisierten Bis(guanidinato)silylens 24 Silylen 24 reagiert mit den Lewis-Säuren Triphenylboran, Triphenylalan und Zink(II)chlorid unter Bildung der entsprechenden pentakoordinierten Silicium(II)-Komplexe 39, 40 und 42, welche eine Silicium–Bor-, Silicium–Aluminium- bzw. Silicium–Zink-Bindung besitzen. Silylen 24 reagiert hierbei als Lewis-Base unter Ausbildung von Lewis-Säure/Base-Addukten. Die Si-Koordinationspolyeder von 39, 40 und 42 im Kristall sind stark verzerrte trigonale Bipyramiden, wobei sich das Bor-, Aluminium- und Zink-Atom jeweils in einer äquatorialen Position befindet. Aus NMR-spektroskopischen Untersuchungen geht hervor, dass die Silicium–Zink-Verbindung 42 auch in Lösung stabil ist, während die Silicium–Bor- und Silicium–Aluminium-Verbindung 39 bzw. 40 in Lösung nicht stabil sind. Beide Komplexe dissoziieren quantitativ zu 24 und ElPh3 (El = B, Al). Die Bis(guanidinato)silicium(II)-Komplexe 39 und 40 besitzen ähnliche Strukturen wie ihre Bis(amidinato)-Analoga 3 und 41, die jeweiligen Amidinato/Guanidinato-Analoga 3/39 bzw. 41/40 unterscheiden sich aber signifikant in ihrer chemischen Stabilität in Lösung. Da 39 und 40 in Lösung auch bei tieferer Temperatur (T = –20 °C) dissoziiert vorliegen und die entsprechenden Amidinato-Analoga 3 und 41 selbst bei höherer Temperatur (T = 70 °C) noch stabil sind, wird vermutet, dass das Bis(amidinato)silylen 1 bessere σ-Donor-Eigenschaften besitzt und somit eine stärkere Lewis-Base im Vergleich zum Bis(guanidinato)silylen 24 ist. Des Weiteren reagiert Silylen 24 als ein Nukleophil mit den Übergangsmetallcarbonyl-verbindungen [M(CO)6] (M = Cr, Mo, W) und [Fe(CO)5] unter Bildung der entsprechenden tetrakoordinierten Silicium(II)-Komplexe 43–45 bzw. des pentakoordinierten Silicium(II)-Komplexes 46. Die Si-Koordinationspolyeder der spirocyclischen Silicium(II)-Verbindungen 43–45 im Kristall sind stark verzerrte Tetraeder, wobei jeweils ein Guanidinato-Ligand bidentat an das Silicium-Atom bindet und der andere Guanidinato-Ligand das Silicium- mit dem Metall-Atom verbrückt. Die beiden Si-Koordinationspolyeder von 46 sind stark verzerrte trigonale Bipyramiden mit dem Eisen-Atom in einer äquatorialen Position. Beim Vergleich der Bis(guanidinato)silicium(II)-Komplexe 43–46 mit den jeweiligen Amidinato-Analoga 4–7 fällt auf, dass sich lediglich die Eisen-Verbindungen 7 und 46 entsprechen. Die Umsetzung des Bis(amidinato)silylens 1 mit [M(CO)6] (M = Cr, Mo, W) führt dagegen im Sinne einer nukleophilen Substitution eines Carbonyl-Liganden zu den pentakoordinierten Silicium(II)-Komplexen 4–6, während die analoge Umsetzung des Bis(guanidinato)silylens 24 zur Substitution von zwei CO-Liganden führt und sich die tetrakoordinierten Silicium(II)-Verbindungen 43–45 mit einem verbrückenden Guanidinato-Liganden bilden. Die tetrakoordinierten Silicium(IV)-Komplexe 47–51 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von Silylen 24 mit Azidotrimethylsilan (→ 47), Distickstoffmonoxid (→ 48), Schwefel (→ 49), Selen (→ 50) bzw. Tellur (→ 51) dargestellt. Die Bildung von 47 und 48 wird dabei von einer Stickstoff-Eliminierung begleitet. Die Si-Koordinationspolyeder von 47–51 im Kristall sind stark verzerrte Tetraeder. Der zweikernige Komplex 48 besitzt jeweils zwei Silicium-gebundene monodentate Guanidinato-Liganden sowie einen Si2O2-Ring. Die Verbindungen 47 und 49–51 sind die ersten tetrakoordinierten Bis(guanidinato)silicium(IV)-Komplexe mit einer Silicium–Stickstoff- bzw. Silicium=Chalcogen-Doppelbindung (S, Se, Te). Am Beispiel der Verbindungen 47–51 wird erneut die unterschiedliche Reaktivität der Amidinato/Guanidinato-analogen Silylene 1 (im Festkörper tri- und in Lösung tetrakoordiniert) und 24 (sowohl in Lösung als auch im Festkörper trikoordiniert) deutlich. Interessanterweise führen die oxidativen Additionsreaktionen der Amidinato/Guanidinato-Analoga 1 und 24 mit Azidotrimethylsilan, Distickstoffmonoxid, Schwefel, Selen und Tellur zu Produkten mit unterschiedlichen Koordinationszahlen des Silicium-Atoms. Die Verbindungen 8 und 10–12 repräsentieren hierbei pentakoordinierte Silicium(IV)-Komplexe mit zwei bidentaten Amidinato-Liganden, wohingegen es sich bei den entsprechenden Analoga 47 und 49–51 um tetrakoordinierte Silicium(IV)-Komplexe mit einem monodentaten und einem bidentaten Guanidinato-Liganden handelt. Zugleich stellt 9 einen dinuklearen pentakoordinierten Silicium(IV)-Komplex mit jeweils einem monodentaten und einem bidentaten Amidinato-Liganden dar, während der zweikernige tetrakoordinierte Komplex 48 jeweils zwei monodentate Guanidinato-Liganden trägt. Ebenfalls im Sinne einer oxidativen Additionsreaktion wurden die kationischen penta-koordinierten Silicium(IV)-Komplexe 52 und 53 durch die Umsetzung von Silylen 24 mit Diphenyldisulfid (→ 52) bzw. Diphenyldiselenid (→ 53) dargestellt. Die Si-Koordinationspolyeder von 52 und 53 sind stark verzerrte trigonale Bipyramiden, wobei sich das Schwefel- bzw. Selen-Atom jeweils in einer äquatorialen Position befindet. Die Reaktion des Bis(guanidinato)silylens 24 mit Diphenyldisulfid und Diphenyldiselenid verläuft formal unter heterolytischer Aktivierung einer Chalcogen–Chalcogen-Bindung und führt zur Bildung der kationischen pentakoordinierten Silicium(IV)-Komplexe 52 und 53. Im Gegensatz dazu führt die Reaktion des analogen Bis(amidinato)silylens 1 mit Diphenyldiselenid unter homolytischer Se–Se-Bindungsaktivierung zu der neutralen hexakoordinierten Silicium(IV)-Verbindung 13. Des Weiteren wurde die Reaktivität des Silylens 24 gegenüber kleinen Molekülen untersucht. Die hexakoordinierten Silicium(IV)-Komplexe 55, 57 und 58 sowie der pentakoordinierte Silicium(IV)-Komplex 56 wurden im Sinne einer oxidativen Additionsreaktion durch Umsetzung von 24 mit einem Überschuss an Kohlenstoffdioxid (→ 55; isoliert als 55·C6H5CH3), einer äquimolaren Menge an Kohlenstoffdisulfid (→ 56), einer stöchio-metrischen Menge an Schwefeldioxid (→ 57) bzw. einem sehr großen Überschuss an Schwefeldioxid (welches auch als Solvens diente; → 58) dargestellt. Verbindung 58 wurde als ein Cokristallisat der Isomere cis-58 und trans-58 isoliert, die sich hinsichtlich der relativen Anordnung der beiden exocyclischen Sauerstoff-Atome voneinander unterscheiden. Die Si-Koordinationspolyeder von 55·C6H5CH3, 57 und 58 im Kristall sind stark verzerrte Oktaeder. Die Sauerstoff-Ligand-Atome der bidentaten O,O´-chelatisierenden Carbonato- (55), Sulfito- (57) und Dithionito-Liganden (58) stehen jeweils in cis-Position zueinander. Verbindung 58 ist die zweite strukturell charakterisierte Silicium-Verbindung mit einem bidentat O,O´-chelatisierenden Dithionito-Liganden, und die Verbindungen 55, 57 und 58 repräsentieren sehr seltene Beispiele für Hauptgruppenelement-Verbindungen mit einem O,O´-chelatisierenden Carbonato-, Sulfito- und Dithionito-Liganden. Der Komplex 57 und sein Amidinato-Analogon 16 repräsentieren zwei von drei Hauptgruppenelement-Verbindungen mit einem O,O´-chelatisierenden Sulfito-Liganden. Die Komplexe 55 und 58 stellen zusammen mit ihren Amidinato-Analoga 14 und 17 die einzigen bekannten Verbindungen mit einem O,O´-chelatisierenden Carbonato- bzw. nicht verbrückenden Dithionito-Liganden dar. Die Bildung von 55, 57 und 58 ist eines der wenigen Beispiele für Reaktionen der Amidinato/Guanidinato-analogen Silylene 1 und 24, die zu Struktur-analogen Produkten führen (Amidinato/Guanidinato-Analoga 14/55, 16/57 und 17/58), während in der Mehrzahl der Fälle unterschiedliche Reaktionsprofile beobachtet wurden. Das Si-Koordinationspolyeder von 56 ist eine stark verzerrte trigonale Bipyramide, mit dem Kohlenstoff-Ligand-Atom in einer äquatorialen Position. Der pentakoordinierte Silicium(IV)-Komplex 56 repräsentiert mit seinem über das Kohlenstoff-Atom bindenden CS22–-Liganden eine bisher einzigartige Koordinationsform in der Siliciumchemie, und die Bildung von 56 ist ein weiteres Beispiel für das unterschiedliche Reaktionsprofil der Amidinato/Guanidinato-analogen Silylene 1 und 24. Das Bis(amidinato)silylen 1 reagiert mit Kohlenstoffdisulfid zu dem hexakoordinierten Silicium(IV)-Komplex 15 mit einem S,S´-chelatisierenden Trithiocarbamato-Liganden und unterscheidet sich damit von seinem Guanidinato-Analogon sowohl in der Silicium-Koordinationszahl als auch in der Bindungsform. N2 - This thesis is a contribution to the chemistry of donor-stabilized silylenes with guanidinato ligands. The main focus of this work was the synthesis, characterization, and reactivity studies of the two novel silicon(II) complexes 23 and 24 with different sterically demanding ligand systems. A second focus was the characterization of the resulting four-, five-, and six-coordinate silicon(II) or silicon(IV) complexes. In the course of these studies, the donor-stabilized three-coordinate silylenes 23 and 24, the neutral four-coordinate silicon(II) complexes 25·C4H8O and 26, the neutral four-coordinate silicon(IV) complexes 27–36, 38, 47–49, and 51, the neutral five-coordinate silicon(II) complexes 39·0.5C6H5CH3, 40–42 and 46, the neutral five-coordinate silicon(IV) complexes 18, 19, 37, and 56, the cationic five-coordinate silicon(IV) complexes 52 and 53, and the neutral six-coordinate silicon(IV) complexes 20, 55·0.5C6H5CH3, 57, and 58 were prepared for the first time. These compounds were characterized by elemental analyses (except 33), NMR spectroscopic studies in the solid state (15N, 29Si, 31P (27 only), and 77Se VACP/MAS NMR (32, 35, 50, and 53 only) as well as 11B (39·0.5C6H5CH3 only), 27Al (40 and 41 only), and 125Te HPDec/MAS NMR (33, 36, and 51 only)) and in solution (except 39, 40, 52, and 53; 1H, 13C, 27Al (41 only), 29Si, 31P (27 only), 77Se (32, 35, and 50 only), and 125Te NMR (33, 36, and 51)), and single-crystal X-ray diffraction. Synthesis and characterization of two novel donor-stabilized mono- and bis(guanidinato)-silylenes The donor-stabilized silylenes 23 and 24 were synthesized by treatment of the five-coordinate dichlorohydrido(guanidinato)silicon(IV) complex 18 and six-coordinate chlorohydrido-bis(guanidinato)silicon(IV) complex 20, respectively, with potassium bis(trimethylsilyl)amide (reductive hydrogen chloride elimination). Compound 18 was prepared by treatment of trichlorosilane with one molar equivalent of lithium N,N´´-bis(2,6-diisopropylphenyl)-N´N´-dimethylguanidinate, and 19 was obtained by treatment of trichlorosilane with two molar equivalents of lithium N,N´,N´,N´´-tetraisopropylguanidinate. All attempts to synthesize silylene 22 by reduction of the corresponding five-coordinate trichloro(guanidinato)silicon(IV) complex 19 with alkali metals failed. The silicon coordination polyhedra of the five-coordinate silicon(IV) complexes 18 and 19 are strongly distorted trigonal bipyramids, with a chlorine and nitrogen atom in the axial positions. The silicon coordination polyhedron of 20 is a strongly distorted octahedron, with the chloro and hydrido ligands in cis positions. The silicon atoms of silylenes 23 and 24 are coordinated in a pseudo-tetrahedral fashion by three nitrogen atoms and the lone electron pair as the fourth “ligand”. Both silylenes are three-coordinate both in the solid state and in solution (one bidentate guanidinato and one monodentate amido/guanidinato ligand). The three-coordination of 24 in solution was also confirmed by quantum chemical calculations. This is in contrast to the analogous bis(amidinato)silylene 1, which is three-coordinate only in the solid state and four-coordinate in solution. Reactivity studies of the donor-stabilized mono(guanidinato)silylene 23 Starting from silylene 23, the four-coordinate silicon(II) complexes 25 and 26, the four-coordinate silicon(IV) complexes 27–36 and 38, and the five-coordinate silicon(IV) complex 37 were synthesized. The formation of these products is based on Lewis acid/base (25, 26) or oxidative addition reactions (27–38). Except for the formation of 25, 27, and 34–36, the typical silylene reactivity of 23 is coupled with additional reactivity facets, such as (i) a switch of the coordination mode of the guanidinato ligand from bidentate binding to only one coordination center to bidentate binding to two different coordination centers (→ 26), (ii) a 1,3-SiMe3 shift of one of the two SiMe3 groups of the amido ligand (→ 28–33), or (iii) a nucleophilic reaction of one of the two nitrogen ligand atoms of the guanidinato ligand as part of a rearrangement reaction (→ 38). Silylene 23 reacts with zinc chloride and zinc diethyl to give the neutral four-coordinate silicon(II) complexes 25 (isolated as 25·C4H8O) and 26, respectively, with a silicon–zinc bond. In these transformations silylene 23 reacts as a Lewis base to furnish the Lewis acid/base adducts 25 and (upon an additional rearrangement) compound 26. The silicon coordination polyhedra of 25·C4H8O and 26 are (strongly) distorted tetrahedra. In the case of 25, the guanidinato ligand binds in a bidentate and in 26 in a monodentate fashion to the silicon atom. The four-coordinate silicon(IV) complexes 27–36 and 38 and the five-coordinate silicon(IV) complex 37 were formed in an oxidative addition reaction by treatment of 23 with diphenylphosphoryl azide (→ 27), 2,4-hexadiyne (→ 28), 1,4-diphenylbutadiyne (→ 29), dinitrogen monoxide (→ 30), diphenyl disulfide (→ 31), diphenyl diselenide (→ 32), diphenyl ditelluride (→ 33), sulfur (→ 34), selenium (→ 35), tellurium (→ 36), carbon dioxide (→ 37), and carbon disulfide (→ 38) respectively. Additionally, compound 37 could also be synthesized by treatment of 30 with carbon dioxide. The reaction of 23 with diphenylphosphoryl azide proceeds with a nitrogen elimination and formation of 27 with a silicon–nitrogen double bond. Compound 27 and can be formally described as an intramolecularly donor-stabilized silaimine. Compounds 28 and 29 can be formally described as donor-stabilized silaimines with a silicon-bound trisubstituted vinyl group. The reaction mechanism is postulated to be a [1+2] cycloaddition of 23 with one of two C–C triple bonds of the diynes to form the corresponding silacyclopropenes, which then undergo a rearrangement with a 1,3-shift of one of the two SiMe3 groups from the nitrogen atom of the amido ligand to the carbon atom of the silacyclopropene ring. Compounds 30–33 represent the first thermally stable donor-stabilized silaimines with an SiN3El skeleton (El = O, S, Se, Te). The formation of 30 can be rationalized in terms of an oxidation of 23 with dinitrogen monoxide to give a four-coordinate silicon(IV) complex with an silicon–oxygen double bond, which then undergoes a 1,3-shift of one of the two SiMe3 groups from the nitrogen to the oxygen atom to give 30 (including elimination of nitrogen). The formation of 31–33 can be rationalized in terms of a homolytic El–El bond activation (El = S, Se, Te) of the corresponding diphenyl dichalcogenides (formation of two Si–ElPh groups), followed by a 1,3-shift of one of the two SiMe3 groups to one of the two Si–ElPh moieties and elimination of Me3SiElPh. Reaction of 23 with the elemental chalcogens sulfur, selenium, and tellurium proceeds also in terms of an oxidative addition to form compounds 34–36 with a silicon–chalcogen double bond. For the formation of 37, a three-step process is proposed. In a first two-stage step, silylene 23 reacts with one molecule of carbon dioxide to give the stable four-coordinate silicon(IV) complex 30 as an intermediate (elimination of carbon monoxide). Addition of a second carbon dioxide molecule to the silicon–nitrogen double bond of 30 finally afforded the five-coordinate silicon(IV) complex 37 with an N,O-chelating carbamato ligand. This mechanism is strongly supported by the finding that treatment of 30 with an excess of CO2 also afforded compound 37. Reaction of 23 with carbon disulfide leads to the cyclic silicon(IV) complex 38. The silicon coordination polyhedra of 27–36 in the crystal are strongly distorted tetrahedra, with a bidentate guanidinato ligand, an amido ligand (27 and 34–36 only), and an imino ligand (28–33), respectively, and with an Si–El single bond (28, 29: El = C; 30: El = O; 31: El = S; 32: El = Se; 33: El = Te) and an Si–El double bond (27: El = N, 34: El = S; 35: El = Se; 36: El = Te), respectively. The silicon coordination polyhedron of 37 is a strongly distorted trigonal bipyramid, with the oxygen atom of the carbamato ligand and a nitrogen atom of the guanidinato ligand in the axial positions. The silicon coordination polyhedron of 38 is a distorted tetrahedron. Reactivity of the donor-stabilized silylene 24 Silylene 24 reacts with the Lewis acids triphenylborane, triphenylalane, and zinc chloride to give the respective five-coordinate silicon(II) complexes 39, 40, and 42, which contain an Si–B, Si–Al, and Si–Zn bond, respectively. In these transformations, silylene 24 reacts as a Lewis base to afford Lewis acid/base adducts. The silicon coordination polyhedra of 39, 40, and 42 in the crystal are strongly distorted trigonal bipyramids, with the boron, aluminum, and zinc atom in an equatorial position. NMR spectroscopic studies demonstrated that the silicon–zinc compound 42 is also stable in solution, whereas the silicon–boron and silicon–aluminum compounds 39 and 40, respectively, are unstable in solution. Both complexes dissociate quantitatively to form 24 and ElPh3 (El = B, Al). The bis(guanidinato)silicon(II) complexes 39 and 40 and the analogous bis(amidinato)silicon(II) complexes 3 and 41 are characterized by similar structures each. However, the respective amidinato/guanidinato analogues 3/39 and 41/40 differ significantly in their chemical stability in solution. As 39 and 40 even dissociate at lower temperature (T = –20 °C) and the corresponding amidinato analogues 3 and 41 are stable at higher temperatures (T = 70 °C), the bis(amidinato)silylene 1 is suggested to be a better σ-donor and thus a stronger Lewis base compared to the bis(guanidinato)silylene 24. Furthermore, silylene 24 reacts as a nucleophile with the transition-metal carbonyl complexes [M(CO)6] (M = Cr, Mo, W) and [Fe(CO)5] to form the corresponding four-coordinate silicon(II) complexes 43–45 and the five-coordinate silicon(II) complex 46. The silicon coordination polyhedra of 43–45 are strongly distorted tetrahedra, with one silicon-bound bidentate guanidinato ligand and a second guanidinato ligand that bridges the silicon and the transition-metal atom. The two silicon coordination polyhedra of 46 are strongly distorted trigonal bipyramids, with the iron atom in an equatorial site. Comparison of the bis(guanidinato)silicon(II) complexes 43–46 with the respective amidinato analogues 4–7 reveals that only the iron complexes 7 and 46 have analogous structures. In contrast, the bis(amidinato)silylene 1 reacts with [M(CO)6] (M = Cr, Mo, W) in terms of a monosubstitution (replacement of one of the six carbonyl ligands) to give the five-coordinate silicon(II) complexes 4–6, whereas treatment of [M(CO)6] with the bis(guanidinato)silylene 24 leads to a disubstitution (replacement of two carbonyl ligands) to afford the four-coordinate silicon(II) complexes 43–45. The four-coordinate silicon(IV) complexes 47–51 were synthesized in terms of an oxidative addition reaction by treatment of 24 with trimethylsilyl azide (→ 47), dinitrogen monoxide (→ 48), sulfur (→ 49), selenium (→ 50), and tellurium (→ 51), respectively. The formation of 47 and 48 proceeds with the elimination of nitrogen. The silicon coordination polyhedra of 47–51 in the crystal are strongly distorted tetrahedra. The dinuclear complex 48 contains two monodentate guanidinato ligands each and an Si2O2 ring. Compounds 47 and 49–51 represent the first four-coordinate bis(guanidinato)silicon(IV) complexes with a silicon–nitrogen or silicon–chalcogen double bond (S, Se, Te), respectively. The formation of compounds 47–51 once again emphasizes the different reactivities of the amidinato/guanidinato-analogous silylenes 1 (three-coordinate in the solid-state and four-coordinate in solution) and 24 (three-coordinate both in the solid state and in solution). It is interesting to note that the oxidative addition reactions of the amidinato/guanidinato analogues 1 and 24 with trimethylsilyl azide, dinitrogen monoxide, sulfur, selenium and tellurium lead to products with different silicon coordination numbers. Compounds 8 and 10–12 represent five-coordinate silicon(IV) complexes with two bidentate amidinato ligands, whereas the corresponding analogues 47 and 49–51 are four-coordinate silicon(IV) complexes that contain one bidentate and one monodentate guanidinato ligand. Likewise, compound 9 is a dinuclear five-coordinate silicon(IV) complex with one bidentate and one monodentate amidinato ligand, whereas the dinuclear four-coordinate complex 48 contains two monodentate guanidinato ligands each. The cationic five-coordinate silicon(IV) complexes 52 and 53 were also synthesized in terms of an oxidative addition reaction by treatment of 24 with diphenyl disulfide (→ 52) and diphenyl diselenide (→ 53), respectively. The silicon coordination polyhedra of 52 and 53 are strongly distorted bipyramids, with the sulfur or the selenium atom in an equatorial position. The formation of 52 and 53 is formally based on a heterolytic chalcogen–chalcogen bond activation of diphenyl disulfide and diphenyl diselenide by the bis(guanidinato)silylene 24. In contrast, a homolytic Se–Se bond activation was observed for the reaction of diphenyl diselenide with the analogous bis(amidinato)silylene 1 (formation of the six-coordinate silicon(IV) complex 13). Furthermore, the reactivity of silylene 24 towards small molecules was investigated. The six-coordinate silicon(IV) complexes 55, 57, and 58 and the five-coordinate silicon(IV) complex 56 were prepared in terms of an oxidative addition reaction by treatment of 24 with an excess of carbon dioxide (→ 55), with an equimolar amount of carbon disulfide (→ 56), with a stoichiometric amount of sulfur dioxide (→ 57), and with a vast excess of liquid sulfur dioxide (which served also as the solvent; → 58), respectively. Compound 58 was isolated as a co-crystallizate of the isomers cis-58 and trans-58, which differ in their relative orientation of the two exocyclic oxygen atoms. The silicon coordination polyhedra of 55·C6H5CH3, 57, and 58 are strongly distorted octahedra. The oxygen ligand atoms of the bidentate O,O´-chelating carbonato (55), sulfito (56), and dithionito (57) ligands are found in cis positions each. Compound 58 is the second structurally characterized silicon compound with a bidentate O,O´-chelating dithionito ligand, and 55, 57, and 58 represent very rare examples of main-group element compounds with an O,O´-chelating carbonato, sulfito, or dithionito ligand. Complex 57 and its amidinato analogue 16 represent two of three main-group element compounds with an O,O´-chelating sulfito ligand, and complexes 55 and 58 (together with their amidinato analogues 14 and 17) are even the only known molecular compounds that contain an O,O´-chelating carbonato and non-bridging dithionito ligand, respectively. The formation of 55, 57, and 58 is one of the rare examples of reactions of the amidinato/guanidinato-analogous silylenes 1 and 24 that lead to structurally analogous products (amidinato/guanidinato analogues 14/55, 16/57, and 17/58), whereas in most cases different reactivity profiles were observed. The silicon coordination polyhedron of 56 is a strongly distorted trigonal bipyramid, with the carbon atom in an equatorial position. The five-coordinate silicon(IV) complex 56 with its carbon-bound CS22– ligand represents an unprecedented coordination mode in silicon chemistry, and the formation of 56 is a further example of the different reactivity profiles of the amidinato/guanidinato-analogous silylenes 1 and 24. The bis(amidinato)silylene 1 reacts with carbon disulfide to give the six-coordinate silicon(IV) complex 15 with an S,S´-chelating trithiocarbonato ligand and thereby differs from its guanidinato analogue 56 by both the silicon-coordination number and the coordination mode. KW - Siliciumkomplexe KW - Komplex-Chemie KW - Silylene KW - Hauptgruppen-Chemie KW - Silandiylverbindungen KW - Koordinationslehre Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136377 ER - TY - THES A1 - Ullrich, Stefan T1 - Synthese und Reaktivität NHC-stabilisierter Diborene T1 - Synthesis and reactivity of NHC-stabilized diborenes N2 - In der vorliegenden Arbeit wurde der Fokus auf die Synthese neuer Diborene mit unterschiedlichem Substitutionsmuster gerichtet. Ein Ziel bestand darin, die Gruppe der heteroaromatisch substituierten Diborene, die sich bisher aus den literaturbekannten Thienyl-substituierten Diborenen 59 und 60 zusammensetzt, um weitere Vertreter zu bereichern. In diesem Kontext konnte das Furanyl-substituierte Diboren 85 synthetisiert und charakterisiert werden (Schema 59). Die Festkörperstruktur von 85 zeigt eine koplanare Anordnung zwischen der B=B-Doppelbindung und den Furanylsubstituenten, was als Hinweis auf eine Konjugation zwischen der B=B-Doppelbindung und den Heteroaromaten gewertet werden kann und damit Parallelen zu den Thienyl-substituierten Diborenen 59 und 60 erkennen lässt. Analog dazu weist 85 drei Banden im UV-Vis-Absorptionsspektrum auf, die anhand von quantenchemischen Rechnungen den entsprechenden elektronischen Anregungen zugeordnet werden können. Demzufolge sind die HOMOs ausschließlich an der B=B-Doppelbindung und die LUMOs an den Furanylringen, sowie den NHCs lokalisiert. Cyclovoltammetrische Messungen legen zudem den Elektronenreichtum des Furanyl-substituierten Diborens 85 offen und sprechen für dessen Eignung als starkes, neutrales nichtmetallisches Oxidationsmittel. Darüber hinaus zeigen sie eine teilweise reversible Oxidation zu dem entsprechenden Monoradikalkation auf. Zur Realisierung weiterer heteroaromatisch substituierter Diborene wurden Versuche unternommen die Pyrrolylgruppe als Substituent zu etablieren, die noch elektronenreicher verglichen zu Furanyl- und Thienylgruppen ist. Die erfolgreiche Darstellung des NHC-stabilisierten Diborens 88 konnte mittels NMR-Spektroskopie verifiziert werden, jedoch gelang die weitere Charakterisierung aufgrund der extremen Empfindlichkeit von 88 nicht (Schema 59). Der Einsatz von vergleichsweise großen NHCs wie IMes zur kinetischen Stabilisierung der B=B-Doppelbindung eines Pyrrolyl-substituierten Diborens war nicht erfolgreich. Schema 59: Synthese der NHC-stabilisierten heteroaromatisch substituierten Diborene (85, 88) durch Reduktion der korrespondierenden NHC-Boran-Addukte (84, 87). In unmittelbarer Fortführung der aussichtsreichen Arbeiten von Dr. Philipp Bissinger wurde an geeigneten Syntheserouten zu den NHC-stabilisierten Diborenen 95 und 99 mit derivatisierten Thiophensubstituenten gearbeitet. Ausgehend von den BMes2- und B(FMes)2-funktionalisierten Thiophensubstituenten konnten über mehrere Reaktionssequenzen die korrespondierenden NHC-Boran-Addukte synthetisiert und charakterisiert werden. Die Reduktion dieser NHC-Boran-Addukte erzeugt intensiv gefärbte Lösungen, deren 11B-NMR-spektroskopische Untersuchungen Hinweise auf die Generierung der Diborene 95 und 99 lieferten (Schema 60). Darüber hinaus wird die erfolgreiche Darstellung des Diborens 95 durch Röntgenstrukturanalyse an Einkristallen gestützt. Schema 60: Synthese der Diborene 95 und 99 mit derivatisierten Thiophensubstituenten. Die Isolierung größerer Mengen der Diborene 95 und 99 in analytisch reiner Form gelang jedoch bislang nicht. UV-Vis Absorptionsspektroskopie, Cyclovoltammetrie und TD-DFT-Rechnungen offenbaren die drastische Einflussnahme der BMes2- bzw. der B(FMes)2-Gruppe auf die Eigenschaften der resultierenden Diborene 95 und 99. Vor allem die elektronenziehende B(FMes)2-Gruppe senkt die Grenzorbitale energetisch erheblich ab und verringert das HOMO-LUMO-gap signifikant. Die Hauptabsorptionsbande im UV-Vis-Absorptionsspektrum findet sich im nahinfraroten Bereich (NIR) und ist damit gegenüber jener des Thienyl-substituierten Diborens 59 stark bathochrom verschoben. Ziel anknüpfender Arbeiten der Gruppe um Braunschweig ist die Optimierung der Synthese der Diborene 95 und 99, sowie die weitere Charakterisierung der physikalischen Eigenschaften und die Erforschung der Reaktivitäten. Ein weiteres Ziel dieser Arbeit war die Synthese von Vinyl-substituierten Diborenen. Das NHC-Boran-Addukt 102 konnte, ausgehend von 1,1-Diphenylethen, erfolgreich dargestellt werden. Die Reduktion mit KC8 erzeugte eine intensiv gefärbte Reaktionslösung, deren 11B-NMR-spektroskopische Untersuchung eine gegenüber bekannten Diborenen leicht tieffeldverschobene Resonanz im 11B-NMR-Spektrum zeigt. Die Isolierung und zweifelsfreie Identifizierung des Reaktionsprodukts gelang aufgrund der hohen Empfindlichkeit bislang nicht. Weitere Versuche ein Diboren mit vinylogem Substitutionsmuster zu synthetisieren, in dem die alpha-Position des Vinyl-Substituenten durch eine Phenylgruppe besetzt ist, waren nicht zielführend (Schema 61). Anknüpfend an die Arbeiten von Thomas Steffenhagen, dem die Darstellung des ersten [2]Diboraferrocenophans mit Diborenbrücke 109 und dessen Identifizierung mittels NMR-Spektroskopie gelang, wurden Versuche unternommen, 109 zu kristallisieren. Dabei konnten geeignete Einkristalle zur röntgenstrukturanalytischen Charakterisierung erhalten werden und das Strukturmotiv im Festkörper bestätigt werden (Schema 62). Zentraler Gegenstand dieser Arbeit war neben der Synthese und Charakterisierung von neuen Diborenen die Untersuchung der Chemie der reaktiven B=B-Doppelbindung. Dazu wurden unter anderem Reaktivitätsstudien mit Münzmetallkomplexen durchgeführt, um die Koordinationschemie der heteroaromatisch substituierten Diborene 59 und 85, sowie des Diboren-verbrückten [2]Diboraferrocenophans 109 zu erforschen. Die Umsetzungen von 59, 85 und 109 mit CuCl führten zu den entsprechenden Münzmetall π-Diboren-Komplexen 111-113 (Schema 63). Röntgenstrukturanalytische Untersuchungen zeigen die T-förmige Geometrie der Komplexe, die aus der side-on Koordination des jeweiligen Diborens an das Metallzentrum resultiert. Das erhaltene Strukturmotiv entspricht damit dem der literaturbekannten Münzmetall-π-Diboren-Komplexe 71 und 72. Aufgrund der hohen Empfindlichkeit konnten allerdings weder die Ausbeute bestimmt noch eine detaillierte NMR-spektroskopische Charakterisierung durchgeführt werden. Das photophysikalische Potential dieser Verbindungsklasse wird dennoch in qualitativen Tests durch Bestrahlung mit UV-Licht erkennbar. Die Koordination von Kupferalkinen an die B=B-Doppelbindung der Verbindungen 59, 85 und 109 verläuft demgegenüber selektiv (Schema 63). Die ebenfalls T-förmigen Komplexe (114-116) erweisen sich als deutlich stabiler als die CuCl-Analoga und konnten demzufolge in analysenreiner Form isoliert werden. Allerdings zeigen diese in qualitativen Tests kein Lumineszenzverhalten. Eine genauere Analyse dieser Befunde erfolgte bislang nicht, ist aber aktueller Bestandteil der Forschung der Arbeitsgruppe um Braunschweig. Da die heteroaromatisch substituierten Diborene wegen ihres energetisch hoch liegenden HOMO bereitwillig zur Abgabe von Elektronen tendieren, wie in cyclovoltammetrischen Messungen gezeigt werden konnte, wurde deren potentielle Verwendung als Reduktionsmittel untersucht. Die Diborene 59, 60, 85 und 88 wurden dazu mit dem milden Oxidationsmittel (C7H7)BArf4 oxidiert und die Monoradikalkationen 117-120 mittels EPR-Spektroskopie nachgewiesen (Schema 64). Aufgrund der hohen Empfindlichkeit der Radikale (117-120) konnte keine weitere Charakterisierung erfolgen. Durch Oxidation des Diborens 85 mit Iod konnte Verbindung 121 erhalten werden (Schema 65). Die Festkörperstruktur zeigt einen dreigliedrigen Heterocyclus, bestehend aus einem positiv polarisierten Iodatom, das eine B2-Einheit verbrückt und damit die gleichwertige Beschreibung als Iodoniumion in Analogie zu den gleichnamigen Intermediaten, die bei der Addition von Halogenen an Alkene entstehen, rechtfertigt. Die Hydroborierungsreaktion ist eine bekannte Additionsreaktion von H-B-Bindungen an C=C-Doppelbindungen und konnte in dieser Arbeit erfolgreich auf die alkenanalogen Diborene übertragen werden. Die Reaktion des heteroaromatisch substituierten Diborens 85 mit Catecholboran ergibt das Triboran 122, das strukturell den klassischen Hydroborierungsprodukten von Alkenen gleicht. In Analogie dazu wird von einer syn-Addition der H-B-Bindung an die B=B-Doppelbindung des Diborens ausgegangen. Wird hingegen das Hydroborierungsreagenz Durylboran eingesetzt, so findet eine nicht-klassische Addition der H-B-Fragmente an die B=B-Doppelbindung statt. Der genaue Mechanismus, der zur Bildung des Triborans 124 führt, ist bisher nicht aufgeklärt (Schema 66). Wird das [2]Diboraferrocenophan 109, das ein cyclisches, cis-konfiguriertes Diboren als Brücke beinhaltet, mit Catecholboran bzw. Durylboran umgesetzt, so werden ebenfalls Triborane (123 und 125) generiert, die sich jedoch von den Triboranen 122 und 124 in ihrer Struktur grundlegend unterscheiden (Schema 67). Ein Erklärungsansatz hierfür könnte in der hohen Ringspannung im cyclischen Diboren-verbrückten [2]Diboraferrocenophan 109 verglichen mit dem acyclischen heteroaromatisch substituierten Diboren 85 liegen. Ein Schritt zur Bildung des Triborans 123 aus der Umsetzung von 109 mit Catecholboran findet offenbar, wie die Festkörperstruktur von 123 nahe legt, durch eine Ringerweiterung des Fünfringes des Catecholborans zu einem Sechsring durch Insertion eines Boratoms der Diborenbrücke statt. Um genauere Aussagen zur Bildung von 123 wie auch 125 treffen zu können, sind quantenchemische Studien zu diesem Thema aktuelles Arbeitsgebiet der Arbeitsgruppe um Braunschweig. Die Reaktivität der elektronenreichen B=B-Doppelbindung der heteroaromatisch substituierten Diborene wurde in der vorliegenden Arbeit gegenüber der Substanzklasse der Chalkogene überprüft. Dabei stellte sich heraus, dass die Reaktionen der Diborene 60 und 85 mit elementarem Schwefel durch reduktive Insertion von Schwefel in die B=B-Doppelbindung zur Bildung von Produktgemischen aus Trithiadiborolanen und Diborathiiranen führen. Es zeigte sich, dass die gezielte Darstellung der Trithiadiborolane 126 und 127 durch Einwirkung von Ultraschall gelingt, wohingegen das Thiadiborolan 128 selektiv durch Reaktion des Diborens 85 mit Ethylensulfid oder einem Überschuss an Triphenylphosphansulfid zugänglich gemacht werden kann (Schema 68). Die Reaktion der Diborene 60 und 85 mit elementarem Selen bzw. elementarem Tellur ergibt die entsprechenden Diboraselenirane (129 und 130) bzw. Diboratellurirane (131 und 132), die durch reduktive Insertion des entsprechenden Chalkogens in die B=B-Doppelbindung entstehen (Schema 69). Eine vollständige Spaltung der B=B-Bindung durch Insertion weiterer Äquivalente Selen bzw. Tellur ist auch unter Behandlung mit Ultraschall nicht zu beobachten. Das Furanyl-substituierte Diboren 85 konnte zudem mit chalkogenhaltigen Verbindungen erfolgreich umgesetzt werden. 85 reagiert mit Diphenyldisulfid und Diphenyldiselenid selektiv durch Addition der E-E-Bindung an die B=B Doppelbindung (Schema 70). Die diaseteroselektiven, analysenreinen 1,2-Additionsprodukte (133, 137) lassen auf einen Mechanismus, der in Analogie zu den Additionen von Disulfiden bzw. Diseleniden an Alkene über die Zwischenstufe entsprechender Sulfonium- bzw. Seleniumionen verläuft, folgern. Alternativ dazu muss eine konzertierte syn-Addition der E-E-Bindung in Erwägung gezogen werden. Demgegenüber konnten aus den Umsetzungen des Thienyl-substituierten Diborens 60 mit Diphenyldisulfid, Diphenyldiselenid und isoPropylthiol keine analysenreinen Produkte isoliert werden. Das Diboren-verbrückte [2]Diboraferrocenophan 109 reagiert mit Diphenyldisulfid in einer 1,2-Addition der S-S-Bindung an die B=B-Doppelbindung, wobei ein sp2-sp3-Diboran durch Abspaltung eines NHCs gebildet wird. Die verkürzte Fe-Bsp2-Bindungslänge lässt auf eine Stabilisierung des sp2-Boratoms durch das Fe-Zentrum schließen. In einer vergleichbaren Reaktion mit Dimethyldisulfid konnte das identische Strukturmotiv, ein sp2-sp3-Diboran, erhalten werden (Schema 71). Die Reaktion des [2]Diboraferrocenophans 109 mit Diphenyldiselenid führt zur vollständigen Spaltung der B=B-Doppelbindung unter Addition zweier Se-Se-Bindungen von zwei Äquivalenten Diphenyldiselenid und der damit einhergehenden Bildung der acyclischen bisborylierten Ferrocenspezies 139 (Schema 72). Die Bildung des einfachen Additionsprodukts, was wahrscheinlich intermediär auftritt, wurde auch bei Umsetzung mit nur einem Äquivalent Diphenyldiselenid nicht beobachtet. Die Umsetzung des Furanyl-substituierten Diborens 85 mit isoPropylthiol verläuft unter Addition der H-S-Bindung an die B=B-Doppelbindung, wobei in allen Fällen das syn-Additionsprodukt 142 erhalten wurde (Schema 72). Die von Thomas Steffenhagen beschriebene Addition der H-S-Bindung von isoPropylthiol an die B=B-Doppelbindung des [2]Diboraferrocenophans 109 ergibt dagegen selektiv ein anti-Additionsprodukt. In einer vergleichbaren Reaktion des [2]Diboraferrocenophans 109 mit tert-Butylthiol wurden anhand von NMR-Spektroskopie Indizien für die Bildung eines 1,2-Additionsproduktes erhalten. Allerdings gelang die Isolierung eines analysenreinen Produktes bislang nicht. N2 - Initially the focus of this work was the synthesis and characterization of novel diborenes bearing a variety of boron substituents. Of particular interest was the introduction of new heterocyclic functionalized diborenes synthesized in a manner akin to two literature-known thienyl functionalized diborenes (59 and 60). Through these studies, the synthesis and charaterization of the furanyl-functionalized diborene 85 has been achieved (scheme 1). The solid-state structure of 85 displays coplanarity between the respective B2 unit and the furanyl rings, indicating some degree of pi-conjugation between the heterocyclic substituents and the central B2 unit. This structural feature closely parallels the thienyl-functionalized diborenes, which also exhibit coplanarity between the central B2 unit and the peripheral heterocycles as well. Similar to 59 and 60, the furanyl-functionalized diborene 85 reveals three absorption bands in the UV-vis spectrum. According to TD-DFT calculations the excitations can be assigned to transitions between the frontier orbitals. The HOMOs are exclusively located at the central B=B double bond, whereas the LUMOs are predominantly delocalized over the furanyl substituents and the NHCs. Cyclovoltammetry measurements prove that the diborene 85 is extraordinarily electron rich, which is in accordance with previous data taken from the characterization of the thienyl-substituted diborenes (59, 60). Therefore the heterocyclic-functionalized diborenes can be considered strong electron donors. Respectively, these species rank among the class of strong, neutral non-metallic reducing agents. Moreover the partial reversible reduction wave suggests the formation of a stable monoradical cation, which was also observed in similar cyclovoltametry measurements of the related diborenes 59 and 60. A synthetic approach to establish a pyrrolyl-functionalized diborene was also investigated. The successful synthesis of the IMe-stabilized diborene 88 was verified by NMR spectroscopy (scheme 1). Further charaterization of 88 failed because of the instability of the compound in both the solid state and in solution. The application of a more sterically demanding NHC (IMes) led only to the respective NHC-borane adduct 89, which could not be reductively coupled to the desired diborene. In a continuation of the promising work of Dr. Philipp Bissinger, the search for a reliable synthesis route to the heterocyclic-substituted diborenes 95 and 99 was examined (scheme 2). These species consisted of thiophene-derived heterocyclics substituted with BMes2 and B(FMes)2 groups, respectively. Starting from the BMes2- and B(FMes)2-functionalized thiophene precursors, the synthesis of the respective NHC-borane adducts was first accomplished over several reaction steps. The reduction of these adducts produced intensely colored solutions of the respective diborenes 95 and 99 as confirmed by 11B NMR spectroscopic investigations. The diborene 95 was structurally confirmed by X-ray diffraction studies of suitable crystals, however, isolation of the pure compounds (95, 99) in larger amounts for detailed NMR spectroscopic studies could not be achieved. Investigations via UV-vis spectroscopy, cyclovoltammetry and TD-DFT-calculations revealed the significant influence of the BMes2 and the B(FMes)2 groups on the chemical and photophysical properties of both diborenes 95 and 99. The strong electron withdrawing B(FMes)2 group was found to lower the energy of the LUMO, subsequently decreasing the HOMO-LUMO energetic gap dramatically. The main absorption band in the UV-vis spectrum of 99 is detected in the near infrared (NIR) range, bathochromically shifted in comparison to the parent thienyl-substituted diborene 59. A following prospective study in the Braunschweig group could be the optimization of the synthesis of these diborenes, accompanied by the characterization and exploration of their reactivity patterns. Another part of this thesis dealt with the synthesis of diborenes bearing vinyl-group functionalized boron precursors. Based on the 1,1-diphenylethene starting material, the corresponding NHC-borane adduct was generated through several sequential reactions. Reduction with KC8 afforded an intensely colored reaction mixture that upon filtration had a 11B NMR resonance slightly downfield shifted with respect to the literature-known diborenes. However, isolation of the product and its identification were unsuccessful. Further attempts to prepare a diborene bearing a vinyl substituent with a phenyl group in the alpha-position were attempted but were ultimately unrewarding (scheme 3). Extending the work of Thomas Steffenhagen on the synthesis of the first diborene-bridged [2]diboraferrocenophane 109, experiments aimed at crystallizing 109 were successfully performed. Single crystal X-ray diffraction experiments confirmed the highly strained structure [2]diboraferrocenophane 109 bearing a cis-configured bridging diborene (scheme 4). Besides the synthesis and characterization of new diborenes, exploration of the chemistry of the reactive B=B double bond was also a major interest in this thesis. Therefore diborene reactivity studies with coinage metal complexes were carried out in order to evaluate the ability of the heterocyclic-substituted species 59, 85 and the diborene-bridged [2]diboraferrocenophane (109) to interact with these metal species. The reactions of 59, 85 and 109 with CuCl led to the formation of the corresponding copper complexes 111-113 (scheme 5). Single X-ray crystallographic analysis of 111 and 112 revealed a T-shaped geometry for these complexes. This geometry results through side-on coordination of the diborene to the metal center. The structural motif is equivalent to those of literature known diborene CuCl pi-complexes. Due to their instability, further characterization of the complexes 111-113 could not be achieved. In addition, the potential of the diborene CuCl pi-complexes was realized qualitatively via irradiation with UV light, indicating strong luminescence. The coordination of copper alkyne complexes at the B=B double bond of 59, 85 and 109 proceeded selectively and resulted in the formation of T-shaped complexes 114-116, which are structurally similar to the CuCl complexes 111 and 112 (scheme 5). Remarkably, 114 and 116 display enhanced stability compared with the CuCl complexes 111 and 112 and could be characterized via NMR spectroscopy. However contrary to the CuCl complexes, the diborene Cu alkynyl  complexes 114-116 showed no signs of luminescence while under UV irradiation. A concurrent detailled study of these findings is underway in the Braunschweig group. Owing to their energetically high-lying HOMOs, diborenes can easily be oxidized as shown in CV measurements. Therefore their application as reducing agent was explored in this thesis. The diborenes were utilized in redox reactions with (C7H7)BArf4 to yield the monoradical cations 117-120 (scheme 6). These species could be subsequently be verified by EPR spectroscopic measurements. Due to the instability of the radical species 117-120, further characterization could not be accomplished. Upon oxidation with elemental iodine (I2), the diborene 85 could be succcessfully converted to the dicationic species 121. This species can be considered an iodonium ion analogous to the compounds generated in reactions of alkenes with iodine (scheme 7). The solid state structure shows a three-membered heterocyclic ring in which the positively charged iodine atom symmetrically bridges the two boron atoms. The diborene species were tested for hydroboration reactivity in a manner analogous to the well-known hydroboration reaction between borane B-H bonds and C=C double bonds. This work utilized the B=B double bonds of diborenes to serve as alkene mimics. The reaction of the furanyl-substituted diborene 85 with catecholborane afforded the triborane 122. This product is presumably formed via syn-addition of the borane B-H bond to the diborene B=B double bond. Treatment of the same diborene 85 with durylborane led to the formation of a non-classical species in contrast to known alkene hydroboration reactivity. As can be seen in Scheme 8, the species formed seemingly arises upon cleavage of a B-Cfuryl bond (scheme 8). The detailled mechanism for this reaction has thus far not been elucidated. In reactions of 109 with catecholborane or durylborane, the triboranes 123 and 125 were generated, respectively (scheme 9). The structural motifs of both species show the ring expansion of the diboraferrocenophane that likely occurs through the insertion of the BDur and BCat fragments into the diborene B=B double bond. Additionally, in the case of the reaction with catecholborane, one boron atom must insert into the B-O bond to yield compound 123. The reaction patterns between the heterocycle-substitued diborene 85 and the [2]diboraferocenophane 109 towards hydroboration reagents have been shown to differ dramatically. One reason for this divergent reactivity could be the tendency of the diborene-bridged [2]diboraferrocenophane 109 to alleviate some of its ring strain. To gain further knowledge into this reactivity, theoretical studies are currently underway in the Braunschweig group. The electron rich B=B double bond of diborenes was further exploited in reactivity studies with elemental chalcogen reagents as well as chalcogen-containing reagents. The reaction products of the heterocycle-substituted diborenes 60 and 85 with elemental sulfur proved to be dependent upon the reaction conditions. Reactions performed at room temperature were observed to generate a mixture of diborathiiranes and trithiadiborolanes, whereas the selective formation of the trithiadiborolanes (126, 127) has been accomplished by ultrasonification of the reaction mixture. The trithiadiborolanes 126 and 127 are formed by the reductive insertion of three sulfur atoms into the B=B double bond while the partial insertion of one sulfur atom affords the diborathiirane 128. Further reactivity studies were conducted with triphenylphosphine sulfide and ethylene sulfide reagents in order to probe the application of sulfur-atom-donor compounds. These test reactions yielded successful transfer of the sulfur atom to the B=B double bonds of the diborene 85 (scheme 10). The reactions of diborenes 60 and 85 with elemental selenium or tellurium exclusively afforded the heterocyclic three-membered diboraseleniranes 129 and 130 and diboratelluriranes 131 and 132, respectively (scheme 11). The formation of similar five-membered heterocyclic compounds relative to the trithiadiborolanes was not observed under ultrasonification of the reaction mixtures. Besides the reactions with elemental chalcogens, the heterocyclic-substituted diborene 85 was succesfully reacted with diorganyldichalcogens (diphenyl disulfide and diphenyl diselenide), whereby 1,2-addition of the E-E single bond of the dichalcogens to the B=B double bond was observed (scheme 12). In contrast, the reaction of the thienyl-substituted diborene with diphenyl diselenide led to the formation of the desired compound 138, however isolation of the pure product was not successful. The structural motifs of 133 and 137 are indicative of either a syn-addition mechanism or a thiol-ene Michael-addition-type mechanism. A radical mechanism can be ruled out, since only one stereoisomer was generated through these studies. In order to validate these proposed mechanisms, ongoing theoretical studies are being performed by the Braunschweig group. The reaction of diborene-bridged [2]diboraferrocenophane 109 with diphenyl disulfide resulted in the formation of a sp2-sp3 diborane through cleavage of one B-CNHC bond. The short Fe-Bsp2 distance indicates some interaction between the Fe core and the Bsp2 atom. In a similar reaction the [2]diboraferrocenophane 109 formed an identical sp2-sp3 diborane when reacted with dimethyl disulfide (scheme 13). The B=B double bond of [2]diboraferrocenophane 109 was completely cleaved upon addition of two equivalents of diphenyl diselenide, yielding compound 139 (scheme 14). The simple 1,2-addition product of one Se-Se bond to the B=B double bond could not be detected or isolated as an intermediate, even if only one equivalent of diphenyl dislenide was applied. The reactions of the heterocycle-substituted diborenes 85 and 60 with isopropyl mercaptan result in addition of one H-S bond to the B=B double bonds to yield the syn-addition products 142 and 143 (scheme 14). In constrast, the anti-addition product 110 of the reaction of [2]diboraferrocenophane 109 with isopropyl mercaptan has been recently isolated by Thomas Steffenhagen. The reaction of 109 with a tert-butyl-mercaptan was also attempted. NMR spectroscopic investigations indicated the successful formation of the 1,2-addition product. Since attempts to crystallize 144 did not succeed, the structure of 144 could not be confirmed. KW - Mehrfachbindung KW - Bor KW - Ferrocenophane KW - Diboren KW - NHC KW - Heterocyclische Carbene <-N> Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140485 ER - TY - THES A1 - Brede, Franziska Andrea T1 - Synthesestrategien und Struktur-Eigenschafts-Beziehungen anorganisch-organischer Hybridmaterialien basierend auf 3d-Übergangsmetallchloriden und N-heterozyklischen Liganden T1 - Synthesis strategies and structure-property relations of inorganic-organic hybrid materials based on 3d-transition metal chlorides and N-heterocyclic ligands N2 - Die vorliegende Arbeit umfasst die Synthese, die Untersuchung von Struktur-Eigenschafts-Beziehungen und Eigenschaftsmodifikationen von Komplexen und Koordinationspolymeren basierend auf den 3d-Übergangsmetallchloriden von Mn, Fe, Co sowie Zn und N-heterozyklischen Liganden. Durch die Kombination von mechanochemische Umsetzungen, mikrowellenassistierten Synthesen, solvensassistierten, solvothermalen und solvensfreien Reaktionen zu verschiedenen Synthesestrategien wurden 23 neue Koordinationsverbindungen synthetisiert und charakterisiert. Ausgehend von den auf mechanochemischem Weg synthetisierten, monomeren Precursor-Komplexen [MCl2(TzH)4] (M = Mn und Fe) konnten die höhervernetzten Koordinationspolymere 1∞[FeCl(TzH)2]Cl und 1∞[MCl2(TzH)] (M = Fe und Mn) durch thermische und mikrowelleninduzierte Konversionsreaktionen als phasenreine Bulkprodukte erhalten werden. Die sukzessive Abgabe organischer Liganden und die damit verbundene Umwandlung in die höhervernetzten Spezies wurden dabei mittels temperaturabhängiger Pulverdiffraktometrie und simultanem DTA/TG-Verfahren analysiert. Durch gezielte Variation der Lösungsmittel beim Liquid-assisted grinding, der mechanochemischen Synthese unter Zugabe einer flüssigen Phase, konnten die beiden polymorphen Koordinationspolymere α-1∞[MnCl2(BtzH)2] und β-1∞[MnCl2(BtzH)2] erhalten werden, die im monoklinen bzw. orthorhombischen Kristallsystem kristallisieren. Solvensassistierte Umsetzungen von MnCl2 mit 1,2,4-1H-Triazol (TzH) unter Zugabe von Hilfsbasen resultierten unter anderem in der Bildung der dreidimensionalen Koordinationspolymere 3∞[MnCl(Tz)(TzH)] und 3∞{[Mn5Cl3(Tz)7(TzH)2]}2·NEt3HCl. Die Untersuchung von Struktur-Eigenschafts-Korrelationen erfolgte systematisch an ausgewählten Verbindungen hinsichtlich ihrer dielektrischen Eigenschaften. Dabei wurden die Einflüsse intra- und intermolekularer Wechselwirkungen auf die strukturelle Rigidität und die daraus folgenden Polarisierbarkeitseigenschaften analysiert und miteinander verglichen. Die gemessenen dielektrischen Konstanten erstrecken sich von Werten im high-k-Bereich für monomere Komplexe bis hin zu den nahezu frequenzunabhängigen low-k-Werten der eindimensionalen Koordinationspolymere 1∞[MnCl2(TzH)] und 1∞[MnCl2(BtzH)2] sowie der Komplexe [ZnCl2(TzH)2] und [ZnCl2(BtzH)2]·BtzH. Eigenschaftsmodifikationen und -optimierungen der synthetisierten Verbindungen er-folgten zum einen durch Erzeugung flexibler Kunststofffilme, in welche die eindimensionalen Koordinationspolymere 1∞[MCl2(TzH)] (M = Fe und Mn) eingebettet wurden. Zum anderen konnten in mechanochemischen Umsetzungen superparamagnetische Kompositpartikel bestehend aus einem Fe3O4/SiO2-Kern und einer kristallinen [ZnCl2(TzH)2]-Hülle erhalten werden, die in situ aus den Edukten ZnCl2 und TzH synthetisiert wurde. N2 - This thesis deals with the synthesis, the investigation of structure-property-relations and property modifications of complexes and coordination polymers based on 3d-transition metal chlorides of Mn, Fe, Co and Zn and N-heterocyclic ligands. The combination of different synthesis strategies including mechanochemistry, micro-wave-assisted reactions, solvothermal, solvent-assisted and solvent-free approaches results in the formation and characterization of 23 new coordination compounds. The utilization of the mechanochemically synthesized, monomeric complexes [MCl2(TzH)4] (M = Mn and Fe) as precursors yield the higher dimensional coordination polymers 1∞[FeCl(TzH)2]Cl and 1∞[MCl2(TzH)] (M = Fe and Mn) as phase-pure bulk products by thermal or microwave-induced conversion reactions. The stepwise release of organic ligands and the formation of the high-temperature species was monitored and determined via temperature-dependent powder diffraction as well as simultaneous DTA/TG analysis. Depending on the utilized solvent, liquid-assisted grinding of MnCl2 and BtzH leads to the formation of the two polymorphous coordination polymers α-1∞[MnCl2(BtzH)2] and β-1∞[MnCl2(BtzH)2], crystallizing either in the orthorhombic or in the monoclinic crystal system. Solvothermal reactions of MnCl2 and 1,2,4-1H-triazole (TzH) with additional amounts of assistant bases exhibit the two three-dimensional coordination poly-mers 3∞[MnCl(Tz)(TzH)] and 3∞{[Mn5Cl3(Tz)7(TzH)2]}2·NEt3HCl. The investigation of structure-property-correlations was carried out systematically by determining the dielectric properties of selected compounds. The influences of intra- and intermolecular interactions on the structural rigidity and the resulting polarizabil-ity were investigated. The dielectric constants range from high-k values for monomeric complexes to almost frequency-independent low-k values for the one-dimensional co-ordination polymers 1∞[MnCl2(TzH)] and 1∞[MnCl2(BtzH)2] as well as the complexes [ZnCl2(TzH)2] and [ZnCl2(BtzH)2]·BtzH. On the one hand, modifications of the compounds' properties were achieved by em-bedding the coordination polymers 1∞[MCl2(TzH)] (M = Fe and Mn) in flexible plastic films. On the other hand, via mechanochemical approaches, a superparamagnetic com-posite material was obtained by in situ formation of the crystalline complex [ZnCl2(TzH)2] (3) on Fe3O4/SiO2 microparticle cores. KW - Komplexe KW - Mechanochemie KW - Mikropartikel KW - Heterocyclische Verbindungen KW - Übergangsmetallchloride KW - Thermische Konversion KW - Organisch-anorganischer Hybridwerkstoff KW - Koordinationsverbindung KW - Struktur-Eigenschafts-Beziehung KW - Permittivität Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138146 ER - TY - THES A1 - Molitor, Sebastian T1 - Stabilisierung und Reaktivität carbenoider Verbindungen T1 - Stabilization and Reactivity of carbenoid compounds N2 - Ziel der vorliegenden Doktorarbeit war die Stabilisierung und Isolierung von Alkalimetall-Carbenoiden sowie die Entwicklung neuer Anwendungsgebiete dieser Verbindungen. Dabei konzentrierte sich der erste Teil auf die thermische Stabilität und die Kontrolle der Reaktivität dieser Verbindungen, während der zweite Teil die Stabilitäts-Reaktivitäts-Beziehung der Verbindungsklasse beinhaltet. Stabilität von M/X-Carbenoiden Ein Schwerpunkt lag dabei auf der Synthese, den Eigenschaften und der Reaktivität Silyl-substituierter Carbenoide. Diese wurden durch Deprotonierung der Fluor- und Chlorvorstufen mit einer geeigneten Alkalimetall-Base zunächst in situ erzeugt (Abb. 4.1), da sie trotz stabilisierender Gruppen thermisch instabil waren und sich meist bei Temperaturen über –40 °C zersetzten. Durch die Einführung der Thiophosphoryl- und Silylgruppe konnten erstmals systematische Studien zu den Eigenschaften und Stabilitäten der Carbenoide mit unterschiedlichen M/X-Kombinationen durchgeführt werden. Hierbei gelang es neben dem Einfluss der Abgangsgruppe auch den Einfluss der unterschiedlichen Alkalimetalle zu untersuchen, welcher in der Literatur bisher nahezu unbeachtet geblieben war. Abb. 4.1. (oben) Synthese von 52-M und 53-M; (unten) Molekülstrukturen der Carbenoide 53-Na und 53-K im Festkörper. Durch NMR-spektroskopische Untersuchungen konnte die erfolgreiche Synthese der Fluor- bzw. Chlor-Carbenoide 52-M und 53-M (mit M = Li, Na, K) nachgewiesen werden. Diese zeigten im 31P{1H}-NMR-Spektrum nur eine geringe Verschiebung verglichen mit den protonierten Vorstufen, allerdings bestätigte das Fehlen des Signals für das Brückenwasserstoffatom im 1H-NMR-Spektrum die erfolgreiche Synthese der Verbindungen. Das Signal des carbenoiden Kohlenstoffatoms im 13C{1H}-NMR-Spektrum zeigte bei den Chlor-Carbenoiden nur eine geringe Änderung verglichen mit der protonierten Ausgangsverbindung. Die um etwa 35 Hz erhöhte 1JCP-Kopplungskonstante ließ jedoch auf einen erhöhten s-Charakter der P–C-Bindung und damit auf ein sp2-hybridisiertes Kohlenstoffatom schließen. Durch VT-NMR-Messungen konnte die thermische Instabilität der Carbenoide bestätigt und die genauen Zersetzungstemperaturen bestimmt werden. Dabei zeigte sich, dass 53-Li mit einer Zersetzungstemperatur von TD = 0 °C thermisch am instabilsten ist. Durch das Ersetzten von Lithium durch Natrium konnte die Stabilität des Carbenoids drastisch erhöht werden, was sich in einer Zersetzungstemperatur von TD = 30 °C widerspiegelt. Diese Beobachtung ist entgegen des Trends der Stabilität von einfachen Alkalimetallorganylen und hebt die Besonderheit der Alkalimetall-Carbenoide hervor. Es konnte dabei auch gezeigt werden, dass durch Kalium keine weitere Stabilisierung erzielt werden konnte. Allgemein ähneln sich die beobachteten Natrium- und Kalium-Carbenoide 53-Na und 53-K sowohl in ihrer thermischen Stabilität als auch in ihren NMR-spektroskopischen Eigenschaften. 53-Na und 53-K konnten – im Gegensatz zur Lithiumverbindung – in sehr guten Ausbeuten als gelbe Feststoffe isoliert und kristallographisch untersucht werden (Abb. 4.1). Damit stellen 53-Na und 53-K die ersten isolierten Carbenoide der schweren Alkalimetalle dar. 53-Na bildet ein Monomer, 53-K ein zentrosymmetrisches Dimer im Festkörper. Beide Carbenoide bilden sogenannte Carben-Donor-Komplexe mit einem M–Cl-Kontakt, aber keinerlei Wechselwirkung zwischen dem Metall und dem carbenoiden Kohlenstoffatom aus. Die beobachtete C1–Cl-Bindungsverlängerung um Δd = 0.05 Å (53-Na) bzw. Δd = 0.03 Å (53-K) bestätigt die erhöhte Polarisierung der C1–Cl-Bindung, was typisch für den carbenoiden Charakter ist. Durch elektrostatische Wechselwirkungen und negativer Hyperkonjugation wird die negative Ladung am carbenoiden Kohlenstoff stabilisiert, was sich in einer Verlängerung der C1–P- bzw. C1–Si-Bindung und einer Verkürzung der P–S-Bindung äußert. Die erhöhte Stabilität von 53-Na und 53-K verglichen mit der Lithiumverbindung wurde auf die erhöhte Polarität, geringere Lewis-Acidität und den erhöhten ionischen Charakter der M–C-Wechselwirkung zurückgeführt. Diese Vermutung führte zur Annahme, dass eine Manipulation der M–C-Wechselwirkung die Möglichkeit bietet, die Stabilität von Carbenoiden zu kontrollieren. Durch die Koordination starker Donorliganden wie 12-Krone-4 im Fall von Lithium bzw. 18-Krone-6 für Kalium konnten die entsprechenden Carbenoide synthetisiert und strukturell charakterisiert werden. Dabei bildeten sich durch die Koordination des Kronenethers separierte Ionenpaare im Festkörper, was zur gewünschten thermischen Stabilisierung führte. So zeigte 53-Li•(12-Krone-4)2 eine erhöhte Zersetzungstemperatur von TD = 20 °C im Vergleich zum THF-Addukt [(53-K)2•(18-Krone-6): TD = 40 °C]. Die für die Chlor-Carbenoide 53-M durchgeführten Untersuchungen wurden im Anschluss auf die Fluor-Carbenoide 52-M erweitert. Dabei belegten NMR-spektroskopische Studien die erwartungsgemäß geringere thermische Stabilität der Fluor-Systeme. Im Fall von 52-Li konnte eine Zersetzungstemperatur von TD = –70 °C bestimmt werden, während sich 52-Na und 52-K mit Zersetzungstemperaturen von TD = 10 °C (52-Na) bzw. 30 °C (52-K) – analog zu den Chlor-Carbenoiden – als thermisch deutlich stabiler erwiesen. Das carbenoide Kohlenstoffatom erfährt im 13C{1H}-NMR-Spektrum eine für Carbenoide typische Tieffeldverschiebung im Vergleich zur protonierten Vorstufe. Diese fällt im Fall von 52-Li (ΔC = 33 ppm) etwas größer aus als für 52-Na (ΔC = 32 ppm) bzw. 52-K (ΔC = 30 ppm). Neben der Bestimmung der Zersetzungstemperatur der Carbenoide gelang es ebenfalls, die Zersetzungsprodukte der M/Cl- und M/F-Carbenoide aufzuklären und zu charakterisieren. So konnte gezeigt werden, dass sich die Chlor-Carbenoide selektiv zur sesselartigen Verbindung 57 zersetzen (Abb. 4.2). Bei den Fluor-Carbenoiden 52-M kommt es hingegen zur Bildung unterschiedlicher Verbindungen. Diese werden jedoch vermutlich alle über das Thioketon-Intermediat TK gebildet, das durch Wanderung des Schwefels der Thiophosphorylgruppe zum carbenoiden Kohlenstoffatom entsteht und durch Abfangreaktion mit Methyllithium zum lithiierten Thioether 60 nachgewiesen werden konnte. In Abhängigkeit vom Metall und Abgangsgruppe werden anschließend unterschiedliche Reaktionswege durchlaufen. Gemäß des HSAB-Konzepts erfolgt im Fall des Lithium-Carbenoids der Angriff am Schwefelatom des Thioketons, wobei die zyklische Verbindung 57 gebildet wird. Beim weicheren Kalium-Carbenoid 52-K kommt es selektiv zur Bildung des Thioenolats 65, während für 52-Na ein Gemisch aus 57 und 65 beobachtet wird. Abb. 4.2. (oben) Zersetzungsreaktionen der M/X-Carbenoide 52-M und 53-M; (unten) Molekülstrukturen der Verbindungen 60 und 65 im Festkörper. Die zu 52 analogen bromierten und iodierten Ausgangsverbindungen eigneten sich nicht zur Darstellung von Carbenoiden. Hier gelang es nicht durch Deprotonierung die Carbenoide zu synthetisieren. Le Floch und Mitarbeiter konnten bereits 2007 zeigen, dass durch eine zweite stabilisierende Thiophosphorylgruppe das Li/Cl-Carbenoid 14 bis zu einer Temperatur von 60 °C keine Zersetzungsreaktionen zeigt. Basierend auf diesen Überlegungen wurden – analog zu den Silyl-substituierten Carbenoiden – der Einfluss der unterschiedlichen Alkalimetalle und Halogene auf die Eigenschaften und die Stabilität der entsprechenden Carbenoide untersucht. Zur Darstellung der Carbenoide wurden die protonierten Vorstufen 69-71 mit einem leichten Überschuss an Alkalimetallhexamethyldisilazan umgesetzt. Die Fluor-Carbenoide 69-M zeigten dabei wieder die für Carbenoide typische Tieffeldverschiebung des carbenoiden Kohlenstoff-atoms im 13C{1H}-NMR-Spektrum verglichen mit der protonierten Vorstufe. Im Fall der Chlor- und Brom-Carbenoide 70-M bzw. 71-M sind ähnliche Signalverschiebungen zu beobachten, allerdings fallen diese schwächer aus. Erneut sind starke spektroskopische Ähnlichkeiten zwischen den Natrium- und Kalium-Vertretern festzustellen, während die Lithium-Carbenoide eine gewisse Ausnahmestellung einnehmen. Abb. 4.3. (oben) Synthese von 69-M, 70-M und 71-M; (unten) Molekülstrukturen der Bis(thiophosphoryl)-substituierten Carbenoide 69-Na•PMDTA, 70-Na und 70-K im Festkörper. Durch VT-NMR-Messungen konnte gezeigt werden, dass alle Carbenoide bis Temperaturen von 60 °C keine Zersetzungsreaktionen eingehen. So gelang es, alle Carbenoide als gelbe Feststoffe zu isolieren. Einzig das Li/F-Carbenoid erwies sich bei Raumtemperatur als instabil und wies eine Zersetzungstemperatur von TD = 0 °C auf. Damit ist es das bis heute stabilste Li/F-Carbenoid das in der Literatur bekannt ist. Durch röntgenkristallographische Untersuchungen konnten alle Chlor- bzw. Brom-Carbenoide 70-M bzw. 71-M sturkturell charakterisiert werden. Dabei ist es gelungen, zusätzlich zu den bereits bekannten Strukturen schwerer Alkalimetall-Carbenoide, einige Metall-Halogen-Kombinationen erstmalig strukturell zu charakterisieren. Durch den Zusatz von PMDTA gelang es auch das erste Na/F-Carbenoid zu charakterisieren. Abbildung 4.3 zeigt exemplarisch einige Vertreter der neuen Strukturen. Auffällig ist dabei, dass in Abhängigkeit des Metalls ähnliche Strukturen erhalten wurden. So bilden die Kalium-Vertreter 70-K und 71-K wieder ein zentrosymmetrisches Dimer aus, während die Natrium-Vertreter 69-Na•PMDTA, 70-Na, 71-Na und 71-Li als Monomere vorliegen. Bei den beschriebenen Carbenoiden ist nur bei 69-Na•PMDTA und 70-Na die für Carbenoide typische C1–X-Bindungsverlängerung beobachtbar, was auf deren erhöhten carbenoiden Charakter im Vergleich mit den anderen Systemen schließen lässt. Zusammenfassend lässt sich folgender allgemeiner Trend formulieren: Der carbenoide Charakter fällt in der Gruppe der Halogene von F zu I und in der Gruppe der Alkalimetalle gemäß Li > Na ≥ K. Die thermische Stabilität zeigt gleichzeitig einen inversen Trend (Abb. 4.4). Reaktivität, carbenoider Charakter Thermische Stabilität Abb. 4.4. Tendenzen in den Eigenschaften von Carbenoiden. Reaktivität und Anwendung Nachdem die Carbenoide auf ihre Stabilitäten, NMR-spektroskopischen und strukturellen Eigenschaften untersucht wurden, stand in weiteren Studien die Reaktivität der Carbenoide im Vordergrund. Hierbei lag der Fokus vor allem auf E–H-Bindungsaktivierungsreaktionen, da es bislang nur wenige Beispiele für Carbenoide mit Hauptgruppenelementverbindungen gibt. Zunächst sollte die Reaktivität von 53-Li gegenüber Boranen untersucht werden. Hierbei kommt es zur selektiven Bildung des Lithiumborats 79 (Abb. 4.5). An das ehemalige carbenoide Kohlenstoffatom ist dabei eine BH3-Einheit und ein weiteres Wasserstoffatom gebunden. Durch theoretische und experimentelle Untersuchungen konnte der Reaktionsmechanismus zu 79 aufgeklärt werden, der als schrittweise B–H-Aktivierung beschrieben werden kann. So kommt es zunächst zur Boratbildung und anschließend zum Cl/H-Austausch mit Hilfe eines weiteren Boran-Moleküls. Dies konnte durch Deuterierungsexperimente mit BD3•THF experimentell bestätigt werden. Die Lithiumboratbildung zeigte sich dabei abhängig von der Stabilität der Lewis-Basen-Addukte, da mit den stabileren Amin- bzw. Phosphan-Boran-Addukten keine Umsetzung zu 79 beobachtet werden konnte. Abb. 4.5. (links) B–H-Aktivierung durch Carbenoid 53-Li; (rechts) Molekülstruktur des Lithiumborats 79 im Festkörper. Im nächsten Schritt wurde die Reaktivität gegenüber Phosphanen getestet. Dabei kam es interessanterweise nicht zu einer analogen P–H-Bindungsaktivierung, sondern vielmehr zu einer Dehydrokupplung der sekundären Arylphosphane zu den entsprechenden Diphosphanen unter Bildung der zweifach protonierten Vorstufe (Abb. 4.6). Diese Reaktion ist bisher einzigartig in der Chemie der Carbenoide und hebt deren großes Potenzial für weitere Anwendungen hervor. Das entwickelte Syntheseprotokoll stellt eine sehr selektive und effektive Methode dar, Phosphane zu Diphosphanen zu kuppeln. Es war so möglich die Diphosphane nach der Abtrennung der zweifach protonierten Vorstufe, die anschließend recycelt werden kann, in sehr guten Ausbeuten von über 90% zu isolieren. Dabei erlaubte das Syntheseprotokoll die Gegenwart funktioneller Gruppen, z.B. Methoxy-, Dimethylamino- oder Trifluoromethyl-Substitutenten. Überraschenderweise zeigten die Umsetzungen der Lithium-Carbenoide mit Chlorsubstituierten Arylphosphanen keinerlei Substitutionsreaktionen am Aromaten sondern führten ebenfalls selektiv zu den Diphosphanen. Einzig das sterisch anspruchsvolle sekundäre Arylphosphan Mes2PH oder aliphatische Phosphane wie tBu2PH oder Cy2PH eigneten sich nicht zur Dehydrokupplung. Im Fall des 3,5-Dichlorsubstiuierten Phosphans war es möglich neben dem Diphosphan das entsprechende P–H-Aktivierungsprodukt zu beobachten und in einer Ausbeute von 22% zu isolieren. Diese Aktivierung zeigte sich abhängig von der Konzentration der Reaktionslösung und konnte durch hohe Verdünnung unterdrückt werden. Abb. 4.6. (links) Carbenoid-vermittelte Dehydrokupplung von Ar2PH; (rechts) Molekülstruktur von (p-C6H4Me)4P2 im Festkörper. Bemerkenswerterweise zeigten quantenchemische Studien, dass die einfachen und nicht-stabilisierten Carbenoide, wie beispielsweise LiC(H)Cl2, nicht für die Dehydrokupplung von Phosphanen geeignet sind und eine ausreichende elektronische Stabilisierung für selektive Umsätze erforderlich ist. So ist zwar im Experiment für alle untersuchten Carbenoide die Diphosphan-Bildung beobachtbar, allerdings für unstabilisierte Systeme nur als Nebenreaktion. Mechanistische Studien zeigten, dass der erste Schritt der Reaktion die Deprotonierung des Phosphans und die Bildung einer Phosphid-Spezies ist. Dieser Schritt ist im Fall der stabilisierten Carbenoide bevorzugt. Bei den nicht-stabilisierten Carbenoiden stellt die Bildung des Carbens unter Salzeliminierung den ersten Reaktionsschritt dar, was im Anschluss zu unselektiven Folgereaktionen führt. Die synthetisierten Diphosphane besitzen großes Potenzial für weitere Anwendungen, beispielsweise als Liganden in der Übergangsmetallkatalyse. Basierend auf diesen Überlegungen wurden in anfänglichen Studien die Diphosphane an Gold(I)-Fragmente koordiniert (Abb. 4.7). Es gelang dabei die Diphosphan-Bisgold-Komplexe in nahezu quantitativen Ausbeuten als farblose Feststoffe zu isolieren und mittels Multikern-NMR-Spektroskopie und hochaufgelöster Massenspektrometrie zu charakterisieren. Einzig die Chlor-substituierten Diphosphane zeigten nach der Zugabe von Gold(I) bereits Kupplungsreaktionen mit sich selbst. Röntgenkristallographische Untersuchungen zeigten, dass die beiden Gold-Zentren eine trans-Stellung zueinander einnehmen, in der keine intramolekulare Au•••Au-Wechselwirkung beobachtet werden konnte. Auch in der Kristallpackung zeigte sich, dass die Bildung der Festkörperstrukturen von C–H•••X- und π•••π-Wechselwirkungen dominiert wird. Studien zum Einsatz in der Katalyse stehen noch aus. Da die Komplexe in allen geläufigen Lösungsmitteln schwer löslich sind, besteht weiter Optimierungsbedarf, um die Löslichkeit, z.B. durch Einführung von Alkylgruppen, zu erhöhen. Abb. 4.7. (links) Syntheseweg zu Diphosphan-Bisgold-Komplexen; (rechts) Molekülstruktur des Bisgold-Komplexes von (p-C6H4Me)4P2 im Festkörper. Neben der einzigartigen Reaktivität Silyl-substituierter Carbenoide gegenüber element-organischen Verbindungen wie Boranen oder Phosphanen wurde auch die Reaktivität gegenüber späten Übergangsmetallkomplexen, hier exemplarisch [Pd(PPh3)4] untersucht. Ziel sollte es sein mit Carbenoiden als selektiven Carbentransferreagenzien Zugang zu Carbenkomplexen zu erhalten, die schwer über alternative Routen zugänglich sind. Bei Verwendung der Silyl-substituierten Systeme kam es dabei jedoch zunächst nicht zur selektiven Synthese des Carbenkomplexes C, sondern vielmehr zu Produktgemischen aus Thioketon-komplex T und Carbenkomplex C. Die Verhältnisse erwiesen sich jedoch als abhängig vom Metall, Halogen und der Silylgruppe des Carbenoids sowie von der Reaktionstemperatur. Tabelle 4.1 zeigt eine Übersicht. Je tiefer die Temperatur und je größer die Substituenten der Silylgruppe desto mehr Carbenkomplexbildung kann beobachtet werden. Theoretische Berechnungen der Trimethylsilyl- bzw. Triphenylsilyl-Systeme konnten die experimentellen Befunde bestätigen. Der Thioketonkomplex T stellt so das thermodynamisch stabilere Produkt dar, während der Carbenkomplex C kinetisch bevorzugt ist. Erfreulicherweise gelingt bei Verwendung der im Vergleich zum Lithiumsystem stabileren Natrium- bzw. Kalium-Carbenoide die selektive Synthese des Palladium-Carbenkomplexes C (Einträge 3 und 4). Durch die Stabilisierung des Li/Cl-Carbenoids durch Kronenether kann ebenfalls die Carbenkomplex-bildung forciert werden (Eintrag 5). Je stabiler die Carbenoide, desto selektiver wird der Carbenkomplex C gebildet. Das zeigt auch die Reaktion des sehr reaktiven Li/F-Carbenoids, das vollständig zum Thioketonkomplex T reagiert (Eintrag 11). Bei den Kalium-Carbenoiden der sterisch anspruchsloseren Silyl-Systeme tritt noch ein weiteres Reaktionsprodukt auf, das als das Ylid Y identifiziert wurde. Dieses tritt auch bei Kristallisationsversuchen des Carben-komplexes auf und wurde röntgenkristallographisch untersucht. Tabelle 4.1. Reaktivität unterschiedlicher Silyl-substituierter Carbenoide gegenüber [Pd(PPh3)4]. Eintrag Metall Halogen Silylgruppe Temperatur Thioketon-komplex [%]a Carben-komplex [%]a Ylid [%]a 1 Li Cl SiPh3 RT 80 20 - 2 Li Cl SiPh3 –78 °C 48 52 - 3 Na Cl SiPh3 RT - >99 - 4 K Cl SiPh3 RT - >99 - 5 Li•(12-Krone-4) Cl SiPh3 RT - 93 - 6 K•(18-Krone-6) Cl SiPh3 RT - 75 25 7 K Cl SiMePh2 –40 °C - 71 29 8 K Cl SiMe2Ph –40 °C - 43 57 9 K Cl SiMe3 –10 °C 70 30 - 10 K Cl SiMe3 –40 °C 40 33 26 11 Li F SiPh3 –78 °C >99 - - [a] Verhältnis der Produkte durch 31P{1H}-NMR-Spektroskopie bestimmt. Trotz selektiver Synthese des Carbenkomplexes 119 erwies sich die Aufreinigung als problematisch, da das gebildete Triphenylphosphan vermutlich aufgrund der Koordination an das Metallsalz schwer abgetrennt werden konnte. Überraschenderweise zeigte sich beim Erwärmen des Gemisches auf 80 °C die Bildung einer neuen Verbindung, die als Diphosphanphosphonium-Komplex 121 identifiziert wurde. Dieser konnte mittels NMR-spektroskopischer Untersuchungen und hochauf-gelöster Massenspektrometrie charakterisiert werden. Studien zur Strukturanalyse und zur Reaktivität stehen hier allerdings noch aus. Da der Carbenkomplex zunächst nicht selektiv dargestellt werden konnte, wurde eine alternative Syntheseroute entwickelt. Diese beinhaltete die oxidative Addition der halogenierten Liganden an das Übergangsmetall und anschließende Dehydrohalogenierung. Hierzu wurden analog Abbildung 4.9 zuerst die Palladium-Komplexe in einer oxidativen Additionsreaktion synthetisiert. Dabei gelang es sowohl unterschiedliche Halogenatome als auch unterschiedliche Silyl-Reste in der Synthese der Palladium-Komplexe zu etablieren. Die luftstabilen Verbindungen 129-134 konnten in moderaten bis guten Ausbeuten (52-91%) als gelbe Feststoffe isoliert und durch Multikern-NMR-Spektroskopie, hochaufgelöste Massen-spektrometrie und Röntgenstrukturanalyse charakterisiert werden. Sie besitzen in allen Fällen das sehr ähnliche Strukturmotiv eines nahezu quadratisch-planar koordinierten Palladium-atoms. Zur Dehydrohalogenierung wurden die Komplexe 129-134 mit verschiedenen Basen umgesetzt. Mit Hilfe der Alkalimetallhexamethyldisilazan-Basen gelang die gewünschte HX-Eliminierung, jedoch nicht unter Bildung des Carbenkomplexes, sondern biscyclo-metallierter Produkte. Beim Triphenylsilyl-substituierten System 129 konnte nach der Aufarbeitung Verbindung 135 isoliert werden, bei der ein an das Siliciumatom gebundener Phenylring metalliert wurde. Bei den Methyl-substituierten Vertretern 131 und 133 fand hingegen selektiv die Metallierung einer Methylgruppe unter Ausbildung ungewöhnlicher Palladacyclobutane statt. Dies konnte im Fall von 137 eindeutig durch Röntgenstrukturanalyse bestätigt werden (Abb. 4.9). Abb. 4.9. (links) Syntheseweg zu den Palladium-Komplexen 129-138; (rechts) Molekülstrukturen der Palladium-Komplexe 130 und 137 im Festkörper. Da cyclometallierte Palladium-Komplexe als effektive Katalysatoren in C–C-Knüpfungs-reaktionen eingesetzt werden, sollte auch das Potenzial der synthetisierten Komplexe getestet werden. Dabei zeigte sich, dass alle Komplexe eine höhere Aktivität als [Pd(PPh3)4] in der Suzuki-Miyaura-Kupplung von 4-Bromanisol mit Phenylboronsäure aufweisen. Aus Tabelle 4.2 wird aber auch ersichtlich, dass die zweite Cyclisierung einen negativen Effekt auf die Aktivität hat. Verbindung 129, das Produkt der einfachen oxidativen Addition, zeigte bereits nach vier Stunden nahezu vollständigen Umsatz. Dabei konnten TON's von etwa 17000 bei nahezu gleichbleibendem Umsatz erzielt werden (Eintrag 5). Tabelle 4.2. Palladium-katalysierte Suzuki-Miyaura-Kupplung von 4-Bromanisol und Phenylboronsäure. Eintrag Katalysator Katalysator-Ladung [mol %] Reaktionszeit [h] NMR-Ausbeute [%]a 1 [Pd(PPh3)4] 0.5 2 25 2 129 0.5 1.75 79 3 129 0.5 4 95 4 129 0.5 8 98 5 129 0.005 3 85 6 137 0.5 4 71 7 137 0.5 8 87 8 137 0.5 10 92 9 135 0.5 8 92 [a] Ausbeuten bestimmt durch NMR-Spektroskopie bezogen auf 4-Bromanisol. Insgesamt konnten in dieser Doktorarbeit zahlreiche neue Erkenntnisse im Bereich der Carbenoidchemie erarbeitet werden. Diese lassen sich wiefolgt zusammenfassen: • Anhand von Silyl- und Thiophosphoryl-stabilisierter Carbenoide konnte erstmals systematisch der Einfluss der M/X-Kombination auf die Stabilität und Reaktivität von Carbenoiden untersucht werden. • Erstmals konnten Na- und K-Carbenoide isoliert und strukturell charakterisiert werden. • Mit Hilfe der Stabilisierung konnten neue Anwendungsgebiete im Bereich der element-organischen Chemie erschlossen werden, darunter die B–H-Bindungsaktivierung am carbenoiden Kohlenstoffatom und die Kupplung von Phosphanen. • Beim Einsatz von Carbenoiden als Carbentransferreagenzien zur Darstellung ungewöhnlicher Carbenkomplexe konnte gezeigt werden, dass Selektivitäten von zahlreichen Faktoren abhängen und beeinflusst werden können. Mit diesen Studien konnte folglich ein Kreis von der Stabilisierung und Isolierung der normalerweise hochreaktiven Carbenoide zu deren Anwendungen geschlossen werden. Die Studien zeigen zudem das Potenzial dieser Verbindungsklasse und lassen vermuten, dass durch ein weiteres Einstellen von Stabilität und Reaktivität noch bisher unbekannte Reaktionsmuster ermöglicht werden können. N2 - The present PhD thesis focussed on the stabilization and isolation of alkali metal carbenoids as well as the development of new applications of these compounds. Thereby, the first part concentrated on the thermal stability and a control of reactivity of these species, while the second part involved the establishment of stability-reactivity relationship with focus on new reactivity patterns. KW - Carbenoide KW - Carbenoid KW - Carben KW - Stabilisierung Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137607 ER - TY - THES A1 - Schäfer, Marius T1 - Darstellung und Reaktivität von Iminoboranen sowie deren Einsatz bei der Synthese von Azaborininen T1 - Synthesis and Reactivity of Iminoboranes and their Usage in the Synthesis of Azaborinines N2 - Die Dissertation befasst sich mit der Darstellung von Iminoboranen sowie deren Verwendung bei der Rhodium-vermittelten Synthese von Azaborininen. N2 - The first examples of adducts of cyclic alkyl(amino) carbenes (cAACs) and N-heterocyclic carbenes (NHCs) with iminoboranes have been synthesized and fully characterized. Furthermore new synthetic route to functionalized 1,2 and 1,4-azaborinines has been developed utilizing a [2+2]/[2+4] cycloaddition reaction of di-tert-butyliminoborane and the unsymmetric (tert-butylimino)mesityborane with a series of alkynes in presence of the rhodium complex [{RhCl(PiPr3)2}]2. KW - Iminoborane KW - Azaborinine Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136959 ER - TY - THES A1 - Trumpp, Alexandra T1 - Synthese und Reaktivität von Diboran(4)- und Diboran(4)-Addukt-Verbindungen T1 - Synthesis and reactivity of diborane(4)- and diborane(4)-adduct-compounds N2 - In der vorliegenden Arbeit wurde zum einen das Koordinationsverhalten von Lewis-Basen an die Lewis-aciden Borzentren der symmetrisch konfigurierten 1,2-Dihalogendiborane(4) des Typs B2R2X2 (R = NMe2, Mes, Dur, tBu; X = Cl, Br, I) und des unsymmetrisch 1,1 substituierten Diborans(4) F2BB(Mes)2, sowie die Eigenschaften und die Reaktivität der erhaltenen sp2–sp3 Diboran(4)-Verbindungen untersucht. Zum anderem wurde die Fähigkeit des 1,1-substituierten Diborans(4) F2BB(Mes)2 zur oxidativen Addition der B–F- bzw. B–B-Bindung an Bisphosphan-Platin(0)-Komplexe untersucht. N2 - The present work focuses on two different reactivities of diboranes(4): a)the coordination behaviour of Lewis bases to the Lewis-acidic boron centres of symmetrical 1,2-dihalodiboranes(4) of the type B2R2X2 (R = NMe2, Mes, Dur, tBu; X = Cl, Br, I) and the unsymmetrical 1,1-dimesityl-2,2-difluorodiborane(4) F2BB(Mes)2, furthermore the properties and reactivity of the prepared sp2–sp3 diboranes(4) were investigated, and b)the oxidative addition of 1,1-dimesityl-2,2-difluorodiborane(4) towards low-valent bis(phosphine)platinum precursors. KW - Diborane KW - Bor KW - Diboran(4) KW - Addukt KW - sp2-sp3 KW - boron KW - adduct Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136812 ER - TY - THES A1 - Claes, Christina T1 - Reduktive Synthese zu neuartigen cyclischen und acyclischen Borverbindungen T1 - Reductive synthesis of novel cyclic and acyclic boron compounds N2 - Ein Teil der hier vorliegenden Arbeit beschäftigte sich mit der Synthese und Charakterisierung neuer Boran-Addukte. Dabei wurden neben den NHCs IMe und IMeMe die Phosphane PEt3 und PMe3 als stabilisierende Lewisbasen eingesetzt. Neben dem Liganden wurde auch der borgebundene organische Rest variiert (Phenyl und n-Butyl), um deren Einfluss auf die Eigenschaften der Addukte zu untersuchen. Die NHC-stabilisierten Monoborane IMe∙B(nBu)Cl2 (99) und IMeMe∙B(Ph)Cl2 (100) konnten in guten Ausbeuten isoliert und vollständig charakterisiert werden. Zusammen mit dem bereits bekannten Addukt IMe∙B(Ph)Cl2 (98) wurden die analytischen Daten dieser drei Spezies miteinander verglichen, wobei sich die strukturellen Parameter im Festkörper stark ähneln. Die vergleichsweise lange B–CCarben-Bindungen (98: 1.621(3) Å; 99: 1.619(5) Å; 100: 1.631(3) Å) konnten hierbei als Beleg für den dativen Charakter dieser Wechselwirkungen herangezogen werden. Auch bei den Phosphan-Boran-Addukten Et3P∙B(Ph)Cl2 (112), Et3P∙B(nBu)Cl2 (113) und Me3P∙B(Ph)Cl2 (114) wurden relativ lange dative B–P-Bindungen (112: 1.987(2) Å; 113: 1.980(2) Å; 114: 1.960(3) Å) gefunden, wobei diese in Me3P∙B(Ph)Cl2 (114) deutlich kürzer ist als bei den PEt3-Addukten 112 und 113. Da die Lewisbasizität von PMe3 geringer ist als von PEt3 konnte dieser Befund auf den geringeren sterischen Anspruch von PMe3 zurückgeführt werden. Die reduktive Umsetzung der Phosphan-Boran-Addukte 112, 113 und 114 mit 1,2-Diphenyl-1,2-dinatriumethan (Na2[C14H12]) verlief in allen Fällen unselektiv und führte nicht zur Bildung eines Phosphan-stabilisierten Borirans. Das gleiche Ergebnis lieferte das NHC-stabilisierte Boran IMe∙B(Dur)Cl2. Im Gegensatz dazu konnten die Addukte 98, 99 und 100 mit NHC-Liganden und kleineren organischen Resten selektiv in die Borirane IMe∙B(Ph)(C14H12) (101), IMe∙B(nBu)(C14H12) (102) und IMeMe∙B(Ph)(C14H12) (103) durch Umsetzung mit Na2[C14H12] überführt werden. Hierbei wurden jene als racemische Gemische erhalten, wobei die Phenylgruppen am C2B-Dreiring ausschließlich trans zueinander orientiert sind. Die sterisch gehinderte Rotation um die B–CCarben-Bindung resultiert in einer Verbreiterung bzw. Aufspaltung der Signale des NHCs im 1H NMR-Spektrum. Die Strukturparameter der Molekülstrukturen im Festkörper von 101, 102 und 103 unterscheiden sich nur geringfügig. Die NHC-stabilisierten Borirane 101, 102 und 103 weisen trotz der enormen Ringspannung eine erstaunlich hohe Stabilität sogar gegenüber Luft und Wasser auf. Während gegenüber [Pt(PCy3)2] keine Reaktivität beobachtet wurde, erfolgte bei Umsetzung von IMe∙B(Ph)(C14H12) (101) mit [Pt(PEt3)3] eine langsame und unvollständige C–H-Bindungsaktivierung am NHC-Rückgrat unter Bildung des Platin(II)-Komplexes 105. Aufgrund der gehinderten Rotation um die B–CCarben-Bindung wurde hierbei ein racemisches Gemisch von jeweils zwei Rotameren erhalten, welche in den NMR-Spektren in Form zweier Signalsätze zu beobachten waren. Die chemische Verschiebung des platingebundenen Hydrid-Signals bestätigt zudem eine vinylartige Natur des Boriran-Liganden mit starkem trans-Effekt. Die Konstitution von 105 im Festkörper konnte durch eine Einkristallröntgenstrukturanalyse belegt werden, wobei die geringe Qualität des Datensatzes keine Strukturdiskussion zulässt. Erwartungsgemäß ging das Boriran IMeMe∙B(Ph)(C14H12) (103) mit [Pt(PEt3)3] keine Reaktion ein, da der IMeMe-Ligand keine C–H-Einheiten im NHC-Rückgrat aufweist. Basenfreie Borirane konnten hingegen weder durch Basenabstraktion aus dem NHC-stabilisierten Boriran 101 mit Hilfe starker Lewissäuren (PPB, B(C6F5)3, AlCl3 oder [Lu∙BCl2][AlCl4]), noch durch Reduktion einfacher Dihalogenborane mit Na2[C14H12] realisiert werden. Während die Umsetzungen mit Lewissäuren entweder mit keiner Reaktion oder mit Zersetzung verbunden waren, bestand eine Schwierigkeit des reduktiven Ansatzes in der Wahl des Lösungsmittels, in welchem das Reduktionsmittel generiert wurde. Die meisten polaren Lösungsmittel führten hierbei direkt zur Zersetzung des Borans und lediglich DME erwies sich als geeignet. Jedoch wurde bei der Umsetzung von DurBCl2 mit Na2[C14H12] in DME kein Boriran, sondern das Borolan 109 mit syndiotaktisch angeordneten Phenylgruppen gebildet. Die Molekülstruktur im Festkörper offenbarte hierbei ein planar-koordiniertes Boratom. Ein weiterer Fokus dieser Arbeit lag auf der Synthese und Reaktivität neuer Phosphan-stabilisierter Diborene. Hierbei konnte zunächst gezeigt werden, dass das sterisch anspruchsvolle Bisphosphan dppe mit ( B(Mes)Br)2 (115) bei Raumtemperatur kein Addukt ausbildet. Bei –40 °C konnten neben freiem dppe auch ein Mono- und ein Bisaddukt im 31P NMR-Spektrum nachgewiesen werden. Im Gegensatz dazu lieferte die Umsetzung von 115 mit dmpe einen nahezu unlöslichen Feststoff, welcher sich in nachfolgenden Reduktionsversuchen als ungeeignet erwiesen hat. Deshalb wurde eine Eintopfsynthese entwickelt, mit der 115 mit KC8 in Gegenwart der jeweiligen Bisphosphane zu den cis-konfigurierten Diborenen (=BMes)2∙dmpe (123), (=BMes)2∙dmpm (126) und (=BMes)2∙dppm (127) umgesetzt werden konnte. Ebenfalls konnte ( B(Mes)Cl)2 (124) selektiv zum Diboren 123 reduziert werden, wobei kein signifikanter Unterschied in Selektivität oder Reaktionszeit beobachtet wurde. Das trans-konfigurierte Diboren (=B(Mes)∙PMe3)2 (122) wurde hingegen durch Reduktion des einfach-stabilisierten Diborans ( B(Mes)Br)2∙PMe3 (119) dargestellt. Anhand der Molekülstrukturen von 122, 123, 126 und 127 im Festkörper konnten die Abstände der B=B-Doppelbindungen (1.55(2)-1.593(2) Å) ermittelt werden. Dabei sind die Boratome nahezu planar von ihren Substituenten umgeben. Durch Analyse der P1–B1–B2-Winkel konnte zudem gezeigt werden, dass das trans-konfigurierte Diboren (=B(Mes)∙PMe3)2 (122) (116.6(3)°) und das cis-konfigurierte Diboren (=BMes)2∙dmpe (123) (118.7(1)°) nahezu ungespannte Spezies darstellen, wohingegen die Fünfring-Systeme (=BMes)2∙dmpm (126) (110.6(2)°) und (=BMes)2∙dppm (127) (110.4(1)°) eine signifikante Ringspannung aufweisen. Mit Hilfe von NMR-Spektroskopie, Cyclovoltammetrie, DFT-Rechnungen und UV-Vis-Spektroskopie konnte der Einfluss der Konfiguration, der Ringgröße und der Lewisbase auf die elektronischen Eigenschaften des Diborensystems untersucht werden. Hierbei wurde bei nahezu allen Parametern eine Tendenz in der Reihenfolge 122, 123, 126 zu 127 beobachtet. 127 nimmt aufgrund der phosphorgebundenen Phenyl-Substituenten eine gesonderte Rolle im Hinblick auf den HOMO-LUMO-Abstand ein, und es wurde für dieses Diboren erstmals eine Reduktionswelle im Cyclovoltammogramm beobachtet. Einige NMR-Signale der Diborene 122, 123, 126 und 127 wurden aufgrund des Spinsystems höherer Ordnung als virtuelle Signale detektiert, bei denen bei geeigneter Auflösung bzw. Signalüberlappung nur die Summe an Kopplungskonstanten ausgewertet werden konnte. Das HOMO ist bei allen Diborenen auf die B–B-Bindung lokalisiert und weist -Charakter auf. Versuche, analoge Diborene mit den Lewisbasen dppe, dppbe, dmpbe, (-PR2)2 (R = p MeOC6H4) oder HP(o-Tol)2 zu realisieren und vollständig zu charakterisieren, schlugen fehl. Lediglich die Diborene (=BMes)2∙dppe (132) und (=BMes)2∙dppbe (133) konnten spektroskopisch nachgewiesen werden. Auch durch reduktive Kupplung von Monoboranen mit chelatisierenden Phosphanen wurde versucht, Diborene darzustellen. Hierzu wurde zunächst die Adduktbildung von Monoboranen und Bisphosphanen untersucht. Während mit dppm kein Addukt nachgewiesen werden konnte, lieferte die Umsetzung von dmpe mit MesBBr2 das Bisaddukt 148. Als Nebenprodukt dieser Reaktion wurde jedoch auch das Boreniumkation 149 beobachtet, welches sich nicht zur reduktiven Kupplung zum Diboren 123 eignet. Auch bei der Umsetzung von MesBCl2 mit dmpe wurde neben dem Bisaddukt 151 eine zu 149 analoge Spezies gebildet. Die nachfolgende Reduktion von 148 mit KC8 in Benzol war mit der Bildung des Diborens (=BMes)2∙dmpe (123) verbunden, welches allerdings nicht isoliert werden konnte. Auch die Variation des Lösungsmittels, des Reduktionsmittels, der Zugabe, des organischen Restes und der Lewisbase ermöglichte keine selektivere Umsetzung bzw. eine Isolierung des Diborens. Im Gegensatz dazu konnte das Diboren 123 durch reduktive Kupplung des Bisadduktes 151 mit KC8 in Benzol dargestellt und isoliert werden. Im Vergleich zur Synthese von 123 durch Reduktion von ( B(Mes)Br)2 (115) benötigt dieser Ansatz jedoch deutlich längere Reaktionszeiten (zwanzig Tage statt einen Tag) und lieferte schlechtere Ausbeuten (31 % statt 54 %). Durch Umsetzung mit Wasser konnte (=B(Mes)∙PMe3)2 (122) selektiv in das Hydrolyseprodukt 154 überführt werden. Dieses Produkt konnte, aufgrund geringer Spuren Wasser im Reaktionsgemisch, ebenfalls durch freeze-pump-thaw Zyklen einer Lösung von 122 erhalten werden. Die Identität von 154 als gemischtes sp2-sp3-Diboran konnte mit Hilfe von NMR-Spektroskopie eindeutig erklärt werden. Zusätzlich konnten zwei weitere mögliche Zersetzungsprodukte durch Einkristallröntgen-strukturanalysen als ( B(Mes)(H)∙PMe3)2 (156) und MesB(OH)2 (155) identifiziert werden. Die Versuche die Liganden der Diborene (=B(Mes)∙PMe3)2 (122) und (=BMes)∙dppm (127) durch Mono- oder Bisphosphane bzw. IMe auszutauschen verlief nur für 122 mit IMe erfolgreich zum Diboren (=B(Mes)∙IMe)2 (49). Auch Cycloadditionsreaktionen unter Beteiligung der B=B-Doppelbindung wurden im Detail untersucht. Es hat sich jedoch gezeigt, dass weder eine [4+2]-Cycloaddition von Isopren (mit 122) oder Cyclopentadien (mit 122 oder 123), noch eine [2+2]-Cycloaddition von Acetylen (mit 127), 2-Butin (mit 123 oder 127), Bis(trimethylsilyl)acetylen (mit 122), Di-tert-butyliminoboran (mit 122), Acetonitril (mit 122), Cyclohexen (mit 122), Aceton (mit 127) oder Methacrolein (mit 123 oder 127), sowie eine [2+1]-Cycloaddition von Kohlenstoffmonoxid (mit 123 oder 127) oder Ethylisonitril (mit 127), noch eine [3+2]-Cycloaddition von Trimethylsilylazid (mit 123 oder 127) möglich ist. Lediglich mit 2-Butin konnte eine selektive Reaktion von (=B(Mes)PMe3)2 (122) zum Phosphan-stabilisierten 1,3-Diboreten 157 herbei geführt werden. Diese ungewöhnliche Reaktion beinhaltet formal die Spaltung der C≡C-Dreifachbindung, wobei als möglicher Reaktionsmechanismus eine [2+2]-Cycloaddition zum 1,2-Diboreten mit nachfolgender Isomerisierung zum 1,3-Derivat 157 postuliert werden konnte. DFT-Rechnungen an 157 zufolge besitzt das HOMO  artigen Charakter und ist über die beiden Boratome und die CMe-Einheit delokalisiert. Demnach konnte 157 als homoaromatisches System mit zwei  Elektronen identifiziert werden, was durch die negativen NICS-Werte (NICS(0) = –20.62; NICS(1) = –6.27; NICS(1)` = –14.59) und den unterschiedlich langen B–C-Bindungen des Vierrings in der Molekülstruktur im Festkörper (B–C1: 1.465(4) bzw. 1.486(4) Å; B–C3: 1.666(4) bzw. 1.630(4) Å) weiter bestätigt wurde. Eine Einkristallröntgen-strukturanalyse belegte zudem eine Butterfly-Struktur des 1,3-Diboretens 157 mit einem Kippwinkel  = 34.4°. Die Bindung zwischen Phosphoratom und dem Kohlenstoffatom im Vierring liegt mit 1.759(2) Å im Bereich einer dativen Bindung. Durch Basenabstraktion mit PPB konnte das stabilisierte Diboreten 157 in das basenfreie 1,3-Diboreten 164 überführt werden, welches jedoch nicht isoliert werden konnte. Die NMR-spektroskopischen Parameter von 164 belegen hingegen eindeutig dessen Natur. Neben Cycloadditionsreaktionen wurde auch das Redoxverhalten des Diborens (=BMes)2∙dppm (127) untersucht. So verlief die Umsetzung von 127 mit Iod hochselektiv zu einer in Lösung vermutlich diamagnetischen Spezies (NMR-aktiv/ESR-inaktiv). Durch Bestimmung der Molekülstruktur im Festkörper stellte sich jedoch heraus, dass diese Umsetzung zu einer Oxidation der elektronenreichen B=B-Doppelbindung unter Bildung des Radikalkations 166 führte (B–B: 1.633(3) Å). Somit wurde eine signifikante Diskrepanz zwischen kristallographischen und spektroskopischen Befunden beobachtet, weshalb die Natur des Reaktionsproduktes in Lösung nicht eindeutig ermittelt werden konnte. Aus diesem Grund wurde (=BMes)2∙dppm (127) auch mit dem Einelektronenoxidationsmittel [Cp2Fe][PF6] umgesetzt und ESR-spektroskopisch analysiert. Hierbei konnte im ESR-Spektrum das typische 1:2:1-Triplett bei giso = 2.0023 mit A(31P) = 21 G (58 MHz) für ein derartiges Radikalkation detektiert werden. Die Reduktion von 127 mit Lithium und Natriumnaphthalid lieferte entweder keinen Umsatz (Lithium) oder eine unselektive Zersetzung des Diborens (Natriumnaphthalid). Die Umsetzung mit KC8 verlief jedoch äußerst selektiv zu einer neuen borhaltigen Spezies (11B:  = 22.4 ppm; 31P:  = 18.6 ppm), welche sich in Anwesenheit des Reduktionsmittels jedoch als nicht stabil erwies und somit nicht isoliert werden konnte. Auch der Versuch durch einen Kationenaustausch mit Li[BArCl4] ein stabileres Produkt zu erhalten schlug fehl. Im Gegensatz dazu führte die Umsetzung der Diborene (=B(Mes)∙PMe3)2 (122) und (=BMes)2∙dppm (127) mit Cu(I)Cl zur Bildung der Kupferkomplexe 167 und 168, deren Molekülstrukturen im Festkörper vergleichbar zu dem analogen NHC-stabilisierten Kupferkomplex 63 sind (B–B: 1.626(3) Å (167); 1.628(3) Å (168); 1.633(4) Å (63)). Beide Spezies zeigen hierbei erwartungsgemäß ein interessantes photophysikalisches Verhalten, wobei dieses lösungsmittelunabhängig ist und Fluoreszenzprozesse für die Emission verantwortlich sind. Durch analoge Umsetzung von 127 mit Ag(I)Cl konnte der entsprechende Silberkomplex 169 generiert und NMR-spektroskopisch nachgewiesen werden (11B:  = 26.7 ppm; 31P:  = 5.4 ppm). 169 erwies sich jedoch als nicht stabil und zersetzte sich im Verlauf der Aufarbeitung zu der bekannten tetranukleare Silberverbindung 170. Im Rahmen der Reaktivitätsstudien wurden die Diborene 122, 123 und 127 auch noch mit einer Reihe weiterer Reagenzien wie Catecholboran (mit 122 oder 127), THF∙BH3 (mit 127), Brom (mit 127), Iodchlorid (mit 123), ZnCl2 (mit 127), GaCl3 (mit 127), Na[BArF4] (mit 122), ( SPh)2 (mit 127), HCl (127), Wasserstoff (mit 122), Natriumhydrid (mit 127) und Methanol (mit 127) versetzt. Hierbei konnte entweder keine Reaktion oder Zersetzung beobachtet werden. Lediglich bei der Umsetzung von 127 mit Methanol konnte das Zersetzungsprodukt Mesityldimethoxyboran (171) eindeutig charakterisiert werden. N2 - One part of the present thesis focused on the synthesis and characterization of novel Lewis base borane adducts. In addition to NHCs (IMe, IMeMe), the monophosphines PEt3 and PMe3 were used as the stabilizing Lewis base. However, not only the Lewis base was varied, but also the boron-bound organic substituent (phenyl, n-butyl) in order to evaluate its influence on the electronic structure of the adducts. Thus, the NHC-stabilized boranes IMe∙B(nBu)Cl2 (99) und IMeMe∙B(Ph)Cl2 (100) were isolated in good yields and could be fully characterized. Including the known adduct IMe∙B(Ph)Cl2 (98), a reasonable comparison of the analytical data of the three adducts became feasible. While the structural parameters of 98, 99 and 100 in the solid state strongly resemble each other, rather long B Ccarbene bonds (98: 1.621(3) Å; 99: 1.619(5) Å; 100: 1.631(3) Å) illustrated the dative character of these interactions. Similarly, the phosphine borane adducts Et3P∙B(Ph)Cl2 (112), Et3P∙B(nBu)Cl2 (113), and Me3P∙B(Ph)Cl2 (114) showed quite long dative B–P bonds (112: 1.987(2) Å; 113: 1.980(2) Å; 114: 1.960(3) Å), which is however significantly shorter in Me3P∙B(Ph)Cl2 (114) as those of the PEt3 adducts 112 and 113. Since the lewis basicity of PMe3 is lower than that of PEt3, this finding is presumably associated with the smaller sterical demand of the PMe3 ligand. Attempts to reduce the phosphine borane adducts 112, 113 and 114 by Na2[C14H12] consistently proceeded with low selectivities and did not result in the generation of borirane species. The same result was obtained for the reduction of the NHC-stabilized borane IMe∙B(Dur)Cl2. By contrast, the adducts 98, 99 and 100 featuring NHC ligands in combination with smaller organic moieties were successfully converted selectively into the boriranes IMe∙B(Ph)(C14H12) (101), IMe∙B(nBu)(C14H12) (102) and IMeMe∙B(Ph)(C14H12) (103) by reaction with Na2[C14H12]. Here, the boriranes were isolated as racemic mixtures with trans-configured phenyl groups at the C2B rings. Due to hindered rotation at the B Ccarbene-bond, the signals of the NHC in the 1H NMR-spectrum broadened and split, respectively. The molecular structures of 101, 102 and 103 in the solid state were also determined by X-ray diffraction, and were shown to differ only marginally. Despite the presence of significant molecular ring strain, the NHC-stabilized boriranes 101, 102 and 103 are surprisingly stable towards air and moisture. While no reaction was observed with [Pt(PCy3)2], treatment of IMe∙B(Ph)(C14H12) (101) with [Pt(PEt3)3] resulted in a slow and incomplete C–H bond activation process at the NHC backbone to afford the platinum(II) complex 105. Due to hindered rotation towards the B–Ccarbene bond, a racemic mixture of two rotameres was observed, which showed two sets of signals in the NMR spectra. In the 1H NMR spectrum the chemical shift of the platinum-bound hydride of 105 further confirmed the vinyl-like nature of the borirane ligand featuring a trans-effect. The identity of 105 was also substantiated in the solid state X-ray diffraction, while the poor quality of the crystallographic data prevented any discussion of the structural parameters. As expected, IMeMe∙B(Ph)(C14H12) (103) did not react with [Pt(PEt3)3], because of the lack of C–H-moieties within the NHC backbone. By contrast, the realization of base-free boriranes either by Lewis base abstraction reactions from the NHC-stabilized borirane 101 using strong Lewis acids (PPB, B(C6F5)3, AlCl3, [Lu∙BCl2][AlCl4]) or by direct reduction of free dihaloboranes with Na2[C14H12] was not successful. While the reactions with Lewis acids either suffered any visible conversion or showed complete decomposition of the borirane precursors, the reductive approach was hampered by the choice of an adequate reaction medium in which the reductant can be generated. Thus, most of the suitable polar solvents reacted with the free boranes themselves, and only DME appeared to be practical. However, reaction of DurBCl2 with Na2[C14H12] in DME did not afford a borirane species. Instead, borolane 109 with syndiotactically-arranged phenyl groups was formed, which was fully characterized in solution, and in the solid state. Thereby a trigonal-planar boron atom was observed. Another main part of the present thesis dealt with the synthesis and reactivity of phosphine-stabilized diborenes. Initially, it was demonstrated that the sterically demanding diphosphine dppe does not form an adduct with ( B(Mes)Br)2 (115) at room temperature, while at –40 °C dppe, a mono- and a bisadduct were evident in the 31P NMR spectrum. By contrast, reaction of 115 with dmpe provided an almost insoluble solid, which however, proved unsuitable in subsequent reduction experiments. Consequently, a simple one-pot protocol was developed, which enabled the isolation of the cis-configured diborenes (=BMes)2∙dmpe (123), (=BMes)2∙dmpm (126) and (=BMes)2∙dppm (127) by reduction of 115 with KC8 in the presence of the respective diphosphines. Also ( B(Mes)Cl)2 (124) could be reduced selectively to diborene 123, whereat no significant difference was observed in the selectivity or the reaction time. The related trans-configured diborene (=B(Mes)∙PMe3)2 (122) was realized by reduction of the mono-stabilized diborane ( B(Mes)Br)2∙PMe3 (119) with KC8 in the presence of an excess PMe3. Analysis of the structural parameters of 122, 123, 126 and 127 in the solid state revealed typical B–B distances (1.55(2)-1.593(2) Å) for B=B double bond systems. Thereby all boron atoms are effectively planar. In addition, large P1–B1–B2 bond angles for the trans-configured diborene 122 (116.6(3)°) and the cis-configured diborene 123 (118.7(1)°) suggested rather unstrained species, while the five membered ring systems 126 (110.6(2)°) and 127 (110.4(1)°) feature significant ring strain. The influence of the configuration, the ring size, and the Lewis base on the electronic properties of the diborene systems was further evaluated in detail by NMR spectroscopy, cyclic voltammetry, DFT calculations, and UV-visible spectroscopy. Here, a tendency was observed in the sequence 122, 123, 126 to 127 for all parameters. Thereby 127 is an exceptional compound, due to the phosphorous-bound phenyl moieties, in regard to the HOMO-LUMO gap and the first reduction wave was observed for this diborene in a cyclic voltammogram. Some NMR signals of the diborenes 122, 123, 126 and 127 were detected as virtual signals as a result of the spin systems. Here, only the sum of the coupling constant can be determined by a suitable resolution of the signals. The HOMO of all diborenes is located on the B–B-bond and possesses  character. All attempts to prepare and fully characterize analogous diborenes featuring the Lewis bases dppe, dppbe, dmpbe, ( PR2)2 (R = p-MeOC6H4), and HP(o-Tol)2 failed so far, and only the diborenes (=BMes)2∙dppe (132) and (=BMes)2∙dppbe (133) could be generated and identified spectroscopically in solution. Subsequently, we studied an alternative approach to realize diborenes by reductive coupling of monoboranes with chelating phosphine ligands. Initially, we focused on the adduct formation process between monoboranes and diphosphines. While no adduct was formed with dppm, reaction of MesBBr2 with dmpe afforded the bisadduct 148. However, the borenium cation 149 was observed as a side product of this transformation, which itself has proven unsuitable for the reductive coupling to yield diborene 123. Similarly, reaction of MesBCl2 with dmpe afforded a related cationic species in addition to the bisadduct 151. Subsequent reduction of 148 with KC8 in benzene led to the formation of (=BMes)2∙dmpe (123), which however, could not be isolated by this route. Variation of the solvent, the reductant, the order of addition, the organic moiety, and the Lewis base exerted no influence on the selectivity of the reduction process or the possibility of isolation of the diborene. Only reduction of 151 with KC8 in benzene facilitated the isolation of pure (=BMes)2∙dmpe (123). However, the reductive coupling approach required significantly longer reaction times (twenty days) and provided significantly lower yields (31 %) than the synthesis of 123 by reduction of ( B(Mes)Br)2 (one day; 54%). Reaction of (=B(Mes)∙PMe3)2 (122) with water selectively afforded the hydrolysis product 154, which had already been observed after a few freeze-pump-thaw cycles, due to the presence of trace amounts of water in the reaction mixture. The nature of 154 as mixed sp2-sp3 diborane was clearly verified by NMR spectroscopy. Two other possible decomposition products were also identified by X-ray diffraction as ( B(Mes)(H)∙PMe3)2 (156) and MesB(OH)2 (155). Experiments of ligand exchange of (=B(Mes)∙PMe3)2 (122) and (=BMes)∙dppm (127) with mono-, diphosphines or IMe are only successful for 122 with IMe to the diborene (=B(Mes)∙IMe)2 (49). Subsequently, cycloaddition reactions involving the B=B double bond system were studied in detail. Here, we could show that neither [4+2]-cycloaddition with isoprene (122) or cyclopentadiene (122/123), [2+2]-cycloaddition with acetylene (127), 2-butyne (123/127), bis(trimethylsilyl)acetylene (122), di-tert-butyliminoborane (122), acetonitrile (122), cyclohexene (122), acetone (127), or methacrolein (123/127), [2+1]-cycloaddition with CO (123/127) or ethylisonitrile (127), nor [3+2]-cycloaddition reactions with trimethylsilylazide (123/127) are feasible. Only 2-butyne showed a selective reaction when treated with (=B(Mes)∙PMe3)2 (122) to afford the phosphine-stabilized 1,3-diboretene 157. This uncommon transformation formally involves cleavage of the C≡C-triple bond. A plausible mechanism combines the initial formation of the 1,2 diboretene and subsequent isomerisation to the more stable 1,3 diboretene derivative 157. According to DFT calculations, 157 possesses a -type HOMO, which is delocalized over the two boron atoms and the CMe moiety. Consequently, 157 features a homoaromatic system with two -electrons, which was verified by its negative NICS values (NICS(0) = –20.62; NICS(1) = –6.27; NICS(1)` = –14.59) and the differences in the B–C-bond lengths in the molecular structure in the solid state (B–C1: 1.465(4), 1.486(4) Å; B–C3: 1.666(4), 1.630(4) Å). Furthermore, an X-ray diffraction study on 157 revealed a butterfly structure with a tilt angle  of 34.4°. The bond between the phosphorous and the carbon atom in the ring possesses dative character (1.759(2) Å). Subsequent reaction of 157 with PPB enabled the generation of the base-free 1,3-diboretene 164, which could not be isolated. However, the NMR spectroscopic parameters of 164 clearly verified its base-free nature. In addition to cycloaddition reactions, we also studied the redox properties of (=BMes)2∙dppm (127). Thus, reaction of 127 with iodine proceeded highly selective to presumably afford a diamagnetic species in solution (NMR-active/EPR-inactive). However, determination of the molecular structure showed the presence of the radical cation 166 (B–B: 1.633(3) Å), which has been formed by one-electron oxidation of the B=B double bond of 127. Thus, we observed a significant discrepancy between the spectroscopic and the crystallographic results, for which reason the nature of the primary reaction product in solution remains unknown so far. Accordingly, 127 was also oxidized selectively by reaction with the one-electron oxidant [Cp2Fe][PF6], while the reaction mixture was characterized by EPR spectroscopy. Here, a typical 1:2:1 triplet at giso = 2.0023 with A(31P) = 21 G (58 MHz) was found in the EPR spectrum, which strongly suggested the generation of a radical cationic species (172). Reduction of 127 by lithium or sodium naphthalenide did not afford either a reaction (lithium) or an unselective decomposition of the diborene (sodium naphthalenide). Thus, reduction with KC8 initially indicated a selective transformation to afford a new boron-containing species (11B:  = 22.4 ppm; 31P:  = 18.6 ppm), which however, readily decomposed during work-up in the absence of the reductant. Also the attempt to stabilize the reduction product by exchange of the cation with Li[BArCl4] was not successful. By contrast, reaction of (=B(Mes)∙PMe3)2 (122) and (=BMes)2∙dppm (127) with Cu(I)Cl led to the formation of the copper complexes 167 and 168, respectively, which feature solid state structures comparable to that of the analogous NHC-stabilized copper diborene complex 63 (B–B: 1.626(3) Å (167); 1.628(3) Å (168); 1.633(4) Å (63)). As expected, both species exhibit interesting photophysical properties, which caused by fluorescence processes. The photophysical data of both complexes are independent from the solvent and the emission is a result of fluorescent processes. The analogous silver complex 169 could also be generated by reaction of 127 with Ag(I)Cl and identified spectroscopically in solution (11B:  = 26.7 ppm; 31P:  = 5.4 ppm). However, all attempts to isolate this species failed, and 169 consistently decomposed during work-up to afford the known tetranuclear silver complex 170. As part of the reactivity studies, diborenes 122, 123 and 127 were also reacted with numerous other reagents such as catecholborane (122/127), THF∙BH3 (127), bromine (127), iodine monochloride (123), ZnCl2 (127), GaCl3 (127), Na[BArF4] (122), ( SPh)2 (127), hydrogen (122), HCl (127), NaH (127) and MeOH (127). However, either no reaction or decomposition of the diborenes was noticed. Only for the reaction of 127 with MeOH the decomposition product MesB(OMe)2 (171) could be assigned. KW - Bor KW - Lewis-Addukt KW - Reduktion KW - Phosphane KW - NHCs KW - Homoaromatisches System KW - Diborene KW - Borirane Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135558 ER - TY - THES A1 - Schneider, Christoph T1 - Synthese und Reaktivität von Lewis-basischen Carbonylkomplexen der Gruppe 8 T1 - Synthesis and reactivity of Lewis basic group 8 carbonyle complexes N2 - Im Rahmen der vorliegenden Arbeit wurden Untersuchungen zur Lewis-Basizität von Carbonylkomplexen der Gruppe 8 durchgeführt. Hierzu wurde eine Reihe von Komplexen mit GaCl3 als Lewis-Säure zu den entsprechenden Lewis-Addukten umgesetzt. Durch Analyse der experimentell ermittelten spektroskopischen und strukturellen Parameter sowie auf der Basis von Transferexperimenten wurde die relative Lewis-Basizität dieser Verbindungen zueinander bestimmt. Durch Umsetzung von Eisenpenta-, -tetra- und -tricarbonylkomplexen mit den sterisch anspruchslosen Liganden PMe3, IMe und CNtBu mit der Lewis-Säure GaCl3 wurde eine Serie von GaCl3-Addukten dargestellt und diese durch NMR- und IR-Spektroskopie sowie Röntgenstruktur- und Elementaranalyse vollständig charakterisiert. Während die Eisentetracarbonyladdukte 36-38 die gleiche cis-Geometrie aufweisen ist die Adduktbildung bei den Eisentricarbonylen 43-45 mit Konformationsänderungen in den Addukten 46, 48 und 49 verbunden. Hierbei zeigen die GaCl3-Addukte 46, 48 und 49 drei unterschiedliche Geometrien. Vergleicht man die Fe-Ga-Bindungslängen beziehungsweise die Winkelsummen der ClGa-Cl-Winkel, so zeichnet sich ein Trend für die Lewis-Basizität in Abhängigkeit von der Natur der σ-Donorliganden ab. Demnach weisen die IMe-substituierten Eisencarbonyle im Vergleich zu den PMe3- beziehungsweise tBuNC-substituierten Analoga die höchste Lewis-Basizität auf. Zudem konnte belegt werden, dass die Lewis-Basizität auch durch die Anzahl an σ-Donorliganden im Komplex erhöht wird. Die schrittweise Erhöhung des sterischen Anspruchs der Liganden in den Eisencarbonylen erschwert die Adduktbildung und äußert sich auch in der trans-ständigen Anordnung der Lewis-Säure. Die Gegenwart von zwei sterisch anspruchsvollen Liganden verhindert indes die Adduktbildung mit GaCl3 und es kommt zu einer Disproportionierung der Lewis-Säure in eine kationische [GaCl2]+-Einheit, welche an das Eisenzentrum koordiniert und eine anionische [GaCl4]--Einheit, die als Gegenion fungiert. Neben dem elektronischen und sterischen Einfluss der Liganden auf die Lewis-Basizität und die Adduktbildung in Eisencarbonylen wurde auch der Einfluss des Zentralatoms untersucht. Hierzu wurden analoge Ruthenium- und Osmiumcarbonyle dargestellt und mit der Lewis-Säure GaCl3 umgesetzt. Hierbei wurde die Ligandensphäre im Vergleich zu den Eisencarbonylen nicht verändert. Um die M-Ga-Bindungsabstände untereinander vergleichen zu können, wurde aufgrund der unterschiedlichen Kovalenzradien der Zentralmetalle der relative Abstand (drel) herangezogen, wodurch die relativen Lewis-Basizitäten abgeschätzt werden konnten. Hierbei konnte der gleiche Trend wie bei den Eisencarbonyladdukten beobachtet werden, dass mit steigender Anzahl an σ-Donorliganden die Lewis-Basizität erhöht wird. Weiterhin liegt aufgrund der kleineren drel-Werte die Vermutung nahe, dass sowohl Ruthenium-, als auch Osmiumcarbonyle Lewis-basischer sind als die entsprechenden Eisencarbonyle. Diese Befunde wurden weiterhin durch Transferexperimente untermauert. Hierzu wurden verschiedene GaCl3-Addukte mit Carbonylkomplexen in CD2Cl2 umgesetzt und eine eventuelle Übertragung der Lewis-Säure GaCl3 NMR-spektroskopisch verfolgt. Hierdurch konnte gezeigt werden, dass die Lewis-Säure GaCl3 jeweils erfolgreich auf die Komplexe mit der höheren Anzahl an σ-Donorliganden übertragen wird, was deren höhere Lewis-Basizität belegt. Zudem konnte bestätigt werden, dass Ruthenium- und Osmiumcarbonyle Lewis-basischer als die analogen Eisencarbonyle sind, zwischen Ruthenium und Osmium bei gleicher Ligandensphäre jedoch kaum Unterschiede in der Lewis-Basizität vorgefunden werden. Zusätzlich wurden auch ausgewählte Gruppe 8-Carbonyladdukte mit dem literaturbekannten Platinkomplex [(Cy3P)2Pt] (7) umgesetzt. Hierbei wurde in allen Fällen ein Transfer von GaCl3 auf die Platinverbindung beobachtet, welche demnach die stärkste Lewis-Base in dieser Studie darstellt. Neben einkernigen GaCl3-Addukten wurden auch dinukleare Gruppe 8-Carbonyle dargestellt. Hierzu wurde anstelle von GaCl3 die Lewis-Säure Ag+ eingesetzt, was zur Bildung der zweikernigen Addukte 83-86 führte. Hierdurch konnte gezeigt werden, dass neben den Hauptgruppenmetallen wie Gallium auch Gruppe 8-Addukte mit Übergangsmetallen zugänglich sind. Des Weiteren konnten die zweikernigen Komplexe 87-89 mit chelatisierenden beziehungsweise verbrückenden Liganden dargestellt und deren Reaktivität gegenüber GaCl3 untersucht werden. Der Unterschied zwischen diesen beiden Ligandenarten besteht darin, dass der M-M-Abstand bei Verwendung von chelatisierender Liganden eher gering ist, weshalb hier immer noch M-M-Wechselwirkungen möglich sind, während diese bei Verwendung eines Brückenliganden verhindert werden. Ausgewählte Gruppe 8-Carbonyle wurden auch in Bezug auf ihre katalytische Aktivität in der Hydrosilylierung von Benzaldehyd (90) mit Phenylsilan (91) untersucht. Hierbei konnte gezeigt werden, dass NHC-substituierte Carbonylkomplexe einen höheren Umsatz ermöglichen als Phosphan- oder Isocyanid-substituierte Verbindungen. Zudem wurde deutlich, dass die analogen Ruthenium- und Osmiumcarbonyle eine wesentlich geringere Aktivität bei der Hydrosilylierung aufweisen als die Eisenanaloga, trotz einer höheren Lewis-Basizität. Abschließend konnten Halogenidabstraktionsreaktionen exemplarisch an den GaCl3-Addukten 46, 66 und 76 durch Umsetzung mit GaCl3 demonstriert werden, wodurch die kationischen dimeren Komplexe 104-106 erhalten wurden. In diesen Komplexen sind formal zwei [(Me3P)2(OC)3M-GaCl2]+-Einheiten durch Ga-Cl-Wechselwirkungen miteinander verbrückt. Im Gegensatz dazu führte die Umsetzung von 46, 66 und 76 mit Na[BArCl4] (101) zu keiner Chloridabstraktion. Stattdessen konnte eine Verbrückung zweier GaCl3-Adduktfragmente durch zwei Natriumkationen beobachtet werden. N2 - This work describes a detailed study on the Lewis basicity of group 8 carbonyl complexes. Thus, a variety of carbonyl complexes was treated with GaCl3 as Lewis acid to afford the corresponding Lewis adducts. Based on the analysis of spectroscopic and structural parameters of these adducts as well as on transfer experiments it was possible to evaluate the relative Lewis basicities of the metal carbonyl complexes. The reaction of iron penta-, tetra- and tricarbonyl complexes with the sterically less demanding ligands PMe3, IMe and tBuNC with the Lewis acid GaCl3 yielded a series of GaCl3 adducts, which could be fully characterized by NMR- and IR-spectroscopy, as well as X-ray diffraction and elemental analysis. While the three iron tetracarbonyl adducts 36-38 adopt the same cis geometry, adduct formation of the iron carbonyl complexes 43-45 entails a conformational change in the adducts 46, 48 and 49. Here, different geometries were observed. Comparison of the Fe-Ga bond lengths and the sum of the Cl-Ga-Cl angles of the adducts revealed a clear trend for the Lewis basicity depending on the nature of the σ-donor ligand. Thus, IMe substituted complexes showed the greatest Lewis basicity as compared to their PMe3 and tBuNC substituted analogs. In addition, the more σ-donor ligands are present in the iron carbonyls, the higher their Lewis basicity. Stepwise increase of the steric demand of the σ-donor ligands makes the adduct formation more difficult, which is illustrated in a trans position of the GaCl3. The presence of two bulky ligands fully hampered the formation of simpler GaCl3 adducts. Instead disproportion reactions of the Lewis acid into cationic [GaCl2]+ and anionic [GaCl4]- unit took place, with the [GaCl2]+ fragment coordinated to the iron center and [GaCl4]- as counterion. In addition to the electronic and steric influences of the ligands on the Lewis basicity and the adduct formation process of iron carbonyl complexes, the influence of the central atom was also investigated. To this end, analogous ruthenium- and osmium carbonyl complexes were prepared and treated with GaCl3, while the ligand sphere was retained with respect to the iron carbonyl complexes. To enable a direct comparison of the M-Ga bond distances, the relative distance (drel) was employed, which accounts for the different covalent radii of the metal centers. Accordingly, the relative Lewis basicity of the different complexes could be evaluated. Here, the same trend as observed for the iron carbonyl complexes was revealed: the more σ-donor ligands are present, the higher the Lewis basicity. Also, the relativly small drel-values of the ruthenium- and osmium carbonyl complexes suggested a higher Lewis basicity as compared to the corresponding iron carbonyl complexes. These results were clearly validated by transfer experiments. In general, several GaCl3 adducts were reacted with carbonyl complexes in CD2Cl2 while a possible transfer of the Lewis acid GaCl3 was monitored by NMR spectroscopy. The results showed that the Lewis acid GaCl3 is transfered always to the complex with a higher number of σ-donor ligands, thus verifying the higher Lewis basictiy of the latter complexes. In addition, the experiments also showed that ruthenium- and osmium carbonyl complexes are more Lewis basic than analogous iron carbonyl complexes while ruthenium and osmium feature a similar Lewis basicity. Additionally, transfer experiments between group 8 carbonyl adducts and the well-known Lewis base [(Cy3P)2Pt] (7) were carried out, which highlighted the strong Lewis basic character of the platinum compound 7. In addition to these mononuclear GaCl3 adducts, several dinuclear group 8 carbonyl complexes were prepared. Therefore, Ag+ was used as Lewis acid instead of GaCl3, which resulted in the generation of the dinuclear adducts 83-86. These results demonstrated that not only main group metals as gallium, but also transition metals can be employed in the syntheses of group 8 carbonyl adducts. It was also possible to prepare the dinuclear complexes 87-89 featuring either chelating or bridging ligands and to study their reactivity towards GaCl3. The main difference between these two classes of ligands is provided by the fact that the M-M disctance is much smaller in complexes bearing chelating ligands for which reason M-M communication remains possible here. By contrast, employing bridging ligands such an interaction can be ruled out completely. Selected group 8 carbonyl complexes were also used in catalysis experiments to evaluate their catalytic activity in the hydrosilylation of benzaldehyde (90) with phenylsilan (91). The study showed that NHC substituted carbonyl complexes enable a significantly higher turnover than phosphine- or isocyanid substituted complexes. In addition, ruthenium- and osmium carbonyl complexes are far less active catalysts in hydrosilylation reactions than corresponding iron carbonyl complexes, despite their higher Lewis basicity. Addition of one equivalent of GaCl3 to the adducts 46, 66 und 76 resulted in chloride abstraction reactions to afford the cationic and dimeric complexes 104-106. Here, two [(Me3P)2(OC)3M-GaCl2]+ units are bridged by Ga-Cl interactions. By contrast, treatment of 46, 66 und 76 with Na[BArCl4] (101) did not result in chloride abstraction reactions. Instead, the dimeric complexes 107-109 were isolated, in which two GaCl3 adducts are connected by two sodium cations. KW - Lewis-Addukt KW - Metallcarbonyle KW - Carbonyladdukte der Gruppe 8 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134211 ER -