TY - THES A1 - Schraut, Daniela T1 - Auswirkungen von externen Stressbedingungen auf die radialen Wasser- und ABA-Flüsse und den endogenen ABA-Gehalt des Wurzelgewebes von Maiskeimlingen (Zea mays L.) T1 - Consequences of external stress conditions for the radial ABA- and water-flows and for the endogenous ABA content in root tissues of maize seedlings (Zea mays L.) N2 - Das Ziel der vorliegenden Arbeit war es den Zusammenhang zwischen dem endogenen und internen ABA-Gehalt des Wurzelgewebes und dem radialen ABA- und Wasserfluss zu untersuchen und zu überprüfen ob diese Faktoren durch unterschiedliche Nährstoffbedingungen beeinflusst werden. Der radiale Transportweg von ABA wurde ebenfalls untersucht. • In dieser Arbeit konnte das erste Mal gezeigt werden, dass ein direkter Zusammenhang zwischen dem endogenen und internen ABA-Gehalt des Wurzelgewebes und dem radialen Wasser- und ABA-Transport besteht. Unter vergleichbaren Bedingungen können aus einem gegebenen ABA-Gehalt Rückschlüsse auf die radialen Wasser- und ABA-Flüsse gezogen werden. • Während Kalium- und Calciummangel und die Kultur in CaSO4 den radialen Wasserfluss von Maiskeimlingen stimulierten, war Jv unter Nitratmangel reduziert. Phosphat- und Sulfatmangel wirkten sich nicht auf den Wasserhaushalt von Maiskeimlingen aus, trotz einem deutlich reduzierten P- bzw. S-Gehalt konnten keine klaren Defizienzsymptome festgestellt werden. • Der endogene ABA-Gehalt im Wurzelgewebe von Maiskeimlingen war nur unter Kalium- und Nitratmangel erhöht. • Der radiale ABA-Transport wurde unter Kalium-, Nitrat-, Calciummangel und in CaSO4-Kultur gesteigert. Der erhöhte ABA-Fluss in Kaliumdefizienten Keimlingen resultiert aus einer gesteigerten ABA-Biosynthese und dem erhöhten Wassertransport. Unter Nitratmangelbedingungen lässt sich der gesteigerte ABA-Fluss anhand des erhöhten ABA-Gehaltes im Wurzelgewebe erklären. Die erhöhte ABA-Konzentration im Xylemsaft von Keimlingen aus Calciummangel- und CaSO4-Kultur ist das Ergebnis des gesteigerten Wassertransportes. Phosphat- und Sulfatmangel hatten keine Auswirkungen auf den ABA-Fluss. • Salzstress (50 mM) reduzierte den radialen Wasserfluss deutlich. Der erhöhte endogene ABA-Gehalt im Wurzelgewebe hatte keinen Einfluss auf Jv und JABA. Die Auswirkungen von Salzstress waren voll reversibel. • 100 nM externe ABA wirkte sich unter allen untersuchten Nährstoffbedingungen gleichermaßen stimulierend auf Jv und JABA aus. In NaCl-gestressten Keimlingen zeigte externe ABA keinen Effekt. • Eine Möglichkeit zur Immunolokalisation von ABA in Wurzelquerschnitten von Maiskeimlingen wurde entwickelt und optimiert. • Die Visualisierung des radialen ABA-Transportes anhand der Immunolokalisation mit monoclonalen Antikörpern zeigte, dass Endo- und Exodermis eine apoplastische Barriere für den ABA-Transport darstellen. Die Ergebnisse lassen den Rückschluss zu, dass die Exodermis die wirksamere Barriere für den ABA-Transport ist. • Wurzeln von Maiskeimlingen bildeten unter Nitratmangelbedingungen eine Exodermis aus und verstärkten die Suberinisierung der Endodermis. Unter Kaliummangel konnten keine verstärkten Barriereeigenschaften beobachtet werden. In der vorliegenden Arbeit konnte zum ersten Mal aufgezeigt werden, dass eine signifikant hohe Korrelation zwischen dem endogenen ABA-Gehalt des Wurzelgewebes und dem ABA- bzw. Wassertransport besteht. Die ebenfalls positiv signifikant hohe Korrelation zwischen dem radialen Wasser- und ABA-Transport zeigt einen apoplastischen ABA-Transport an. Mit zunehmendem Wasserfluss steigt auch die ABA-Konzentration im Xylem. Ein apoplastischer radialer bypass der ABA konnte auch mit Hilfe der Immunolokalisation nachgewiesen werden. N2 - The objective of this study has been to investigate the relations between the endogenous and internal ABA content in root tissues and the radial ABA- and water-flows and how these individual factors can be affected by different conditions of nutrient deficiency. The radial transport paths also have been studied. • The experiments of this study, for the first time, show a direct correlation between endogenous and internal ABA content in root tissue and radial water- and ABA-transport. From differences of the endogenous ABA content, conclusions can be drawn about changes of the radial water- and ABA-flows under comparable transpiring conditions. • Whereas potassium and calcium deficiencies and CaSO4-culture are stimulating the radial water flow of maize seedlings, nitrate-deficiency will reduce Jv. Phosphorus and sulphur deficiencies do not have an effect on the water balance of maize seedlings because, despite clearly reduced internal P- and S-content no serious deficiency symptoms developed. • The endogenous ABA-content of maize root tissues is enhanced by potassium and nitrate deficiencies only. • Radial ABA-transport is enhanced by potassium, nitrate, calcium deficiencies and in CaSO4-culture. The increased ABA-flow in potassium deficient seedlings is a result of the enhanced ABA-biosynthesis and the increased water-transport. Under conditions of nitrate deficiency the enhanced ABA-content in root tissue results in an increased ABA-flow. In maize seedlings cultivated under calcium deficiency or in CaSO4 the enhanced ABA-concentration of xylem sap is a result of the stimulated water-flow. No effect can be seen under phosphate and sulphate deficiencies. • Salt stress (50 mM) reduces the radial water flow drastically. Although endogenous ABA is accumulated under salt stress Jv remains unaffected. The salt effect is fully reversible. • Under all nutrient deficient and hypoxic conditions, 100 nM external ABA stimulates water and ABA-flows in a comparable way. In NaCl-stressed seedlings external ABA proved to be ineffective. • A technique of immunolocalisation of ABA in cross sections of maize roots has been developed and optimised. • Visualisation of the radial ABA-transport by immunolocalisation with monoclonal antibodies demonstrated the barrier properties of endodermis and exodermis for radial ABA-transport. From the results of immunolocalisation it is concluded that the exodermis only is a significant barrier for radial ABA transport. • Roots of maize seedling build up an exodermis and enhance the suberinisation of the endodermis under nitrogen deficiency, whereas under potassium deficiency no increased barrier properties could be observed. The presented work, for the first time, shows the tight and significant correlation between the endogenous and internal ABA-content of root tissue and the radial ABA- respectively water-transport. Likewise, there is a positive highly significant correlation between the radial water- and ABA-transport, indicating an apoplastic bypass of ABA. With increasing water flow, the ABA-concentration in xylem-sap is increasing as well. A radial apoplastic ABA-flow could also be demonstrated by immunolocalisation. KW - Mais KW - Keimling KW - Abscisinsäure KW - Wasser KW - Nährstoffmangel KW - Abscisinsäure KW - Wasserfluss KW - Nährstoffmangel KW - Salz KW - Immunolokalisation KW - Suberin KW - Abscisic acid KW - water flow KW - nutrient deficiency KW - salt KW - immunolocalisation KW - suberin Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13163 ER - TY - THES A1 - Imes, Dennis T1 - Aufklärung der molekularen Struktur und Funktion des R-Typ Anionenkanals QUAC1 in Schließzellen T1 - Molecular structure and function analyses of the R-type anion channel QUAC1 in guard cells N2 - Zum Gasaustausch mit Ihrer Umgebung besitzen höhere Pflanzen stomatäre Komplexe. Die Turgor-getrieben Atmungsöffnungen in der Epidermis der Blätter werden von zwei Schließzellen umsäumt. Um bei Trockenheit einen exzessiven Verlust von Wasser zu verhindern, synthetisieren/importieren Schließzellen das Stresshormon ABA (Abszisinsäure), das über eine schnelle ABA-Signalkaskade plasmamembrangebundene Ionenkanäle steuert. Dabei wird der Stomaschluss durch die Aktivität von R-(rapid) und S-(slow)Typ Anionenkanälen initiiert. Obwohl die R- und S-Typ Anionenströme in Schließzellen seit Jahrzehnten bekannt waren, konnte erst kürzlich das Gen identifiziert werden, das für den S-Typ Anionenkanal (SLAC1, Slow activating Anion Channel 1) kodiert. Daraufhin wurde schnell der Zusammenhang zwischen dem Stresshormon ABA, der ABA-Signalkette und der Aktivität des SLAC1 Anionenkanals im heterologen Expressionssystem der X. laevis Oozyten als auch in Schließzellprotoplasten aufgeklärt. Es konnte gezeigt werden, dass ABA durch einen zytosolischen Rezeptor/Phosphatasekomplex (RCAR1/ABI1) erkannt wird und die Aktivität von kalziumabhängigen Kinasen (CPK-Familie) sowie kalziumunabhängigen Kinasen der SnRK2-Familie (OST1) steuert. In Anwesenheit von ABA phosphorylieren diese Kinasen SLAC1 und sorgen so für die Aktivierung von Anionenströmen und damit für die Initiierung des Stomaschlusses. Die genetische Herkunft der ABA-induzierten R-Typ Ströme in Schließzellen war zu Beginn der vorliegenden Arbeit noch nicht bekannt. R-Typ Ströme zeichnen sich durch eine strikte Spannungsabhängigkeit und sehr schnellen Aktivierungs- sowie Deaktivierungskinetiken aus. Die Charakterisierung von Verlustmutanten des Schließzell-exprimierten Gens ALMT12 (Aluminium-aktivierter Malattransporter 12) konnte in Zusammenarbeit mit der Arbeitsgruppe Martinoia (Zürich) erste Hinweise auf die Beteiligung dieses Gens an der Stomabewegung demonstrieren. Anschließende Patch-Clamp Untersuchungen an Schließzellprotoplasten aus Wildtyppflanzen und ALMT12-Verlustmutanten zeigten, dass ALMT12 für die Malat-aktivierte R-Typ Anionenstromkomponente verantwortlich ist. Deshalb wurde der Anionenkanal QUAC1 (Quickly activating Anion Channel 1) benannt - in Anlehnung an die Benennung des Anionenkanals SLAC1. Mit der Identifizierung von QUAC1 in planta war es nun meine Aufgabe, die elektrischen Eigenschaften von ALMT12/QUAC1 und dessen Aktivitätskontrolle durch die ABA-Signalkaskade im heterologen Expressionssystem der Xenopus Oozyten zu untersuchen. Protein-Protein Interaktionsstudien mit der Hilfe der Bimolekularen Fluoreszenz-Technik, sowie die Beobachtung von markant erhöhten QUAC1 Anionenströmen in Anwesenheit der SnRK2 Kinase OST1 und den Calcium-abhängigen Kinasen CPK2 und CPK20, ließen den Schluss zu, dass QUAC1, ebenso wie SLAC1, unter der Kontrolle des schnellen ABA-Signalwegs steht. Eine zusätzliche Expression des negativen Regulators ABI1 unterdrückte die aktivierenden Eigenschaften der QUAC1-aktivierenden Kinasen, was die Hypothese der Koregulation von S- und R-Typ Anionenkanälen durch die gleiche ABA-Signalkaskade weiter unterstützt. Zur weiteren Aufklärung der elektrischen Eigenschaften von QUAC1 wurden tiefgreifende elektrophysiologische Untersuchungen mit der Zwei-Elektroden-Spannungsklemmen Technik durchgeführt. Durch die Wahl von geschickten Spannungsprotokollen konnte sowohl die schnelle Aktivierungskinetik als auch die schnelle Deaktivierungskinetik von QUAC1 bestimmt und quantifiziert werden. Diese Stromantworten waren sehr ähnlich zu den R-Typ Strömen, die man von Patch-Clamp Untersuchungen an Schließzellprotoplasten kannte, was ein weiteres Indiz dafür war, dass es sich bei QUAC1 tatsächlich um eine Komponente des R-Typ Kanals aus Schließzellen handelt. Weiterführende Untersuchungen bezüglich der Spannungsabhängigkeit und der Selektivität von QUAC1 charakterisierten das Protein als einen Depolarisations-aktivierten Anionenkanal mit einer starken Präferenz für Dicarbonsäuren wie Malat und Fumarat. Zudem konnte auch eine Leitfähigkeit für Sulfat und Chlorid nachgewiesen werden. Interessanterweise erwies sich Malat nicht nur als ein permeierendes Ion, sondern auch als ein regulierendes Ion, welches das spannungsabhängige Schalten von QUAC1 maßgeblich beeinflusst. Extrazelluläres Malat verschob die Offenwahrscheinlichkeit von QUAC1 sehr stark zu negativeren Membranspannungen, so dass der Anionenkanal bereits bei typischen Ruhespannungen von Schließzellen (ca. -150 mV) aktiviert werden konnte. Eine Beladung von QUAC1-exprimierender Oozyten mit Malat bewirkte zum einen höhere Anioneneffluxströme, aber auch eine Verschiebung der spannungsabhängigen Offenwahrscheinlichkeit zu negativeren Membranpotentialen. Struktur-Funktionsanalysen sollten die umstrittene Topologie von ALMT-ähnlichen Proteinen beleuchten und die molekulare Herkunft der Phosphorylierungsaktivierung aufzeigen, sowie die Malatabhängigkeit und die starke Spannungsabhängigkeit von QUAC1 aufklären. Es zeigte sich jedoch schnell, dass Punktmutationen und Deletionen im C-Terminus von QUAC1 sehr häufig zu nicht-funktionellen Mutanten führten. Diese Tatsache weist darauf hin, dass es sich um einen hoch-strukturierten und funktionell sehr wichtigen Bereich des Anionenkanals handelt. Auch die Topologie des Anionenkanalproteins wird in der Literatur kontrovers diskutiert. Sowohl die Lage des N- und C-Terminus (extrazellulär oder intrazellulär), als auch die Anzahl der membrandurchspannenden Domänen war nicht abschließend geklärt. Deshalb wurde in einem Fluoreszenz-basiertem Ansatz die Lage der Termini bestimmt. Im Rahmen meiner Arbeit konnte somit eindeutig gezeigt werden, dass sich beide Termini im Zytosol der Zelle befinden. Auf Grundlage von Modellen aus der Literatur und meiner Topologiebestimmungen konnte schließlich ein erweitertes Modell zur Struktur von QUAC1 entwickelt werden. Dieses Modell kann in Zukunft als Ausgangspunkt für weiterführende Struktur-Funktionsanalysen dienen. Diese Arbeit hat somit gezeigt, dass das Gen QUAC1 tatsächlich eine Komponente der R-Typ Ströme in Schließzellen kodiert. Ebenso wie SLAC1 steht der Malat-induzierte Anionenkanal QUAC1 unter der Kontrolle der schnellen ABA-Signalkaskade. In Zukunft bleibt zu klären, welche weiteren Gene für die R-Typ Kanalproteine in Schließzellen kodieren und welche strukturelle Grundlage für die besonderen Eigenschaften von QUAC1 hinsichtlich seiner schnellen Kinetiken, seiner Selektivität und Aktivierbarkeit durch Malat. N2 - Higher plants are able to exchange gases with their environment. This gas exchange is accomplished by the stomatal complex, which consist of two tugor-driven guard cells (GC) that surround a pore in the epidermis. Under drought conditions, guard cells produce and import the plant stress hormone abscisic acid (ABA). ABA is able to activate plasma membrane localized ion channels via the fast ABA-signal cascade, which leads to a closure of the stoma and thus minimizes the loss of water. The stomatal closure is initialized by the R-(rapid) and S-(slow) type anion channels. Although R- and S-type anion channels in guard cells have been known for over a decade, the gene which decodes the S-type anion channel SLAC1 (Slow activating Anion Channel 1) has only recently been identified. Consequently, the relationship between the plant hormone ABA, the ABA-signal-transduction-chain, and the activity of SLAC1 could be clarified in rapid succession in the heterologous expression system of X. laevis oocytes as well as in GC-protoplasts. It could be shown that ABA is recognized by a cytosolic receptor/phosphatase complex (RCAR/ABI1). This complex in turn regulates the activity of calcium dependent kinases of the CPK-family as well as the calcium independent kinases of the SnRK2-family (OST1). In the presence of ABA, these kinases activate SLAC1 by phosphorylation, and by this activate anion currents across the plasma membrane, ultimately leading to closure of the stomates. The genetic origin of the ABA induced R-type currents in guard cells was unknown at the beginning of this thesis. R-type currents are characterized by strong voltage-dependent behavior and fast activation- and deactivation-kinetics. In cooperation with the workgroup of Martinoia (Zürich), knock-out plants missing the guard cell gen ALMT12 (Aluminum activated Malate Transporter 12) were characterized. This work delivered the first hints that ALMT12 is involved in the stomatal movement. Subsequent patch-clamp studies on GC-protoplasts from WT and ALMT12 knock-out mutants revealed that ALMT12 is responsible for the malate-activated component of the R-type anion currents. Therefore, the anion-channel was named QUAC1 (Quick activating Anion Channel) in dependence on the naming of SLAC1. With the identification of QUAC1 in planta it was my duty to research the electrical properties of ALMT12/QUAC1 as well as the activation by the ABA-signal-transduction-chain in the heterologous expression system of X. laevis oocytes. Protein-protein interaction studies via bimolecular fluorescence complementation (BIFC) as well as significantly higher QUAC1 anion currents in the presence of the SnRK2 kinase OST1 and the calcium-dependent-kinases CPK2 and CPK20 led to the conclusion that QUAC1 is under the control of the fast ABA signaling pathway, as it was shown before for SLAC1. Furthermore expression of the negative regulator ABI1 inhibited the activating properties of the QUAC1-activating kinases. These findings support further the hypotheses of the simultaneous regulation of S- and R-type anion channels by the ABA-signaling pathway. To further elucidate the electrical properties of QUAC1, electrophysiological investigations were performed with the two-electrode-voltage-clamp technique (TEVC). In this way, the fast activation and deactivation of QUAC1 could be identified and quantified by carefully chosen voltage-clamp protocols. These current responses of QUAC1 closely resembled the R-type currents known from former patch-clamp studies from GC-protoplasts. This further supported the conclusion that QUAC1 is indeed a component of the R-type channels of guard cells. Additional investigations of the voltage-dependence and selectivity of QUAC1 characterized the protein as a depolarization-activated anion channel with strong preference for bicarbonate acids like malate and fumarate. Furthermore, a conductance for sulfate and chloride could also be shown. Interestingly, malate was not only able to permeate the channel, it was also able to alter the voltage-dependence of QUAC1. External malate strongly shifted the open probability of QUAC1 to negative membrane voltages. By this shift the anion channel could be activated at typical guard cell membrane potentials (approx. 150 mV). Loading of QUAC1 expressing oocytes with malate produced enhanced anion efflux currents and shift the voltage-dependent open probability to negative membrane potentials. Structure function analysis were performed to clarify the controversial topology of ALMT like proteins and the molecular origin of the phosphorylation activation. Furthermore, this should elucidate the origin of the malate dependence and the strong voltage dependence of QUAC1. It soon became evident that point mutations and deletions in the C-terminus of QUAC1 very often lead to nonfunctional mutants. This points toward a highly structured and functionally important region of the anion channel. In addition, the topology of the anion-channel-protein is controversially debated in literature. Neither the position of the C- and N-terminus (intra- or extracellular) nor the number of transmembrane domains has been conclusively established. Due to this, the position of the C- and N-termini were localized by a fluorescence based experiment. As part of this work, it could be shown explicitly that both termini reside in the cytosol of the cell. Based on models from the literature and my own topology studies, an enhanced structure model for QUAC1 could be generated. This model will serve as a starting point for future structure function analysis. This work has thus shown that the gene QUAC1 indeed encodes a component of the R-type currents in guard cells. Like SLAC1, the malate-induced anion channel QUAC1 is under the control of the fast ABA-signal-cascade. Future works must establish which further genes encode R-type channel proteins and which structural attributes are responsible for the special traits of QUAC1: its fast kinetics, its selectivity and its activation by malate. KW - Ackerschmalwand KW - Schließzelle KW - Anionentranslokator KW - Abscisinsäure KW - Struktur KW - Funktion KW - R-Typ KW - Anionenkanal KW - QUAC1 KW - TEVC Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136860 ER -