TY - THES A1 - Käppler, Ulrich T1 - Synthese und Testung nichtpeptidischer Cystein-Protease-Inhibitoren - Etacrynsäure als Leitstruktur T1 - Synthesis and evaluation of non-peptidic cysteine protease inhibitors - etacrynic acid as lead compound N2 - Cystein-Proteasen sind in eine Vielzahl physiologischer und pathophysiologischen Prozesse involviert. Auch bei humanpathogenen Parasiten sind sie weit verbreitet und für das Überleben der Erreger essentiell. Substanzen, die diese Proteasen hemmen, könnten daher bei vielen Indikationen als neue Arzneistoffe eingesetzt werden. In der vorliegenden Arbeit wurden nichtpeptidische Cystein-Proteaseinhibitoren synthetisiert, die als elektrophile Gruppe ein a,b-ungesättigtes Keton enthalten, und den Cysteinrest im aktiven Zentrum der Proteasen in einer Michael-Reaktion addieren. Als Leitstruktur diente das Diuretikum Etacrynsäure, dessen Struktur an verschiedenen Positionen modifiziert wurde. Der Hauptsyntheseweg kann wie folgt beschrieben werden: Die Acylseitenkette gewünschter Kettenlänge wurde durch Friedel-Crafts-Acylierung in entsprechend substituierte Anisole eingeführt. Diese wurden in einer unmittelbar anschließenden Reaktion zu acylierten Phenolen gespalten, die in einem Folgeschritt mit Bromessigsäureethylester zu acylierten Phenoxyessigsäureethylestern verethert wurden. In diese wurde in a-Position zum Keton eine Doppelbindung eingeführt. Über eine Mannich-Reaktion mit N,N,N’,N’-Tetramethyldiaminomethan/Acetanhydrid oder Urotropin/Acetanhydrid erhält man so die acylierten Phenoxyessigsäureethylester mit a,b-ungesättigter Ketonstruktur. Zur Darstellung der entsprechenden ungesättigten Säuren aus den acylierten Phenoxyessigsäureethylestern bedient man sich einer basenkatalysierten Aldokondensation mit Formaldehyd, unter deren Bedingungen der Ethylester zur Säure gespalten wird. Kupplung von Etacrynsäure mit Aminen unter Aktivierung mit DCC/N-Hydroxysuccinimid führte zu den Etacrynsäureamiden. Methylierung der acylierten Phenole und anschließende Mannich-Reaktion dient der Darstellung der acylierten Anisole mit a,b-ungesättigter Ketonstruktur. Auf diesem Syntheseweg wurden 28 Derivate mit Michael-System synthetisiert. Diese wurden an den Cystein-Proteasen Papain, Cathepsin B (CB), Falcipain (FP) und Rhodesain (RD) getestet. Gegen Serin-Proteasen wurde keine Hemmung festgestellt. Die meisten Inhibitoren zeigten bei CB, FP und RD eine nicht-zeitabhängige Kinetik der Enzyminaktivierung. Nur bei Papain wurde eine zeitabhängige Kinetik beobachtet. Die Substanzen wurden zwar als irreversible Inhibitoren konzipiert, Dialyseversuche beweisen jedoch eine reversible Hemmung. Da eine Vergleichssubstanz ohne aktivierte Doppelbindung unwirksam ist, kann von einer kovalenten Reaktion mit den Cystein-Proteasen ausgegangen werden. Bestimmt wurden die Dissoziationskonstanten Ki der Enzym-Inhibitor-Komplexe EI als Maß für die Affinitäten der Inhibitoren zum Enzym und, soforn möglich, auch die Alkylierungsgeschwindigkeitskonstanten ki der Reaktion zu modifiziertem Enzym E-I. Eine allgemeine Selektivität für einzelne Enzyme konnte nicht gefunden werden. Die besten Inhibitoren (Ki = 3.2 - 57.5 µM) waren die Etacrynsäureamide. Die Analyse der Struktur-Wirkungs-Beziehungen ergab, dass wie erwartet das a,b-ungesättigte System essentiell für die Wirksamkeit an Cystein-Proteasen ist, ebenso ein aromatischer Ring. Eine längere Seitenkette an der Doppelbindung, die mindestens einen Ethylrest trägt, sowie zwei benachbarte Halogenatome am aromatischen Ring erwiesen sich als wirkungssteigernd. Ester und Amide zeigten generell bessere Hemmeigenschaften als die freien Säuren. Methoxy-Gruppen am Aromaten hatten keinen Wirkungsverlust zur Folge, senken aber die Löslichkeit in wässrigem Medium. Viel versprechend ist auch der [5-Chlor-2-(2-methylenbutyryl)-phenoxy]-essigsäureethylester, der das a,b-ungesättigte Doppelbindungs-System in ortho-Position zum phenolischen Sauerstoffatom trägt. Innerhalb der Amide sind kurze, voluminöse Reste wie der tertButylrest von Vorteil, eine gewisse Selektivität wird mit langkettigen Amiden wie dem n-Hexylamid für FP gegenüber CB und RD erreicht. Die Verbindungen wurden auf die Wachstumshemmung von grampositiven und gramnegativen Problemkeimen, sowie auf die Hemmung der Biofilmbildung grampositiver Erreger getestet. Bei gramnegativen Keimen wurde das Wachstum nicht gehemmt. Bei den grampositiven Keimen Staphylococcus aureus und S. epidermidis wirkten ebenfalls der Etacrynsäureethylester und das Hexylamid, Benzylamid, Anilid der Etacrynsäure am besten (MHK = 5 - 20 µM). Die genannten Verbindungen zeigten auch die stärkste Hemmwirkung auf die Biofilmbildung (100 % bei 20 - 40 µM bis zu 95 % bei 2.5 - 5 µM an S. aureus). Aufgrund positiver Screeningergebnisse in einem enzymatischen HPLC-Assays an der humanen SARS-Coronavirus Hauptprotease (SARS-CoV Mpro) wurden Docking-Experimente mit Etacrynsäure-tertbutylamid an der humanen SARS-Coronavirus Hauptprotease (SARS-CoV Mpro) durchgeführt. Die Ergebnisse führten zur Synthese einer modifizierten Verbindung, die eine geringe Verbesserung der Enzyminhibition im fluorimetrischen Assay zeigte. N2 - Cysteine proteases are involved in a variety of physiological and pathophysiological processes. They are wide-spread in pathogenic parasites as well and are essential for the survival of the pathogens. Compounds which inhibit these proteases could serve as new pharmaceuticals for many therapeutic indications. In the present work non-peptidic cysteine protease inhibitors, which contain an a,b-unsaturated ketone as electrophilic group and which are able to add the cysteine residue of the proteases’ active site in a Michael-type reaction, were synthesized. The diuretic etacrynic acid was used as lead compound, its structure was modified in several positions. The main synthetic pathway is as follows: the acyl side chain of the desired length was introduced in correspondingly substituted anisoles via a Friedel-Crafts acylation. The yielded acylated anisols were cleaved to the acylated phenols in a consecutive reaction. They were transferred to the acylated phenoxy acetic acid esters in a following step with bromo acetic acid ethyl ester. A double bond was introduced into the acylated phenoxy acetic acid esters in a-position of the ketone. The acylated phenoxy acetic acid ethyl esters with an a,b-unsaturated ketone moiety are yielded via a Mannich reaction with N,N,N’,N’-tetramethyl-diaminomethane/acetic acid anhydride or urotropine/acetic acid anhydride. To synthesize the corresponding unsaturated acids out of the acylated phenoxy acetic acid esters a base-catalyzed aldol condensation with formaldehyde in aqueous ethanol is used. Under these conditions the ethyl ester is cleaved to give the free acid. Coupling of etacrynic acid with amines by activation with DCC/N-hydroxy succinic imide led to the etacrynic acid amides. Methylation of the acylated phenols and consecutive Mannich reaction, as described above, leads to the acylated anisols with a,b-unsaturated ketone moiety. Following this synthetic pathway 28 derivatives with a Michael system were synthesized. These compounds were tested in the cysteine proteases papain, cathepsin B (CB), falcipain (FP) and rhodesain (RD). No inhibition of serine proteases was detected. Most of the inhibitors showed non-time-dependent kinetics for enzyme inactivation of CB, FP and RD. Only with papain time-dependent kinetics are observed. Although the compounds were planned as irreversible inhibitors, dialysis assays proved a reversible inhibiton. Since a comparative compound without a double bond is inactive, a covalent reaction with the cystein proteases can be assumed. Dissociation constants Ki of the enzyme-inhibitor-complexes EI were determined as a measurement of the affinities of the inhibitors towards the enzymes, as well as the alkylation velocity constants ki of the reaction yielding the modified enzyme E-I. The latter could be determined only in cases of a time-dependent inhibition. A general selectivity for single enzymes could not be found. The etacrynic acid amides were the best inhibitors (Ki = 3.2 - 57.5 µM). The analysis of the structure-activity relationship showed, as expected, the a,b-unsaturated system being essential for activity in cysteine proteases. The same fact is true for the aromatic ring. A longer side chain next to the double bond, which contains at least an ethyl moiety, as well as two vicinal halogen atoms at the aromatic ring proved to enhance the activtity of the inhibitors. Generally, esters and amides showed better inhibition properties than the free acids. Methoxy groups at the aromatic ring did not result in a loss of inhibition but in a reduced solubility in aqueous media. Compound [5-Chloro-2-(2-methylenebutyryl)-phenoxy]-acetic acid ethyl ester, which carries the a,b-unsaturated double bond system in ortho position to the phenolic oxygen atom, is also promising. Within the amides short voluminous moieties such as the tertbutyl moiety are advantageous. A distinct selectivity for FP against CB and RD can be achieved with long-chain amides such as the n-hexyl amide. The compounds were examined for growth inhibition of gram-positive and gram-negative pathogens as well as for inhibition of biofilm formation of gram-positive pathogens. The growth of gram-negative germs was not inhibited. The gram-positive germs Staphylococcus aureus and S. epidermidis were inactivated best by etacrynic acid ethyl ester and by the n-hexyl amide, the benzyl amide and the anilide of etacrynic acid (MHK = 5 - 20 µM). The mentioned compounds also showed the highest inhibition rate for biofilm formation (100 % at 20 - 40 µM to 95 % at 2.5 - 5 µM in S. aureus). Due to positive screening results in a enzymatic HPLC-assay of human SARS coronavirus main protease (SARS-CoV Mpro) docking experiments were conducted on etacrynic acid tertbutyl amide. The results led to the synthesis of a modified compound which showed weak improvement of enzyme inhibition in a fluorimetric assay. KW - Cysteinproteasen KW - Proteaseinhibitor KW - Etacrynsäure KW - Etacrynsäure KW - nichtpeptidische Inhibitoren KW - Cystein-Protease KW - etacrynic acid KW - non-peptidic inhibitors KW - cysteine protease Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12122 ER - TY - THES A1 - Vicik, Radim T1 - Synthese und Eigenschaften N-Acylierter Aziridin-2,3-dicarboxylate als selektive, peptidomimetische Inhibitoren von Cystein-Proteasen der Cathepsin-L-Subfamilie T1 - Synthesis and Properties N-Acylated Aziridin-2,3-dicarboxylates as selective, peptidomimetic Inhibitors of Cystein Proteases of Cathepsin-L-Subfamily N2 - Die Cystein-Proteasen der Säuger und Parasiten wurden erst in den letzten zwei Jahrzehnten als pharmazeutisch/medizinisches Target erkannt. Die genauen Aufgaben der einzelnen Enzyme dieser sehr umfangreichen und ständig wachsenden Protease-Familie bleiben zwar teilweise noch unbekannt, es ist jedoch klar, dass ihre Aufgabe nicht nur der unspezifische Protein-Abbau ist. Das Ziel der vorliegenden Arbeit waren die Synthese einer Reihe peptidomimetischer Inhibitoren mit elektrophilem Aziridin-2,3-dicarbonsäure-Baustein und deren Testung an den Proteasen Cathepsin B (human), Cathepsin L (Paramecium tetraurelia), Falcipain-2 (Plasmodium falciparum) und Rhodesain (Trypanosoma brucei rhodesiense). Die Verbindungen sind als irreversible Inhibitoren der Proteasen konzipiert. Der Aziridin-Baustein als Elektrophil wird durch den Cystein-Rest des aktiven Zentrums der Proteasen angegriffen, es erfolgt eine nucleophile Ringöffnung und damit die irreversible Alkylierung der Proteasen. Die Aziridin-Bausteine wurden entweder stereoselektiv aus Tartraten oder als Racemate aus Fumaraten dargestellt. Durch NMR-spektroskopische Versuche wurde der Mechanismus der Epimerisierung der als Intermediate der stereoselektiven Synthese auftretenden Azidoalkohole aufgeklärt. Die N-Acylierung des Aziridin-Bausteins mit den Aminosäuren bzw. Dipeptiden erfolgte über Segmentkopplungen oder über eine schrittweise Anknüpfung der Aminosäuren. Es wurden dabei verschiedenste Methoden der Peptidchemie eingesetzt. Die Hemmkonstanten der synthetisierten Substanzen wurden in einem kontinuierlichen fluorimetrischen Mikrotiterplatten-Assay bei Inhibitor-Konzentrationen von 0.35 - 140 µM ermittelt. Als Substrat diente für alle Enzyme Z-Phe-Arg-AMC. Der Nachweis der Irreversibilität der Hemmung wurde durch Dialyse-Versuche und die Affinitätsmarkierung von Cathepsin L und Falcipain 2 mit Hilfe eines Biotin-markierten Inhibitors erbracht. Bei Inhibitoren, die eine zeitabhängige Hemmung aufweisen, wurden die Alkylierungskonstanten (ki –Werte) ermittelt. Diese sind im Vergleich zu den Konstanten der Epoxysuccinyl-Peptide ca. 1000x kleiner, was frühere Untersuchungen bestätigt. Aus den ermittelten Dissoziationskonstanten (Ki) ist die Selektivität für Cathepsin-L-ähnliche Proteasen eindeutig. Dabei wird die Reihenfolge RD > CL > FP >>> CB gefunden. Der beste Inhibitor für alle Enzyme ist die Substanz 116C (BOC-(S)-Leu-(S)-Azy-(S,S)-Azi(OBn)2), für die Hemmkonstanten im unteren micromolaren bzw. sogar nanomolaren Bereich gefunden werden. Unter den Substanzen finden sich auch einige, die für einzelne Enzyme selektiv sind. Für CL sind es die Verbindungen 517C, 105G, Z-023B, 023A; für CB 034A und 013B und für RD 112C, 222C, 105B, 013A. Dabei gibt es zwei Inhibitoren (105A, 517G), die selektiv nur die parasitären Enzyme FP und RD hemmen. Die Analyse der Struktur-Wirkungs-Beziehungen ergab, dass in Abhängigkeit von den Substituenten am Aziridinring (Benzylester, Ethylester, Disäure), von den Substituenten am Aziridin-Stickstoff (Phe-Ala, Leu-Xxx, Gly-Xxx, Xxx = cyclische Aminosäure) und der Stereochemie unterschiedliche Bindungsmodi vorliegen müssen. Erste Docking-Versuche, die in Kooperation mit der Arbeitsgruppe Baumann (Institut für Pharmazie und LMC, Universität Würzburg) durchgeführt wurden, bestätigen dies. Postuliert wird für Inhibitoren, die die Sequenz Leu-Pro enthalten, eine Bindung an die S`- Seite von Cathepsin L. Dies erklärt die Selektivität dieser Inhibitoren, denn innerhalb der S`-Substratbindungstaschen finden sich die größten strukturellen Unterschiede zwischen Cathepsin B und den Cathepsin-L-ähnlichen Proteasen. Im Gegensatz dazu wird für eines der Phe-Ala-Derivate eine Bindung an die S-Taschen postuliert, die zwischen den einzelnen Proteasen geringere strukturelle Unterschiede aufweisen. Dieser Inhibitor hemmt, wie fast alle Phe-Ala-Derivate, dementsprechend auch Cathepsin B besser als die Leu-Xxx-Derivate. In Rahmen einer Kooperation mit der Arbeitsgruppe Engels Institut für Organische Chemie, Universität Würzburg) wurden quantenchemische Rechnungen durchgeführt, die u.a. den Einfluss von Substituenten auf die Kinetik und Thermodynamik der nucleophilen Ringöffnung untersuchten. Vorhergesagt wurde, dass Substituenten am Aziridin-Stickstoff, die den Übergangzustand stabilisieren (N-Formyl), zu einer besseren Hemmung führen sollten. Das darauf hin synthetisierte N-Formylaziridin-2,3-dicarboxylat 008B weist eine etwa 5000x bessere Hemmung von CL auf als das nicht-formylierte Diethylaziridin-2,3-dicarboxylat. Die gezielt als "affinity label" entwickelte Biotin-markierte Verbindung 999C wurde zur Identifizierung von Cystein-Proteasen, die von Plasmodium falciparum exprimiert werden, eingesetzt (Kooperation mit der Arbeitsgruppe Gelhaus/Leippe, Institut für Zoologie, Universität Kiel). N2 - Mammalian and parasitic cysteine proteases have been discovered as potential drug targets within the last two decades. The physiological and pathophysiological functions of this huge and growing family of proteases are not yet known in detail. However, their role is no longer considered to be only unspecific protein degradation. The goal of the present work was the syntheses of a series of peptidomimetic cysteine protease inhibitors containing aziridine-2,3-dicarboxylate as electrophilic fragment, and the testing of the synthesized compounds on the cysteine proteases cathepsin B (human), cathepsin L (Paramecium tetraurelia), falcipain 2 (Plasmodium falciparum), and rhodesain (Trypanosoma brucei rhodesiense. The compounds are designed as irreversible protease inhibitors. The aziridine ring represents an electophilic building block which is attacked by the cysteine residue of the proteases` active sites. As a consequence, the nucleophilic ring opening reaction leads to irreversible enzyme alkylation. The aziridine building blocks were synthesized stereoselectively in a chiral pool synthesis starting from tartrates, and as racemates starting from fumarates, respectively. NMR spectroscopic studies were used to clarify the mechanism of epimerization occurring during the synthesis of the azido alcohols which are intermediates of the stereoselective synthetic route. The N-acylation of the aziridines with amino acids or dipeptides was carried out via segment or subsequent peptide coupling. Various methods of peptide chemistry were used. The inhibition constants were determined in fluorimetric microplate enzyme assays with inhibitor concentrations between 0.35-140 µM. In all cases, the substrate Z-Phe-Arg-AMC was used. The irreversibility of inhibition was proven by dialysis assays, and by affinity labelling of CL and falcipain using a biotinylated inhibitor. The alkylation rate constant ki was determined in cases where time-dependent inhibition could be observed. In comparison to epoxysuccinyl peptides the ki -values are lower by three orders of magnitude confirming previous investigations. The Ki values unambiguously show that the compounds exhibit a selectivity for the CL-like enzymes. The order of inhibition potency is RD > CL > FP >>> CB. The most potent inhibitor is 116C (BOC-(S)-Leu-(S)-Azy-(S,S)-Azi(OBn)2) with inhibition constants in the submicromolar and even nanomolar range. Some compounds exhibit selectivity for single enzymes: CL: 517C, 105G, Z-023B, 023A; CB: 034A, 013B; RD: 112C, 222C, 105B, 013A. Compounds 105A and 517G selectively inhibit the parasitic proteases FP and RD. The analysis of the structure-activity-relationship led to the assumption that different binding modes have to exist in dependence on the aziridine ring substituents (benzyl ester, ethyl ester, diacid), of the aziridine nitrogen substituents (Phe-Ala, Leu-Xxx, Gly-Xxx, Xxx = cyclic amino acid), and of the stereochemistry, respectively. First docking experiments, performed in cooperation with Dr. Baumann`s group (Institue of Pharmay and Food Chemistry, University of Wuerzburg), confirm this assumption. Inhibitors containing a Leu-Pro sequence are predicted to bind into the S`-subsites of CL. Since the most striking structural difference between CB and CL-like proteases is found within these S`-subsites the selectivity between the enzymes may be due to binding into these subsites. In contrast, for a Phe-Ala derivative the docking postulates binding into the S-subsites which do not differ much between the enzymes. As a consequence, CB is inhibited much better by Phe-Ala-derivatives than by Leu-Xxx-derivatives. In cooperation with Prof. Engels` group (Institute of Organic Chemistry, University of Wuerzburg) quantumchemical computations were performed analyzing the influence of substituents on the thermodynamics and kinetics of the nucleophilic ring opening. These calculations predicted that substituents stabilizing the transition state (N-formyl) should improve inhibition potency. In order to proof this predicition the compound 008B (N-formyl aziridine-2,3-dicarboxylate) was synthesized and tested. Indeed, the compound is about 5000x more potent on CL than the non-formylated diethyl aziridine-2,3-dicarboxylate. The principal mechanism of inhibition - the nucleophilic ring opening - was proven in a model reaction by means of NMR spectroscopy and mass spectrometry. The biotinylated compound 999C was designed as an affinity labelling inhibitor usable to label and to identify cysteine proteases expressed by Plasmodium falciparum (cooperation with the group of Dr. Gelhaus, Prof. Leippe, Institute of Zoology, University of Kiel). KW - Aziridine KW - Cysteinproteasen KW - Inhibitor KW - Cystein KW - Protease KW - irreversibel KW - Aziridin KW - Cathepsin KW - cystein KW - protease KW - irreversible KW - aziridin KW - cathepsin Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11127 ER -