TY - THES A1 - Bettaga, Noomen T1 - Bedeutung der NO-sensitiven Guanylyl Cyclase bei der Angiogenese und der Arteriogenese in der Maus T1 - Role of NO-sensitive guanylyl cyclase in angiogenesis and arteriogenesis in mice N2 - Stickstoffmonoxid (NO) spielt eine wichtige Rolle bei Gefäßremodelling-Prozessen wie Angiogenese und Arteriogenese. Die NO-Synthese im Gefäßsystem wird hauptsächlich durch die endotheliale NO-Synthase (eNOS) gewährleistet. Sie kann durch verschiedene Faktoren wie Scherkräfte und Zytokine wie der vaskuläre endotheliale Wachstumsfaktor (VEGF) reguliert werden. VEGF ist ein wichtiger Stimulator der Angiogenese und wird während dieses Prozesses hochreguliert. Die meisten physiologischen Effekte von NO werden durch die NO-sensitive Guanylyl-Cyclase (NO-GC) vermittelt. Als Hauptrezeptor für NO produziert die NO-GC den sekundären Botenstoff cyklisches Guanosinmonophosphat (cGMP) und führt dadurch zur Stimulation der verschiedenen Effektoren wie z.B. der PKG. Ob die Wirkung von NO in Angiogenese und Arteriogenese ebenfalls durch NO-GC vermittelt wird, war bis zum Beginn dieser Arbeit noch unklar. Die NO-GC besteht aus zwei Untereinheiten (α und ß). Die Deletion der ß1-Untereinheit in Mäusen resultiert in einer vollständigen Knockout Maus (GCKO). Mithilfe des Cre-LoxP-Systems wurden zusätzlich zellspezifische Knockout-Mäuse für glatte Muskelzellen (SMC-GCKO) und Endothelzellen (EC-GCKO) generiert. Um die Rolle der NO-GC in der Angiogenese und Arteriogenese zu untersuchen, wurden drei gut etablierte Methoden benutzt. Im ersten Teil des Projekts sollte die Expression der NO-GC in Endothelzellen untersucht werden. Zu diesem Zweck wurde die reverse Transkriptase-Polymerase-Kettenreaktion (RT-PCR) benutzt. Die Ergebnisse zeigen, dass die NO-GC in Endothelzellen der Lunge nur äußerst gering wenig exprimiert ist. Durch den Aortenring-Assay wurde eine Rolle der NO-GC bei der VEGF-vermittelten Angiogenese festgestellt. Dabei zeigte sich eine stärkere Angiogeneserate bei globaler Abwesenheit der NO-GC. Bei Fehlen der NO-GC ausschließlich in Endothelzellen zeigte sich kein Unterschied in den aussprossenden Aorten im Vergleich zu den Kontroll-Tieren. Dies zeigt, dass die NO-GC in Endothelzellen sehr wahrscheinlich keine Rolle bei der VEGF-vermittelten Angiogenese spielt. Im zweiten Teil wurde die Rolle der NO-GC bei der Angiogenese in einem in vivo-Modell untersucht. In dem Modell der Sauerstoff-induzierten-Retinopathie zeigten die GCKO-Mäuse eine verringerte Vaso-Obliteration, eine verlangsamte Angiogenese und eine erhöhte Tuft-Bildung. Ähnliche Ergebnisse wurden bei den SMC-GCKO-Tieren beobachtet. EC-GCKO-Mäuse zeigten eine gegenüber den Kontroll-Tieren unveränderte Vaso-Obliteration, Angiogeneserate und Tuft-Bildung. Diese Ergebnisse lassen darauf schließen, dass die NO-GC in Endothelzellen keine Rolle spielt. Immunfluoreszenz-Aufnahmen zeigten die Expression von NO-GC in Perizyten der Gefäßkapillaren der Mausretina. Daher könnte die NO-GC in diesem Zelltyp letztendlich für die Effekte bei den GCKO- und SMC-GCKO-Tieren verantwortlich sein. Im letzten Teil dieser Arbeit wurde eine Versuchsreihe unter Anwendung des Hinterlauf-Ischämie-Modells durchgeführt. Hierbei entwickelten die Pfoten aller GCKO- und teilweise der SMC-GCKO-Tiere nach der Ligation der Femoralarterie eine Nekrose. Die Regeneration der Hinterläufe der EC-GCKO-Tiere nach der Operation verlief normal. Diese Ergebnisse schließen eine bedeutende Rolle der NO-GC in Endothelzellen aus, zeigen allerdings, dass die NO-GC in den glatten Muskelzellen essentiell für den Arteriogenese-Prozess ist. Zusammengefasst führt die Deletion der NO-GC in glatten Muskelzellen und wahrscheinlich auch in Perizyten zur einer verlangsamten Angiogenese und Inhibierung der Arteriogenese. N2 - Nitric oxide (NO) plays an important role in vascular remodelling processes such as angiogenesis and arteriogenesis. The synthesis of NO in the vascular system is ensured mainly by endothelial NO synthase (eNOS). It can be regulated by a number of factors, such as shear stress and cytokines like the vascular endothelial growth factor (VEGF). VEGF is an important stimulator of angiogenesis and is upregulated during this process. Most of the physiological effects of NO are mediated by the NO-sensitive guanylyl cyclase (NO-GC). As the main receptor for NO, NO-GC produces the second messenger cyclic guanosine monophosphate (cGMP) and thereby leads to a variety of physiological effects. However, whether the effects of NO in angiogenesis and arteriogenesis are also mediated by NO-GC is still unclear. NO-GC consists of two subunits (α and ß). The deletion of the ß1 subunit in mice results in a global knockout mouse (GCKO). Using the Cre-LoxP system we also generated smooth muscle cell-specific (SMC GCKO) and endothelial cell-specific knockout mice (EC GCKO). To investigate the role of NO-GC in angiogenesis and arteriogenesis, three well-established methods have been used. In the first part of the project, the expression of the NO-GC in endothelial cells should be investigated. By using the reverse transcription polymerase chain reaction method (RT-PCR), the results show a very weak expression of the NO-GC in endothelial cells of the lung. A role for NO-GC in the VEGF-mediated angiogenesis was ascertained by the aortic ring assay. The results show an increased angiogenesis in the global absence of NO-GC. However, the EC-GCKO shows no difference compared to control mice. This indicates that NO-GC in endothelial cells is unlikely to play a major role in VEGF-mediated angiogenesis. In the second part of the project, the role of NO-GC in angiogenesis was investigated in an in vivo model. In the oxygen induced-retinopathy model (OIR), GCKO mice showed reduced vaso-obliteration, slowed angiogenesis and increased tuft formation. Similar results were observed in the SMC-GCKO animals. In contrast, EC-GCKO mice showed vaso-obliteration as well as angiogenesis rate and tuft formation similar to those seen in control animals. The results of this experiment suggest that NO-GC in endothelial cells is not involved in vaso-obliteration, physiological angiogenesis and tuft formation. Immunhistochemical analyses showed the expression of NO-GC in pericytes of the vascular capillaries of the mouse retina. Therefore, NO-GC in this cell type could be responsible for the effects in GCKO- and SMC-GCKO animals. In the last part of this thesis, hindlimb-ischemia experiments were performed. For this purpose, the paws of all GCKO- and some SMC-GCKO animals showed necrosis after ligation of the femoral artery. The regeneration of legs from EC-GCKO animals after the operation was normal. These results exclude a major role of NO-GC in endothelial cells, but show that NO-GC in smooth muscle cells is essential in the arteriogenesis process. In summary, the deletion of NO-GC in smooth muscle cells and probably also in pericytes leads to a slowed angiogenesis and inhibits arteriogenesis. KW - Guanylylcyclase KW - cGMP KW - Stickstoffmonoxid KW - Angiogenese KW - Arteriogenese KW - Maus Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111284 ER - TY - THES A1 - Schneider, Magdalena T1 - Synthese, Radiomarkierung und biochemische sowie präklinische Evaluierung neuer Aminopeptidase N- und Fibroblasten-Aktivierungs-Protein alpha- affiner Verbindungen für die molekulare Bildgebung mittels Positronen-Emissions-Tomographie T1 - Synthesis, radiolabeling and biochemical as well as preclinical evaluation of novel Aminopeptidase N- and Fibroblast-activation-protein alpha-affine compounds for molecular imaging using Positron-Emission-tomography N2 - Nach einem Myokardinfarkt setzen Wundheilungsprozesse ein, um die Durchblutung wieder herzustellen und nekrotisches Muskelgewebe durch Narbengewebe zu ersetzen. Die Einsprossung neuer Kapillaren vom bestehenden Gefäßnetz aus wird als Angiogenese bezeichnet. Das dabei vermehrt exprimierte proteolytische Enzym Aminopeptidase N (APN) spielt eine entscheidende Rolle bei der Einsprossung von Endothelzellen. Beim kardialen Remodeling werden abgestorbene Myozyten mithilfe der Einwanderung von Fibroblasten durch Binde- oder Stützgewebe ersetzt, dabei übernimmt das Fibroblasten-Aktivierungs-Protein alpha (FAP) Aufgaben bei der Proliferation und Fortbewegung von Fibroblasten. Durch ihre erhöhte Expression bei den Wundheilungs- und Remodelingprozessen nach einem Herzinfarkt stellen die Metalloprotease APN und die Serinprotease FAP molekulare Targets für die Diagnostik und Therapie dar. Als Diagnosemethode besonders geeignet ist die Positronen-Emissions-Tomographie (PET), die es ermöglicht, biochemische Prozesse in Echtzeit im zu untersuchenden Organismus zu visualisieren und zu quantifizieren. Eine als Radiopharmakon oder Tracer bezeichnete biochemische Sonde kann im Falle eines Enzyms dessen radioaktiv markiertes Substrat oder ein Inhibitor sein. Ziel dieser Arbeit war es, spezifische APN- und FAP-affine Tracer für die nicht-invasive Untersuchung der APN- und FAP-Expression mittels PET zu entwickeln und dadurch die Rolle von APN und FAP bei Remodelingprozessen nach Myokardinfarkt besser verstehen bzw. klären zu können. Um die Protease APN mittels PET zu untersuchen, wurden die für APN affine Verbindung NOTA-NGR (Komplexbildner + cyclisches Peptid inkl. Asparagin-Glycin-Arginin) mit dem Positronen-emittierenden Nuklid Gallium-68 (68Ga) markiert. Das Potential von 68Ga-NOTA-NGR als PET-Tracer wurde in vivo am Infarktmodell mittels Kleintier-PET untersucht und mit 68Ga-NOTA-RGD, einem zur Visualisierung des neo-angiogenetischen alphavbeta3-Integrins etablierten Tracer, verglichen. Untersuchungen ergaben, dass 68Ga-NOTA-NGR einen vielversprechenden neuen PET-Tracer für die Visualisierung und Quantifizierung der APN-Expression im Rahmen der Angiogenese nach einem Myokardinfarkt darstellt. 68Ga-NOTA-NGR zeigte eine erhöhte Aufnahme im Bereich des Myokardinfarkts im Sinne einer vermehrten Angiogenese. Die Aufnahme des Tracers in infarzierten Arealen war quantitativ höher als in der Untersuchung mit 68Ga-NOTA-RGD. In Autoradiographie-Experimenten wurde 68Ga-NOTA-NGR ex vivo untersucht. Die Akkumulation von 68Ga-NOTA-NGR im ischämischen Bereich war deutlich höher als im gesunden Myokard. Der Nachweis der unterschiedlichen Bereiche des Herzens erfolgte mit HE-Färbung. Die Expression von APN wurde immunohistochemisch mittels spezifischer Antikörper bestätigt. Zum Vergleich wurden ebenso einige andere an der Angiogenese beteiligte Faktoren untersucht. APN stellte sich auch hier als geeignetes Target zum Nachweis der Angiogenese heraus. Um die Protease FAP mittels PET zu untersuchen, wurden eine Reihe peptidomimetischer Inhibitoren, die die Erkennungssequenz Glycin-Prolin mit einer Carbonitril-Gruppe als elektrophiler Einheit zur kovalent-reversiblen Hemmung des Enzyms enthalten, entwickelt. Ausgehend vom N-Acetylglycin-pyrrolidin-(2S)-carbonitril als Leitstruktur wurden Inhibitoren und Vorstufen zur Radiomarkierung inkl. verschieden substituierter Benzoesäuren dargestellt. Zusätzlich wurden noch bereits bekannte Inhibitoren synthetisiert, die zum Vergleich in den Enzymassays dienten. Drei Verbindungen zeigten gute inhibitorische Wirkung an FAP und außerdem Selektivität gegenüber DPP IV. Keine der entwickelten Verbindungen zeigte einen KI-Wert im nanomolaren Bereich, erforderlich für einen potentiellen Tracer zur in-vivo-Visualisierung einer Enzymexpression mittels PET. Um die Inhibitoren mit der besten Hemmung an FAP zum PET-Tracer weiterzuentwickeln, mussten sie mit einem Positronenemitter markiert werden. Die Markierung erfolgte über Isotopenaustausch, bei dem nicht-radioaktives Iod am aromatischen Ring des Precursors durch das radioaktive Iod-124 (124I) substituiert wurde. Es konnten dadurch die radioiodierten Verbindungen 1-(2-[124I]Iodhippursäure)-pyrrolidin-(2S)-carbonitril und 1-(4-[124I]Iod-hippursäure)-pyrrolidin-(2S)-carbonitril synthetisiert werden. Trotz der relativ niedrigen Affinität für FAP wurde das neue 1-(2-[124I]Iodhippursäure)-pyrrolidin-(2S)-carbonitril in Ratten am Infarktmodell mittels Kleintier-PET getestet. Die Lage der ischämischen Zone wurde im Anschluss durch HE-Färbung bestimmt. In vivo zeigte sich eine nur sehr geringe Aufnahme des Radiopharmakons in der ischämischen Zone des Myokards. Damit ist 1-(2-[124I]Iod-hippursäure)-pyrrolidin-(2S)-carbonitril kein für den gewünschten Zweck geeigneter PET-Tracer. Nichtsdestotrotz war der Ansatz vielversprechend und es wurde zum ersten Mal ein PET-Tracer dieser Art zur Untersuchung des FAP im Myokardinfarkt hergestellt. N2 - After myocardial infarction, processes of wound healing are initiated in order to regain perfusion and to replace necrotic muscle tissue with soft tissue. The sprouting of new capillaries from the vasculature is called angiogenesis. During Angiogenesis, Aminopeptidase N (APN) plays an important role in the sprouting of endothelial cells. Cardiac remodeling is the process of replacement of necrotic myocytes with soft tissue through invasion of fibroblasts. For this cause, also a lot of proteases are activated. During the process of cardiac remodeling, fibroblast activation protein alpha (FAP) is involved in proliferation and migration of cardiac fibroblasts. Due to their increased expression during remodeling processes after myocardial infarction, the metalloprotease APN and the serine protease FAP have been identified as potential molecular targets for diagnosis and therapy. Diagnosis of the heart by nuclear imaging techniques is a well established method in clinical cardiology. Most of all positron emission tomopgraphy (PET) provides information on biochemical processes in vivo using specific radiotracers in real time. This imaging probe is labeled with a positron emitting radionuclide and is called radiopharmaceutical or tracer. In case of an enzyme, the tracer might for example be a labeled substrate or inhibitor of the enzyme. To visualize the protease APN with PET, NOTA-NGR (chelating agent + peptide sequence incl. asparagine-glycine-arginine), a compound that shows high affinity for APN, was labeled with the positron emitting nuclide Gallium-68 (68Ga). 68Ga-NOTA-NGR was developed including an improved synthesis, isolation and formulation of the tracer. Its potential as a PET-tracer was assessed in vivo using micro-PET and compared to the established tracer 68Ga-NOTA-RGD, used to visualize the integrin alphavbeta3 in angiogenesis. Studies in rats with ischemia/reperfusion showed high uptake of the new radiopharmaceutical 68Ga-NOTA-NGR in myocardial infarction area being used in diagnostic PET imaging of APN. The new tracer shows even a slightly higher uptake in angiogenetic areas compared with results obtained with 68Ga-NOTA-RGD. 68Ga-NOTA-NGR was also examined ex vivo using autoradiography, confirming the significant higher accumulation of the tracer in the ischemic area compared with the healthy myocardium. The different areas of the tissue were displayed by HE staining. For the purpose of immunohistochemistry, the expression of the enzyme APN was verified using antibody staining. Additionally several other factors that are involved in angiogenesis were stained. Through antibody staining APN was shown to be a suitable target for the evidence of angiogenesis. With 68Ga-NOTA-NGR, the development of a new PET-tracer for diagnosis of the expression of APN during angiogenesis after myocardial infarction was successful. In order to develop an imaging probe suitable for investigation of the protease FAP using PET, several peptidomimetic inhibitors containing the dipeptide motif glycine-proline and the electrophilic moiety carbonitrile were designed. With N-Acetylglycine-pyrrolidine-(2S)-carbonitrile being the basic structure, modifications were introduced through a benzoylic residue at the N-terminus. In addition, some well-known inhibitors were synthesized for comparison to the new ones in enzymatic assay. To evaluate their inhibitory effect, the new inhibitors were tested in enzymatic assays using FAP and dipeptidyl peptidase IV, a prolyl peptidase from the same family in order to compare the results with regard to selectivity. None of the new compounds showed a KI-value in the nanomolar range, required for visualization of an enzyme expression using PET. In order to investigate a PET-Tracer, the best inhibitors against FAP had to be labeled with a positron emitter. The radioactive analogues of the inhibitors were obtained using isotopic exchange of the natural iodine-nuclide by iodine-124 (124I), resulting in 1-(2-[124I]Iodohippuric acid)-pyrrolidine-(2S)-carbonitrile und 1-(4-[124I]Iodohippuric acid)-pyrrolidine-(2S)-carbonitrile. 1-(2-[124I]Iodohippuric acid)-pyrrolidine-(2S)-carbonitrile was tested in vivo using microPET in rats with myocardial infarction. Very low uptake of the radiopharmaceutical was observed in the ischemic area of the rat´s heart. Locations of ischemic and surviving parts of the myocardium were confirmed using HE staining. To our knowledge, 1-(2-[124I]Iodohippuric acid)-pyrrolidine-(2S)-carbonitrile is the first FAP-affine tracer developed for PET investigation. However, its potential as tracer for the FAP-expression within the myocardial infarction in vivo using PET could not be proven in the present study. Therefore, developments based on the structure of 1-(2-[124I]Iodohippuric acid)-pyrrolidine-(2S)-carbonitrile are going on, with view to identify a PET-tracer suitable for in-vivo-investigation of FAP in healing processes and remodeling after myocardial infarction using PET. KW - Positronen-Emissions-Tomographie KW - Alanyl-Aminopeptidase KW - Angiogenese KW - Fibroblasten-Aktivierungs-Protein Alpha KW - positron-emission-tomography KW - aminopeptidase N KW - remodeling KW - angiogenesis Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-102562 ER -