TY - JOUR A1 - Hertlein, Tobias A1 - Sturm, Volker A1 - Kircher, Stefan A1 - Basse-Lüsebrink, Thomas A1 - Haddad, Daniel A1 - Ohlsen, Knut A1 - Jakob, Peter T1 - Visualization of Abscess Formation in a Murine Thigh Infection Model of \(Staphylococcus\) \(aureus\) by (19)F-Magnetic Resonance Imaging (MRI) JF - PLoS ONE N2 - Background: During the last years, (19)F-MRI and perfluorocarbon nanoemulsion (PFC) emerged as a powerful contrast agent methodology to track cells and to visualize inflammation. We applied this new modality to visualize deep tissue abscesses during acute and chronic phase of inflammation caused by Staphylococcus aureus infection. Methodology and Principal Findings: In this study, a murine thigh infection model was used to induce abscess formation and PFC or CLIO (cross linked ironoxides) was administered during acute or chronic phase of inflammation. 24 h after inoculation, the contrast agent accumulation was imaged at the site of infection by MRI. Measurements revealed a strong accumulation of PFC at the abscess rim at acute and chronic phase of infection. The pattern was similar to CLIO accumulation at chronic phase and formed a hollow sphere around the edema area. Histology revealed strong influx of neutrophils at the site of infection and to a smaller extend macrophages during acute phase and strong influx of macrophages at chronic phase of inflammation. Conclusion and Significance: We introduce (19)F-MRI in combination with PFC nanoemulsions as a new platform to visualize abscess formation in a murine thigh infection model of S. aureus. The possibility to track immune cells in vivo by this modality offers new opportunities to investigate host immune response, the efficacy of antibacterial therapies and the influence of virulence factors for pathogenesis. KW - Soft-tissue infection KW - In-vivo KW - Iron-oxide KW - F-19 MRI KW - Inflammation KW - Particles KW - Tracking KW - Lesions KW - Images KW - Rats Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142846 VL - 6 IS - 3 ER - TY - JOUR A1 - Hopp, Sarah A1 - Albert-Weissenberger, Christiane A1 - Mencl, Stine A1 - Bieber, Michael A1 - Schuhmann, Michael K. A1 - Stetter, Christian A1 - Nieswandt, Bernhard A1 - Schmidt, Peter M. A1 - Monoranu, Camelia-Maria A1 - Alafuzoff, Irina A1 - Marklund, Niklas A1 - Nolte, Marc W. A1 - Sirén, Anna-Leena A1 - Kleinschnitz, Christoph T1 - Targeting coagulation factor XII as a novel therapeutic option in brain trauma JF - Annals of Neurology N2 - Objective: Traumatic brain injury is a major global public health problem for which specific therapeutic interventions are lacking. There is, therefore, a pressing need to identify innovative pathomechanism-based effective therapies for this condition. Thrombus formation in the cerebral microcirculation has been proposed to contribute to secondary brain damage by causing pericontusional ischemia, but previous studies have failed to harness this finding for therapeutic use. The aim of this study was to obtain preclinical evidence supporting the hypothesis that targeting factor XII prevents thrombus formation and has a beneficial effect on outcome after traumatic brain injury. Methods: We investigated the impact of genetic deficiency of factor XII and acute inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused infestin-4 (rHA-Infestin-4) on trauma-induced microvascular thrombus formation and the subsequent outcome in 2 mouse models of traumatic brain injury. Results: Our study showed that both genetic deficiency of factor XII and an inhibition of activated factor XII in mice minimize trauma-induced microvascular thrombus formation and improve outcome, as reflected by better motor function, reduced brain lesion volume, and diminished neurodegeneration. Administration of human factor XII in factor XII-deficient mice fully restored injury-induced microvascular thrombus formation and brain damage. Interpretation: The robust protective effect of rHA-Infestin-4 points to a novel treatment option that can decrease ischemic injury after traumatic brain injury without increasing bleeding tendencies. KW - Molecular-weight heparin KW - Thrombus formation KW - Cerebral-ischemia KW - in-vivo KW - Intravascular coagulation KW - Hemodynamic depression KW - Head-injury KW - Rats KW - Model KW - Mice Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188800 VL - 79 IS - 6 ER - TY - CHAP A1 - Viviani, A. A1 - Lutz, Werner K. T1 - Modulation of the in vivo covalent binding of the carcinogen benzo(a)pyrene to rat liver DNA by selective induction of microsomal and nuclear aryl hydrocarbon hydroxylase activity N2 - The influence of microsomal (mAHH) and nuclear (nAHH) aryl hydrocarbon hydroxylase activity on the covalent binding of t:titiated benzo(a)pyrene to rat liver DNA was evaluated in vivo. Induction ofmAHH was obtained after phenobarbitone treatment (180% of control), which increased DNA binding to 210%, but left the nAHH unchanged. mAHH and nAHH were slightly indilced with dieldrin (130% and 120%), but the binding remairred unchanged. The increasing effect of mAHlt as weil as the possibly decreasing effect of nAHH induction on the binding became obvious when the data of 11 individual rats were used to solve the equation Binding = aX(mAHH) + bX(nAHH) + c. Multiple linear regression analysis resulted in positive values for a and c, a negative value for b, and a multiple correlation coefficient R = 0.82. An influence of other enzymes involved in the metabolism of benzo(a)pyrene cannot be excluded. The Study shows clearly that the binding of a foreign compound to DNA in vivo is not only dependent on microsomal enzyme activities but also on nuclear activities even if the latter are considerably lower than those of mic'rosomes. KW - DNA KW - Benzo(a)pyrene KW - DNA-Binding KW - Carcinogen KW - Enzyme KW - Induction KW - Aryl Hydrocarbon Hydroxylase KW - Rats KW - Phenobarbitone KW - Dieldrin Y1 - 1979 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-80132 ER -