TY - THES A1 - Ahmad, Ruhel T1 - Neurogenesis from parthenogenetic human embryonic stem cells T1 - Neurogenese von parthenogenetischen humanen embryonalen Stammzellen N2 - Imprinted genes play important roles in brain development. As the neural developmental capabilities of human parthenogenetic embryonic stem cells (hpESCs) with only a maternal genome were not assessed in great detail, hence here the potential of hpESCs to differentiate into various neural subtypes was determined. In addition DNA methylation and expression of imprinted genes upon neural differentiation was also investigated. The results demonstrated that hpESC-derived neural stem cells (hpNSCs) showed expression of NSC markers Sox1, Nestin, Pax6, and Musashi1 (MS1), the silencing of pluripotency genes (Oct4, Nanog) and the absence of activation of neural crest (Snai2, FoxD3) and mesodermal (Acta1) markers. Moreover, confocal images of hpNSC cultures exhibited ubiquitous expression of NSC markers Nestin, Sox1, Sox2 and Vimentin. Differentiating hpNSCs for 28 days generated neural subtypes with neural cell type-specific morphology and expression of neuronal and glial markers, including Tuj1, NeuN, Map2, GFAP, O4, Tau, Synapsin1 and GABA. hpNSCs also responded to region-specific differentiation signals and differentiated into regional phenotypes such as midbrain dopaminergic- and motoneuron-type cells. hpESC-derived neurons showed typical neuronal Na+/K+ currents in voltage clamp mode, elicited multiple action potentials with a maximum frequency of 30 Hz. Cell depicted a typical neuron-like current pattern that responded to selective pharmacological blockers of sodium (tetrodotoxin) and potassium (tetraethylammonium) channels. Furthermore, in hpESCs and hpNSCs the majority of CpGs of the differentially methylated regions (DMRs) KvDMR1 were methylated whereas DMR1 (H19/Igf2 locus) showed partial or complete absence of CpG methylation, which is consistent with a parthenogenetic (PG) origin. Upon differentiation parent-of-origin-specific gene expression was maintained in hpESCs and hpNSCs as demonstrated by imprinted gene expression analyses. Together this shows that despite the lack of a paternal genome, hpNSCs are proficient in differentiating into glial- and neuron-type cells, which exhibit electrical activity similar to newly formed neurons. Moreover, maternal-specific gene expression and imprinting-specific DNA-methylation are largely maintained upon neural differentiation. hpESCs are a means to generate histocompatible and disease allele-free ESCs. Additionally, hpESCs are a unique model to study the influence of imprinting on neurogenesis. N2 - Imprinted Gene spielen eine wichtige Rolle bei der Gehirnentwicklung. Da das neurale Entwicklungspotenzial von hpESCs bisher noch nicht ausführlich untersucht wurde, war das Ziel dieser Arbeit das Differenzierungspotenzial von hpESCs zu verschiedenen neuralen Subtypen zu untersuchen. Außerdem wurden die DNA-Methylierung und Expression imprinted Gene in hpESCs während der neuralen Differenzierung analysiert. Die Ergebnisse zeigten, dass von hpESCs abgeleitete neurale Stammzellen (hpNSCs) die NSC-Marker Sox1, Nestin, Pax6 und Musashi1 (MS1) exprimierten, Pluripotenzmarker-Gene (Oct4, Nanog) abschalteten und keine Aktivierung von Markern der Neuralleistenzellen (Snai2, FoxD3) sowie dem mesodermalen Marker Acta1 stattfand. Immunfärbungen zeigten weiterhin, dass aus hpESCs abgeleitete Stammzellen die NSC-Marker Nestin, Sox1, Sox2 und Vimentin auf Proteinebene exprimierten. Durch gerichtete neurale Differenzierung für 28 Tage konnten aus hpESCs neurale Subtypen abgeleitet werden, die eine neurale Zelltyp-spezifische Morphologie aufweisen und positiv für neuronale und gliale Marker wie Tuj1, NeuN, Map2, GFAP, O4, Tau, Synapsin1 und GABA sind. Um aus hpNSCs dopaminerge und Motoneuronen abzuleiten, wurden während der Differenzierung Morphogene und trophische Faktoren zugegeben. Elektrophysiologische Analysen konnten zeigen, dass die in vitro differenzierten Neuronen, die von hpESCs abgeleitet wurden, für Neurone typische Na+/K+ Ströme sowie Aktionspotentiale (30 Hz) vorweisen ausbilden und auf ausgewählte pharmakologische Natrium- (Tetrodotoxin) und Kalium- (Tetraethylammonium) Kanal-Blocker reagierten. Desweiteren war der Großteil der CpGs von differentiell methylierten Regionen (DMRs) KvDMR1 in hpESCs und hpNSCs methyliert, während DMR1 (H19/Igf2 Locus) eine partiell oder komplett abwesende CpG-Methylierung zeigte, was dem parthenogenetischen Ursprung entspricht. Während der Differenzierung wurde die elternabhängige (parent-of-origin) spezifische Genexpression in hpESCs und hpNSCs aufrechterhalten, wie mit Genexpressionsanalysen imprinted Gene gezeigt werden konnte. In der Summe zeigen die hier dargestellten Ergebnisse, dass hpESCs, die kein paternales Genom besitzen, keine Beeinträchtigung im neuralen Differenzierungspotential zeigten und zu Gliazellen und Neurone differenziert werden konnten. Elektrophysiologische Analysen zeigten ferner, dass von hpESCs abgeleitete Neurone funktionell sind. Zudem wird die Expression maternal-spezifischer Gene und die Imprinting-spezifische DNA-Methylierung während der Differenzierung größtenteils aufrechterhalten. In der Summe stellen hpESCs ein einzigartiges Modell dar, um den Einfluss des Imprintings auf die Neurogenese zu untersuchen. KW - Embryonale Stammzelle KW - Neurogenese KW - Zelldifferenzierung KW - Stammzelle KW - human parthenogenetic stem cells KW - in vitro neural differentiation KW - human parthenogenetic neural stem cells KW - PG neurons KW - imprinting. Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75935 ER - TY - THES A1 - Dill, Holger T1 - Functional characterization of the microRNA-26 family in zebrafish neurogenesis T1 - Funktionelle Charakterisierung der microRNA-26 Familie während der Zebrafisch Neurogenese N2 - Formation oft the central nervous system (CNS) from multipotent neuronal stem cells (NSCs) requires a tightly controlled, step-wise activation of the neuronal gene expression program. Expression of neuronal genes at the transition from neural stem cell to mature neuron (i. e. neuronal cell differentiation) is controlled by the Repressor element 1 (RE1) silencing transcription factor (REST) complex. As a master transcriptional regulator, the REST-complex specifically inhibits expression of neuronal genes in non-neuronal tissues and neuronal progenitor cells. Differentiation of NSCs to mature neurons requires the activation of genes controlled by the REST-complex, but how abrogation of REST-complex mediated repression is achieved during neurogenesis is only poorly understood. MicroRNAs (miRNAs) are a class of small regulatory RNAs that posttranscriptionally control target gene expression. Binding of miRNAs to target sequences in the 3’UTR of mRNAs, leads either to degradation or translational inhibition of the mRNA. Distinct neuronal miRNAs (e.g. miR-124) were shown to modulate REST-complex activity by silencing expression of REST-complex components. Interestingly, these miRNAs are also under transcriptional control of the REST-complex and inactivation of the REST-complex precedes their expression. Hence, additional factors are required for derepression of neuronal genes at the onset of neurogenesis. In this study function of the miR-26 family during neurogenesis of the zebrafish (Danio rerio) was analyzed. Computational target prediction revealed a number of REST-complex components as putative miR-26 targets. One of these predicted target genes, the C-terminal domain small phosphatase 2 (Ctdsp2) was validated as an in vivo target for miR-26b. Ctdsps are important cofactors of REST and suppress neuronal gene expression by dephosphorylating the C-terminal domain (CTD) of RNA polymerase II (Pol II). Interestingly, miR-26b is encoded in an intron of the ctdsp2 primary transcript and is cotranscribed together with its host gene. Hence, miR-26b modulates expression of its host gene ctdsp2 in an intrinsic negative autoregulatory loop. This negative autoregulatory loop is inactive in NSCs because miR-26b biogenesis is inhibited at the precursor level. Generation of mature miR-26b is activated during neurogenesis, where it suppresses Ctdsp2 protein expression and is required for neuronal cell differentiation in vivo. Strikingly, miR-26b is expressed prior to miR-124 during neuronal cell differentiation. Thus, it is reasonable to speculate about a function of miR-26b in early events of neurogenesis. In line with this assumption, knockdown of miR-26b in zebrafish embryos results in downregulation of REST-complex controlled neuronal genes and a block in neuronal cell differentiation, most likely due to aberrant regulation of Ctdsp2 expression. This is evident by reduced numbers of secondary motor neurons compared to control siblings. In contrast, motor neuron progenitor cells and glia cells were not affected by depletion of miR-26b.This study identifies the ctdsp2/miR-26b autoregulatory loop as the first experimentally validated interaction between an intronic miRNA and its host gene transcript. Silencing of ctdsp2 by miR-26b in neurons is possible because biogenesis of the ctdsp2 mRNA and mature mir-26b is uncoupled at the posttranscriptional level. Furthermore the obtained data indicate a cell type specific role for miR-26b in vertebrate neurogenesis and CNS development. N2 - Die Entwicklung des Zentralen Nervensystems (ZNS) aus multipotenten neuronalen Stammzellen erfordert eine stufenweise und genau regulierte Aktivierung der neuronalen Genexpression. Bei der Differenzierung neuronaler Stammzellen zu Neuronen wird die Expression neuronaler Gene durch den sogenannten „Repressor element 1 (RE1) silencing transcription factor (REST)”-Komplex gesteuert. Der REST-Komplex unterdrückt spezifisch in proliferierenden neuronalen Vorläuferzellen die Expression neuronaler Gene. Während der neuronalen Zelldifferenzierung wird die Expression dieser Gene jedoch benötigt. Wie die Inaktivierung neuronaler Gene durch den REST-Komplex während des Prozesses der Neurogenese aufgehoben wird ist bislang nicht genau bekannt. MicroRNAs (miRNAs) sind kleine regulatorische RNAs, die die Expression ihrer Zielgene auf posttranskriptioneller Ebene regulieren. Dazu binden miRNAs an Zielsequenzen in 3’UTRs von mRNAs, was zu einer Inhibition der Translation oder Abbau der mRNA führt. Auch Komponenten des REST-Komplexes stehen unter Kontrolle bestimmter neuronaler miRNAs (z.B. miR-124). Erstaunlicherweise stehen diese miRNAs selber wiederum unter der transkriptionellen Inhibition des REST-Komplexes und können daher nicht für die Inaktivierung des REST-Komplexes zu Beginn der Neurogenese verantwortlich sein. Übereinstimmend damit konnte beobachtet werden, dass der REST-Komplex aus differenzierenden Zellen entfernt wird, bevor die genannten neuronalen miRNAs exprimiert werden. Diese Umstände legen die Existenz weiterer, bis jetzt unbekannter Faktoren nahe, die die Expression des REST-Komplexes selber inhibieren und so die Neurogenese erlauben Im Rahmen dieser Dissertation wurde die Funktion der miR-26 Familie während der Neurogenese des Zebrafisches (Danio rerio) untersucht. Eine bioinformatische Zielgenvorhersage für die miR-26 Familie ergab, dass unter anderem zahlreiche bekannte Komponenten des REST-Komplexes unter den Kandidatengenen sind. Für eines dieser vorhergesagten Zielgene, die sogenannte „C-terminal domain small phosphatase 2 (Ctdsp2)” wurde daraufhin gezeigt, dass seine Expression in der Tat durch die miR-26b inhibiert wird. Ctdsps sind wichtige Kofaktoren des REST-Komplexes und unterdrücken die Expression neuronaler Gene, indem die die C-terminale Domäne (CTD) der RNA Polymerase II dephosphorylieren und diese dadurch inaktivieren. In diesem Zusammenhang von besonderer Bedeutung ist die Tatsache, dass die miR-26b in einem Intron des ctdsp2 Gens kodiert ist und mit ctdsp2 zusammen transkribiert wird. Folglich beeinflusst die miR-26b die Expression ihres eigenen „Host genes“ in einer Art autoregulativer Rückkopplungsschleife. Die beschriebene negative Regulation ist in neuronalen Stammzellen nicht aktiv, da dort die Biogenese der miR-26b auf Vorläuferebene angehalten wird. Reife miR-26b wird erst während der Neurogenese produziert, wo sie daraufhin die Expression von Ctdsp2 Protein verhindert. Während der neuronalen Zelldifferenzierung wird die miR-26b deutlich früher exprimiert als zum Beispiel die miR-124. Daher liegt es nahe eine Funktion der miR-26b während früher Prozesse in der Neurogenese anzunehmen. In Übereinstimmung mit dieser Annahme führt ein „Knockdown“ der miR-26b zu einer schwächeren Expression von neuronalen Genen, die unter der Kontrolle des REST-Komplex stehen. Weiterhin führt ein reduziertes Maß an miR-26b zu fehlerhafter oder gänzlich ausbleibender neuronaler Zelldifferenzierung. Dies konnte anhand einer verringerten Anzahl differenzierter spinaler Motorneuronen aufgezeigt werden. Die Vorläufer dieser Motorneuronen und Gliazellen waren hingegen vom miR-26b-„Knockdown“ nicht beeinflusst. Die hier präsentierte Studie zeigt erstmals in experimenteller Weise das Vorhandensein einer direkten Interaktion zwischen einer intronischen miRNA und ihrem eigenen Primärtranskript. Die negative Regulation der Ctdsp2 Expression in Neuronen wird erst dadurch möglich, dass die Biogenese der ctdsp2 mRNA und der reifen miR-26b durch einen posttranskriptionellen Mechanismus voneinander getrennt werden. Weiterhin legen die Daten aus dieser Studie nahe, dass die miR-26b in der Tat eine spezifische Funktion in der Entwicklung des ZNS von Vertebraten hat. KW - Zebrabärbling KW - Neurogenese KW - miRNS KW - Zelldifferenzierung KW - miR-26b KW - ctdsp2 KW - REST Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70757 ER -