TY - THES A1 - Herz, Michaela T1 - Molecular characterization of the serotonin and cAMP-signalling pathways in Echinococcus T1 - Molekulare Charakterisierung der Serotonin- und cAMP-Signalwege in Echinococcus N2 - Alveolar and cystic echinococcosis, caused by Echinococcus multilocularis and Echinococcus granulosus respectively, are severe zoonotic diseases with limited treatment options. The sole curative treatment is the surgical removal of the complete parasite material. Due to late diagnosis, chemotherapeutic treatment often is the only treatment option. Treatment is based on benzimidazoles, which merely act parasitostatic and often display strong side effects. Therefore, new therapeutic drugs are urgently needed. Evolutionarily conserved signalling pathways are known to be involved in hostparasite cross-communication, parasite development and survival. Moreover, they represent potential targets for chemotherapeutic drugs. In this context the roles of the serotonin- and cAMP-signalling pathways in Echinococcus were studied. Genes encoding serotonin receptors, a serotonin transporter and enzymes involved in serotonin biosynthesis could be identified in the E. multilocularis and E. granulosus genomes indicating that these parasites are capable of synthesizing and perceiving serotonin signals. Also the influence of exogenous serotonin on parasite development was studied. Serotonin significantly increased metacestode vesicle formation from primary cells and re-differentiation of protoscoleces. Inhibition of serotonin transport with citalopram significantly reduced metacestode vesicle formation from primary cells and caused death of protoscoleces and metacestodes. Furthermore, it could be shown that serotonin increased phosphorylation of protein kinase A substrates. Taken together, these results show that serotonin and serotonin transport are essential for Echinococcus development and survival. Consequently, components of the serotonin pathway represent potential drug targets. In this work the cAMP-signalling pathway was researched with focus on G-protein coupled receptors and adenylate cyclases. 76 G-protein coupled receptors, including members of all major families were identified in the E. multilocularis genome. Four genes homologous to adenylate cyclase IX were identified in the E. multilocularis genome and three in the E. granulosus genome. While glucagon caused no significant effects, the adenylate cyclase activator forskolin and the adenylate cyclase inhibitor 2’, 5’ didesoxyadenosine influenced metacestode vesicle formation from primary cells, re-differentiation of protoscoleces and survival of metacestodes. It was further shown that forskolin increases phosphorylation of protein kinase A substrates, indicating that forskolin activates the cAMP-pathway also in cestodes. These results indicate that the cAMP signalling pathway plays an important role in Echinococcus development and survival. To complement this work, the influence of different media and additives on E. granulosus protoscoleces was investigated. Anaerobic conditions and the presence of FBS prolonged protoscolex survival while different media influenced protoscolex activation and development. Taken together, this work provided important insights into developmental processes in Echinococcus and potential drug targets for echinococcosis chemotherapy. N2 - Alveoläre und zystische Echinokokkose, hervorgerufen durch Echinococcus multilocularis und Echinococcus granulosus, sind schwere zoonotische Erkrankungen mit eingeschränkten Behandlungsmöglichkeiten. Die einzig kurative Therapie besteht in der chirurgischen Entfernung des gesammten Parasitenmaterials. Aufgrund später Diagnosestellung stellt Chemotherapie oft die einzige Behandlungsmöglichkeit dar. Die derzeitige Therapie basiert auf Benzimidazolen, welche nur parasitostatisch wirken und oft schwere Nebenwirkungen hervorrufen. Neue Medikamente werden daher dringend benötigt. Evolutionär konservierte Signalwege sind bekanntermaßen an Wirt-Parasit Kreuzkommunikation, Parasitenentwicklung und deren Überleben beteiligt. Darüber hinaus stellen sie auch mögliche Angriffspunkte für Chemotherapeutika dar. In diesem Zusammenhang wurden die Rollen des Serotonin- und des cAMP-Signalwegs in Echinococcus untersucht. Gene für Serotoninrezeptoren, einen Serotonintransporter und für Enzyme, die in der Serotoninsynthese involviert sind, konnten in den E. multilocularis und E. granulosus Genomen identifiziert werden, was darauf schließen lässt, dass diese Parasiten in der Lage sind, Serotonin selbst herzustellen und zu sensieren. Des Weiteren wurde der Einfluss von exogenem Serotonin auf die Parasitenentwicklung untersucht. Serotonin förderte die Bildung von Metazestodenvesikeln aus Primärzellen und die Rückdifferenzierung von Protoskolizes signifikant. Die Hemmung des Serotonintransports mit Citalopram reduzierte die Bildung von Metazestodenvesikeln aus Primärzellen signifikant und führte zum Absterben von Protoskolizes undMetazestoden. Des Weiteren konnte gezeigt werden, dass Serotonin die Posphorylierung von Proteinkinase A Substraten erhöht. Zusammengefasst zeigen diese Ergebnisse, dass Serotonin und Serotonintransport essentiell f¨ur die Entwicklung und das Überleben von Echinococcus sind. Folglich stellen Komponenten des Serotoninsignalwegs potentielle Angriffspunkte für Medikamente dar. In dieser Arbeit wurde der cAMP-Signalweg mit Schwerpunkt auf G-Protein gekoppelte Rezeptoren und Adenylatzyklasen untersucht. 76 G-Protein gekoppelte Rezeptoren, inclusive Mitglieder aller Hauptfamilien, wurden im E. multilocularis-Genom identifiziert. Vier Homologe zur Adenylatzyklase IX wurden im E. multilocularis- Genom und drei im E. granulosus-Genom identifiziert. Während Glukagon keine signifikanten Effekte hervorrief, beeinflussten der Adenylatzyklase-Aktivator Forskolin und der Adenylatzyklase-Inhibitor 2’, 5’-Didesoxyadenosin die Bildung von Metazestodenvesikeln aus Primärzellen, die Rückdifferenzierung von Protoskolizes und das Überleben vonMetazestoden. Zudem wurde gezeigt, dass Forskolin die Phosphorylierung von Proteinkinase A-Substraten erhöht. Dies bestätigt, dass Forskolin den cAMP-Signalweg aktiviert. Diese Ergebnisse legen nahe, dass der cAMP-Signalweg eine wichtige Rolle in der Entwicklung und dem Überleben von Echinococcus spielt. Um diese Arbeit zu vervollständigen, wurde der Einfluss von verschiedenen Medien und Zusätzen auf E. granulosus Protoskolizes untersucht. Anaerobe Bedingungen und die Anwesenheit von FBS verlängerten das Überleben von Protoskolizes, während verschiedene Medien die Aktivierung und die Entwicklung von Protoskolizes beeinflussten. Insgesamt gibt diese Arbeit wichtige Einblicke in Entwicklungsprozesse von Echinococcus und zeigt potentielle Angriffspunkte für Medikamente auf. KW - Serotonin KW - Cyclo-AMP KW - Fuchsbandwurm KW - cAMP KW - Echinococcus Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139249 ER - TY - THES A1 - Kapustjansky, Alexander T1 - In vivo imaging and optogenetic approach to study the formation of olfactory memory and locomotor behaviour in Drosophila melanogaster T1 - In vivo Imaging und der optogenetische Ansatz zu Untersuchung der Gedächtnissbildung und lokomotorischem Verhalten bei Drosophila melanogaster N2 - Understanding of complex interactions and events in a nervous system, leading from the molecular level up to certain behavioural patterns calls for interdisciplinary interactions of various research areas. The goal of the presented work is to achieve such an interdisciplinary approach to study and manipulate animal behaviour and its underlying mechanisms. Optical in vivo imaging is a new constantly evolving method, allowing one to study not only the local but also wide reaching activity in the nervous system. Due to ease of its genetic accessibility Drosophila melanogaster represents an extraordinary experimental organism to utilize not only imaging but also various optogenetic techniques to study the neuronal underpinnings of behaviour. In this study four genetically encoded sensors were used to investigate the temporal dynamics of cAMP concentration changes in the horizontal lobes of the mushroom body, a brain area important for learning and memory, in response to various physiological and pharmacological stimuli. Several transgenic lines with various genomic insertion sites for the sensor constructs Epac1, Epac2, Epac2K390E and HCN2 were screened for the best signal quality, one line was selected for further experiments. The in vivo functionality of the sensor was assessed via pharmacological application of 8-bromo-cAMP as well as Forskolin, a substance stimulating cAMP producing adenylyl cyclases. This was followed by recording of the cAMP dynamics in response to the application of dopamine and octopamine, as well as to the presentation of electric shock, odorants or a simulated olfactory signal, induced by acetylcholine application to the observed brain area. In addition the interaction between the shock and the simulated olfactory signal by simultaneous presentation of both stimuli was studied. Preliminary results are supporting a coincidence detection mechanism at the level of the adenylyl cyclase as postulated by the present model for classical olfactory conditioning. In a second series of experiments an effort was made to selecticvely activate a subset of neurons via the optogenetic tool Channelrhodopsin (ChR2). This was achieved by recording the behaviour of the fly in a walking ball paradigm. A new method was developed to analyse the walking behaviour of the animal whose brain was made optically accessible via a dissection technique, as used for imaging, thus allowing one to target selected brain areas. Using the Gal4-UAS system the protocerebral bridge, a substructure of the central complex, was highlighted by expressing the ChR2 tagged by fluorescent protein EYFP. First behavioural recordings of such specially prepared animals were made. Lastly a new experimental paradigm for single animal conditioning was developed (Shock Box). Its design is based on the established Heat Box paradigm, however in addition to spatial and operant conditioning available in the Heat Box, the design of the new paradigm allows one to set up experiments to study classical and semioperant olfactory conditioning, as well as semioperant place learning and operant no idleness experiments. First experiments involving place learning were successfully performed in the new apparatus. N2 - Das Verständniss für die komplexen Interaktionen und Zusammenhänge, die von der molekularen Ebene bis zum Auftreten von bestimmten Verhaltensmustern führen, erfordert die interdisziplinäre Zusammenarbeit unterschiedlicher Forschungsrichtungen. Das Ziel der vorgelegten Arbeit war es einen solchen interdisziplinären Ansatz für die Erforschung und die Manipulation von Verhalten und ihm zu Grunde liegenden Mechanismen zu verwirklichen. Optisches in vivo Imaging ist eine neue, sich ständig weiterentwickelnde Methode, welche es ermöglicht, nicht nur lokale sondern auch weitläufige Aktivitäten innerhalb des Nervensystem zu untersuchen. Drosophila melanogaster stellt aufgrund der leichten genetischen Zugänglichkeit einen herausragenden experimentellen Organismus dar, bei welchem neben optischem Imaging eine ganze Reihe optogenetischer Methoden angewandt werden kann, um die neuronalen Grundlagen des Verhaltens zu erforschen. Im Rahmen dieser Arbeit wurde mit Hilfe von vier genetisch kodierten Sensoren in vivo die Dynamik der cAMP Konzentration in den horizontalen Loben des Pilzkörpers, bei Applikation unterschiedlicher physiologischer und pharmazeutischer Stimuli untersucht. Dabei wurden mehrere transgene Fliegenlinien mit Sensorkonstrukten Epac1, Epac2, Epac2K390E und HCN2 an unterschiedlichen genomischen Insertionsorten, hinsichtlich ihrer Signalqualität untersucht, eine der Linien wurde für weitere Experimente ausgewählt. Zunächst wurde an dieser die in vivo Tauglichkeit des Sensors gezeigt, indem die Konzentration von cAMP durch pharmakologische Applikationen von 8-Bromo-cAMP und Forskolin, einer Substanz welche die Aktivität von cAMP produzierenden Adenylatcyclasen stimuliert, appliziert wurden. Anschließend wurde eine Untersuchung der cAMP Dynamik als Antwort auf einen elektrischen Schock, unterschiedliche Düfte, sowie einen durch Applikation von Acetylcholin simulierten Duftstimulus durchgeführt. Vorläufige Ergebnisse bestärken das aktuelle Modell der klassischen olfaktorischen Konditionierung durch die Koinzidenzdetektion auf der Ebene der Adenylatcyclase. In einem weiteren Experiment wurde der Versuch einer optogenetischen neuronalen Aktivierung unternommen, dabei wurde basierend auf einem Laufball Paradigma eine Methode entwickelt, das Laufverhalten der Fliegen zu analysieren während ihr Gehirn durch eine Imaging-Präparation freigelegt wurde, um gezielt bestimmte durch fluoreszierende Proteine markierte Gehirnbereiche anzuregen. Erste Aufzeichnungen des Laufverhaltens bei Aktivierung der protocerebrallen Brücke, einer Substruktur des Zentralkomplexes, wurden durchgeführt. Schließlich wurde eine neue Apparatur (Shock Box) für die Konditionierung von Einzeltieren entwickelt und gebaut, das Design beruht auf dem der sogenannten Heat Box, ermöglicht jedoch klassische und semioperante olfaktorische Konditionierung zusätzlich zu der in der Heat Box möglichen räumlichen und operanten Konditionierung. Die ersten Versuche für räumliches Lernen wurden in der Apparatur durchgeführt. KW - Taufliege KW - Pilzkörper KW - Cyclo-AMP KW - Gedächtnis KW - In vivo KW - Imaging KW - Drosophila KW - Memory KW - In vivo KW - Imaging KW - Drosophila KW - Memory Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69535 ER - TY - THES A1 - Nikolaev, Viacheslav T1 - Development and application of fluorescent cAMP und cGMP biosensors T1 - Entwicklung und Anwendung fluoreszierender Biosensoren für cAMP und cGMP N2 - The cyclic nucleotides cAMP and cGMP are two ubiquitous important second messengers, which regulate diverse physiological responses from vision and memory to blood pressure and thrombus formation. They act in cells via cAMP- and cGMP-dependent protein kinases (PKA and GK), cyclic nucleotide-gated channels and Epac. Although the concept of cyclic nucleotide signalling is well developed based on classical biochemical studies, these techniques have not allowed to analyze cAMP and cGMP in live cells with high temporal and spatial resolution. In the present study fluorescence resonance energy transfer was used to develop a technique for visualization of cAMP and cGMP in live cells and in vitro by means of fluorescent biosensors. Ligand-induced conformational change in a single nucleotide-binding domain flanked with green fluorescent protein mutants was used for dynamic, highly sensitive measurements of cAMP and cGMP. Such biosensors retained binding properties and chemical specificity of unmodified domains, allowing to image cyclic nucleotides in a physiologically relevant range of concentrations. To develop cAMP-sensors, binding domains of PKA, Epac and cAMP-gated HCN-channel were used. cGMP-sensors were based on single domains of GK and phosphodiesterases (PDEs). Sensors based on Epac were used to analyze spatio-temporal dynamics of cAMP in neurons and macrophages, demonstrating that cAMP-gradients travel with a high speed (~ 40 μm/s) throughout the entire cytosol. To understand the mechanisms of cAMP-compartmentation, kinetics properties of phosphodi-esterase (PDE2) were, next, analyzed in aldosterone producing cells. PDE2 is able to rapidly hydrolyze extensive amounts of cAMP, so that the speed of cAMP-hydrolysis is much faster than that of its synthesis, which might serve as a basis of compartmentation. cAMP-sensors were also used to develop a clinically relevant diagnostic method for reliable detection of β1-adrenergic receptor autoantibodies in cardiac myopathy patients, which has allowed to significantly increase the sensitivity of previously developed diagnostic approaches. Conformational change in a single binding domain of GK and PDE was, next, used to create novel fluorescent biosensors for cGMP. These sensors demonstrated high spatio-temporal resolution and were applied to analyze rapid dynamics of cGMP production by soluble and particulate guanylyl cyclases as well as to image cGMP in mesangial cells. In summary, highly sensitive biosensors for cAMP and cGMP based on single cyclic nucleotide-binding domains have been developed and used in various biological and clinically relevant applications. N2 - Die zyklischen Nukleotide cAMP and cGMP sind zwei ubiquitäre Botenstoffe, die verschiedene physiologische Prozesse regulieren, vom Sehen und Gedächtnis bis zu Blutdruck und Thrombusbildung. Sie wirken über cAMP- und cGMP-abhängige Kinasen (PKA und GK), Kanäle und Epac. Obgleich die Funktionen von zyklischen Nukleotiden in klassischen biochemischen Studien gut untersucht sind, ermöglichen diese Methoden nicht, cAMP und cGMP in lebenden Zellen mit hoher zeitlicher und räumlicher Auflösung zu analysieren. In dieser Arbeit wurde Fluoreszenzresonanzenergietransfer benutzt, um eine Technik für die Visualisierung von cAMP and cGMP in lebenden Zellen und in vitro zu entwickeln. Ligand-induzierte Konformationsänderung in einer einzelnen, mit Grünfluoreszenzproteinmutanten fusionierten Bindungsdomäne diente als Grundlage für Biosensoren, die dynamische, hochsensitive Messungen von cAMP und cGMP ermöglichen. Bei solchen Sensoren wurden die chemischen und Bindungseigenschaften von unmodifizierten Domänen aufrechterhalten, was die cAMP- und cGMP-Messungen im physiologischen Konzentrationsbereich in lebenden Zellen ermöglicht. Für die Entwicklung der cAMP-Sensoren wurden die Domänen von PKA, Epac und von einem cAMP- gesteuerten HCN-Kanal benutzt. cGMP-Sensoren beruhen sich auf den Bindungsdomänen von GK und Phosphodiesterasen (PDEs). Mit Hilfe der auf Epac-basierten Sensoren wurde die cAMP-Dynamik in Neuronen und Makrophagen zeitlich und räumlich aufgelöst. In diesen Zellen diffundiert cAMP mit hoher Geschwindigkeit (~ 40 μm/s) frei durch das ganze Zytosol. Um die Mechanismen der cAMP-Kompartimentierung besser zu verstehen, wurden die kinetischen Eigenschaften der PDE2 in aldosteronproduzierenden Zellen analysiert. PDE2 ist imstande, große Mengen von cAMP äußerst schnell zu hydrolisieren, so dass die Geschwindigkeit der cAMP-Hydrolyse viel höher ist als von cAMP-Synthese, was eine Grundlage der cAMP-Kompartimentierung sein könnte. cAMP-Sensoren wurden auch benutzt, um eine klinisch relevante diagnostische Methode zu entwickeln, die Autoantikörper gegen β1-adrenergen Rezeptoren bei Herzinsuffizienzpatienten zuverlässig nachweist. Diese Methode hat ermöglicht, die Sensitivität der früher entwickelten Techniken zu verbessern. Konformationsänderung in einzelnen Bindungsdomänen von GK und PDE wurde als nächstes benutzt, um ein Reihe neuer fluoreszierender Biosensoren für cGMP zu entwickeln. Diese Sensoren zeigten hohe räumliche und zeitliche Auslösung und wurden zur Analyse schneller Dynamik von cGMP-Synthese und für cGMP-Imaging in Mesangialzellen angewandt. Zusammenfassend wurden hochsensitive Biosensoren für cAMP und cGMP auf Grund einzelner, mit Grünfluoreszenzproteinmutanten fusionierter Bindungs-domäne entwickelt und in verschiedenen biologischen und klinisch relevanten Applikationen eingesetzt. KW - Cyclo-AMP KW - Cyclo-GMP KW - Biosensor KW - Fluoreszenz KW - Fluoreszenz-Resonanz-Energie-Transfer KW - cAMP KW - cGMP KW - FRET KW - Fluoreszenz KW - Sensor KW - cAMP KW - cGMP KW - FRET KW - fluorescence KW - sensor Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15673 ER -