TY - THES A1 - Blumenstein, Christian T1 - One-Dimensional Electron Liquid at a Surface: Gold Nanowires on Ge(001) T1 - Eindimensionale Elektronenflüssigkeit an einer Oberfläche: Gold Nanodrähte auf Ge(001) N2 - Selbstorganisierte Nanodrähte auf Halbleiteroberflächen ermöglichen die Untersuchung von Elektronen in niedrigen Dimensionen. Interessanterweise werden die elektronischen Eigenschaften des Systems von dessen Dimensionalität bestimmt, und das noch über das Quasiteilchenbild hinaus. Das quasi-eindimensionale (1D) Regime zeichnet sich durch eine schwache laterale Kopplung zwischen den Ketten aus und ermöglicht die Ausbildung einer Peierls Instabilität. Durch eine Nesting Bedingung in der Fermi Fläche kommt es zu einer Bandrückfaltung und damit zu einem isolierenden Grundzustand. Dies wird begleitet von einer neuen Überstruktur im Realraum, die mit dem Nestingvektor korrespondiert. In früheren Nanodrahtsystemen wurde ein solcher Effekt gezeigt. Dazu geh ̈oren Indium Ketten auf Si(111) und die Gold rekonstruierten Substrate Si(553) und Si(557). Die Theorie sagt jedoch einen weiteren Zustand voraus, der nur im perfekten 1D Grenzfall existiert und der bei geringster Kopplung mit höheren Dimensionen zerstört wird. Dieser Zustand wird Tomonaga-Luttinger Flüssigkeit (TLL) genannt und führt zu einem Zusammenbruch des Quasiteilchenbildes der Fermi-Flüssigkeit. Hier sind nur noch kollektive Anregungen der Elektronen erlaubt, da die starke laterale Einschränkung zu einer erhöhten Kopplung zwischen den Teilchen führt. Dadurch treten interessante Effekte wie Spin-Ladungs-Trennung auf, bei dem sich die Ladung und der Spin eines Elektrons entkoppeln und getrennt voneinander durch den Nanodraht bewegen können. Bis heute wurde solch ein seltener Zustand noch nicht an einer Oberfläche beobachtet. In dieser Arbeit wird ein neuer Ansatz zur Herstellung von besser definierten 1D Ketten gewählt. Dazu wird die Au-rekonstruierte Ge(001) Nanodraht-Oberfläche untersucht. Für die Präparation des Substrates wird ein neues Rezept entwickelt, welches eine langreichweitig geordnete Oberfläche erzeugt. Um das Wachstum der Nanodrähte zu optimieren wird das Wachstums-Phasendiagramm ausgiebig untersucht. Außerdem werden die strukturellen Bausteine der Ketten sehr genau beschrieben. Es ist bemerkenswert, dass ein struktureller Phasenübergang der Ketten oberhalb von Raumtemperatur gefunden wird. Aufgrund von spektroskopischen Untersuchungen kann eine Peierls Instabilität als Ursache ausgeschlossen werden. Es handelt sich um einen 3D-Ising-Typ Übergang an dem das Substrat ebenfalls beteiligt ist. Die Untersuchungen zur elektronischen Struktur der Ketten zeigen zwei deutliche Erkennungsmerkmale einer TLL: Ein potenzgesetzartiger Verlauf der Zustandsdichte und universales Skalenverhalten. Daher wird zum ersten Mal eine TLL an einer Oberfläche nachgewiesen, was nun gezielt lokale Untersuchungen und Manipulationen ermöglicht. Dazu gehören (i) Dotierung mit Alkalimetallen, (ii) die Untersuchung von Kettenenden und (iii) die einstellbare Kopplung zwischen den Ketten durch zusätzliche Goldatome. Damit wird ein wichtiger Beitrag zu theoretischen Vorhersagen und Modellen geliefert und somit das Verständnis korrelierter Elektronen vorangetrieben. N2 - Self-organized nanowires at semiconductor surfaces offer the unique opportunity to study electrons in reduced dimensions. Notably the dimensionality of the system determines it’s electronic properties, beyond the quasiparticle description. In the quasi-one-dimensional (1D) regime with weak lateral coupling between the chains, a Peierls instability can be realized. A nesting condition in the Fermi surface leads to a backfolding of the 1D electron band and thus to an insulating state. It is accompanied by a charge density wave (CDW) in real space that corresponds to the nesting vector. This effect has been claimed to occur in many surface-defined nanowire systems, such as the In chains on Si(111) or the Au reconstructions on the terraced Si(553) and Si(557) surfaces. Therefore a weak coupling between the nanowires in these systems has to be concluded. However theory proposes another state in the perfect 1D limit, which is completely destroyed upon slight coupling to higher dimensions. In this so-called Tomonaga-Luttinger liquid (TLL) state, the quasiparticle description of the Fermi liquid breaks down. Since the interaction between the electrons is enhanced due to the strong confinement, only collective excitations are allowed. This leads to novel effects like spin charge separation, where spin and charge degrees of freedom are decoupled and allowed to travel independently along the 1D-chain. Such rare state has not been realized at a surface until today. This thesis uses a novel approach to realize nanowires with improved confinement by studying the Au reconstructed Ge(001) surface. A new cleaning procedure using piranha solution is presented, in order to prepare a clean and long-range ordered substrate. To ensure optimal growth of the Au nanowires the phase diagram is extensively studied by scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The structural elements of the chains are revealed and described in high detail. Remarkably a structural phase transition of the delicate wire structure is found to occur above room temperature. Due to the lack of energy gaps a Peierls transition can be excluded as its origin. The transition is rather determined as 3D Ising type and therefore includes the substrate as well. Two hallmark properties of a TLL are found in the Au/Ge(001) wires by spectroscopic studies: Power-law suppression of the density of states (DOS) and universal scaling. This impressively proves the existence of a TLL in these chains and opens up a gateway to an atomic playground. Local studies and manipulations of a TLL state become possible for the first time. These comprise (i) doping by alkaline atoms, (ii) studies on chain ends and (iii) tunable coupling between the chains by additional Au atoms. Most importantly these manipulations offer input and test for theoretical models and predictions, and are thereby ultimately advancing the field of correlated electrons. KW - Nanodraht KW - Germanium KW - Gold KW - Elektronenflüssigkeit KW - Luttinger liquide KW - Tunneling spectroscopy KW - nanowires KW - one-dimensional KW - nano KW - Luttinger-Flüssigkeit KW - Rastertunnelmikroskop KW - Oberflächenphysik Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-72801 ER - TY - THES A1 - Meyer, Sebastian T1 - Model System for Correlation Phenomena in Reduced Dimensions - Gold-induced Atomic Chains on Germanium T1 - Modellsystem für Korrelationsphänomene in niedrigen Dimensionen - Gold-induzierte Atomketten auf Germanium N2 - Atomic chains, often called nanowires, form in a self-organized process after the adsorption of metal atoms. These wires are spatially well confined representing a close approach of a true one-dimensional structure. The low-dimensional architecture thereby often leads to anisotropic electronic states with vanishing interchain interaction. In the presence of weak coupling to the substrate a one-dimensional metal can experience a phase transition according to Peierls into an insulating ground state upon temperature, which is accompanied by a periodic lattice distortion. Without any coupling a strict onedimensional regime is reached, where the common Fermi liquid description breaks down with the quasi-particles being replaced by collective excitations of spin and charge. This state is referred to as a Tomonaga-Luttinger liquid (TLL), which has been observed so far only in anisotropic bulk materials. An experimental fingerprint for both phenomena can be obtained from the electronic states close to the chemical potential, i.e. the Fermi energy. Using a semiconducting substrate provides the best observation conditions since any bulk projection onto the interesting bands is avoided. In case of Au/Ge(001) the growth of gold-induced chains is guided by the dimerized bare Ge (2×1) reconstruction yielding two different domains of wires rotated by 90° going from one terrace to the next by a single height step. The superior wetting capabilities of gold on germanium enables a complete coverage of the Ge(001) surface with longrange ordered wires. Their length scale and defect density is limited by the underlying substrate, for which a cleaning procedure is introduced based on wet-chemical etching followed by thermal dry oxidation. The band structure of Au/Ge(001) is investigated by angle-resolved photoelectron spectroscopy as a function of temperature. Two states are observed: a two-dimensional metallic state with hole-like dispersion and a one-dimensional electron pocket, whose band-integrated spectral function does not show the typical Fermi distribution at the chemical potential. Instead, a decrease of spectral weight applies following a power-law. This behavior can be well explained within the Tomonaga-Luttinger liquid theory which replaces the Fermi-Landau formalism in strictly one-dimensional systems. To enable theoretical modeling, a structural analysis was performed on the basis of surface x-ray diffraction (SXRD). From the in-plane scattering data a Patterson-map could be extracted leading to in-plane distances between gold atoms in the unit cell. This provides the first step towards a complete structural model and therefore towards a band structure calculation. First successful attempts have been made to manipulate the system by controlled adsorption of potassium. Here, an n-type doping effect is observed for submonolayer coverage whereas slightly increased coverages in combination with thermal energy lead to a new surface reconstruction. N2 - Atomare Ketten, sogenannte Nano-Drähte, entstehen durch Selbstorganisation adsorbierter Metallatome auf einer Halbleiteroberfläche. Aufgrund der starken räumlichen Einschränkung der Ladungsträger innerhalb dieser Ketten entsteht dabei oftmals eine metallische Bandstruktur mit starker Anisotropie. Im Falle phononischer Ankopplung an das Substrat kann so ein eindimensionales (1D) Metall instabil gegen eine periodische Gitterverzerrung werden, bei der es zu einer Ausbildung einer Energielücke kommt. Dieser Metall-Isolator-Übergang wird dabei als Peierls Übergang bezeichnet. Für verschwindend geringe Kopplung der Ketten untereinander bzw. an das Substrat, d.h. im strikt eindimensionalen Fall, bricht das Fermi Flüssigkeitsmodell für dreidimensionale (3D) Metalle zusammen. Dessen Quasiteilchen werden durch kollektive Anregungen von Spin und Ladung ersetzt. Diesen Zustand bezeichnet man als Tomonaga-Luttinger Flüssigkeit. Beide Phänomene, Peierlsübergang und Tomonaga-Luttinger Flüssigkeit lassen sich anhand der elektronischen Bandstruktur experimentell nachweisen. Bei dem hier untersuchten Probensystem handelt es sich um Gold-induzierte Nandrähte auf der Germanium (001)-Oberfläche, kurz Au/Ge(001). Deren Wachstum erfolgt epitaktisch entlang der durch das Substrat vorgegebenen Dimer-Reihen, welche die freie Germaniumoberfläche in Form einer (2×1)-Symmetrie einnimmt. Die abwechselnde Stapelfolge ABAB des Substrates führt dabei zu zwei unterschiedlichen Drahtrichtungen, die jeweils um 90° zueinander gedreht sind, wenn man eine Einfachstufe von 1.4 A von einer A-Terrasse auf eine B-Terrasse oder umgekehrt geht. Die vorherrschende Kinetik während der Gold-Deposition bzw. das Benetzungsverhalten ermöglicht dabei eine vollständige Bedeckung der vormals freien Oberfläche mit Nanodrähten, deren Abmessungen einzig und allein durch Defekte bzw. die Größe der darunterliegenden Ge-Terrasse begrenzt sind. Um die Längenskala der Subtrat-Terrassen zu optimieren, wurde eine Reinigungsprozedur für Ge (001) entwickelt, bei der nass-chemisches Ätzen mit anschliessender Trocken-Oxidation zum Einsatz kommt. Die darauf aufbauenden Nanodrähte wurden im Anschluss mittels winkelaufgelöster Photoelektronenspektroskopie auf ihre elektronische Bandstruktur untersucht. Dabei wurden zwei neuartige Zustände beobachtet: ein metallischer, zweidimensionaler Loch-Zustand, der seinen Ursprung höchstwahrscheinlich in tieferen Schichten des Germaniums hat; und ein eindimensionaler Oberflächenzustand mit elektronenartiger Dispersion, dessen bandintegrierte Spektralfunktion von der einer Fermiflüssigkeit abweicht. Stattdessen wird ein exponentieller Abfall des spektralen Gewichtes als Funktion der Energie zum Ferminiveau hin beobachtet. Dieses Verhalten kann über einen weiten Temperaturbereich beobachtet werden und lässt sich mit der Tomonaga-Luttinger Flüssigkeit für strikt eindimensionale Systeme erklären. Zum weiteren theoretischen Verständnis dieses Phänomes, beispielsweise durch Bandstrukuturrechnungen mittels Dichte-Funktional-Theorie, bedarf es der genauen Kenntnis der atomaren Struktur dieser Ketten. Selbige wurde mittels Oberflächenröntgenbeugung (engl. surface x-ray diffraction, SXRD) untersucht. Auf Basis der gewonnenen Patterson-Karte lassen sich Rückschlüsse auf die interatomaren Abstände der Goldatome untereinander in der Einheitszelle ziehen. Dies stellt einen ersten wichtigen Schritt auf dem Weg zu einem vollständigen Strukturmodell dar. Darüber hinaus wurden erste vielversprechende Schritte unternommen, das Nanodrahtsystem kontrolliert zu manipulieren. Durch geringfügige, zusätzliche Deposition von Kalium konnte dabei eine schrittweise Erhöhung der Bandfüllung erzielt werden. Für weitergehende Kaliumanlagerungen im (Sub-)Monolagenbereich konnte sogar eine neue Rekonstruktion erzielt werden. KW - Nanodraht KW - Germanium KW - Gold KW - Elektronenflüssigkeit KW - winkelaufgelöste Photoelektronenspektroskopie KW - Self-assembly KW - Onedimensional KW - Luttinger liquid KW - angle-resolved photoemission KW - Adsorbat KW - Halbleiteroberfläche KW - Luttinger-Flüssigkeit KW - Oberflächenphysik KW - Nanowire Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77723 ER - TY - THES A1 - Pfeuffer, Rebekka Christina T1 - Growth and characterization of II-VI semiconductor nanowires grown by Au catalyst assisted molecular beam epitaxy T1 - Wachstum und Charakterisierung von II-VI Halbleiter Nanostrukturen, gewachsen mit Au Katalysatoren in einer Molekularstrahlepitaxieanlage N2 - In the present PhD thesis the control of the morphology, such as the diameter, the length, the orientation, the density, and the crystalline quality of 1D ZnSe NWs grown by MBE for optical and transport applications has been achieved. N2 - Diese Doktorarbeit besch¨aftigt sich mit dem Wachstum und der Charakterisierung von ZnSe Nanodrähten. Das Ziel dieser Arbeit ist es, sowohl die Morphologie, d.h. den Durchmesser, die Länge, die Orientierung und die Dichte der ZnSe Nanodrähte, als auch deren Kristallqualität für optische Anwendungen und Transportmessungen zu kontrollieren. KW - Zinkselenid KW - Nanodraht KW - Molekularstrahlepitaxie KW - Halbleiter KW - Nanowire KW - Semiconductor KW - Moelucar beam epitaxy Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141385 ER - TY - THES A1 - Kessel, Maximilian T1 - HgTe shells on CdTe nanowires: A low-dimensional topological insulator from crystal growth to quantum transport T1 - HgTe ummantelte CdTe Nanodrähte: Ein nieder-dimensionaler Topologischer Isolator vom Kristallwachstum zum Quantentransport N2 - A novel growth method has been developed, allowing for the growth of strained HgTe shells on CdTe nanowires (NWs). The growth of CdTe-HgTe core-shell NWs required high attention in controlling basic parameters like substrate temperature and the intensity of supplied material fluxes. The difficulties in finding optimized growth conditions have been successfully overcome in this work. We found the lateral redistribution of liquid growth seeds with a ZnTe growth start to be crucial to trigger vertical CdTe NW growth. Single crystalline zinc blende CdTe NWs grew, oriented along [111]B. The substrate temperature was the most critical parameter to achieve straight and long wires. In order to adjust it, the growth was monitored by reflection high-energy electron diffraction, which was used for fine tuning of the temperature over time in each growth run individually. For optimized growth conditions, a periodic diffraction pattern allowed for the detailed analysis of atomic arrangement on the surfaces and in the bulk. The ability to do so reflected the high crystal quality and ensemble uniformity of our CdTe NWs. The NW sides were formed by twelve stable, low-index crystalline facets. We observed two types stepped and polar sides, separated by in total six flat and non-polar facets. The high crystalline quality of the cores allowed to grow epitaxial HgTe shells around. We reported on two different heterostructure geometries. In the first one, the CdTe NWs exhibit a closed HgTe shell, while for the second one, the CdTe NWs are overgrown mainly on one side. Scanning electron microscopy and scanning transmission electron microscopy confirmed, that many of the core-shell NWs are single crystalline zinc blende and have a high uniformity. The symmetry of the zinc blende unit cell was reduced by residual lattice strain. We used high-resolution X-ray diffraction to reveal the strain level caused by the small lattice mismatch in the heterostructures. Shear strain has been induced by the stepped hetero-interface, thereby stretching the lattice of the HgTe shell by 0.06 % along a direction oriented with an angle of 35 ° to the interface. The different heterostructures obtained, were the base for further investigation of quasi-one-dimensional crystallites of HgTe. We therefore developed methods to reliably manipulate, align, localize and contact individual NWs, in order to characterize the charge transport in our samples. Bare CdTe cores were insulating, while the HgTe shells were conducting. At low temperature we found the mean free path of charge carriers to be smaller, but the phase coherence length to be larger than the sample size of several hundred nanometers. We observed universal conductance fluctuations and therefore drew the conclusion, that the trajectories of charge carriers are defined by elastic backscattering at randomly distributed scattering sites. When contacted with superconducting leads, we saw induced superconductivity, multiple Andreev reflections and the associated excess current. Thus, we achieved HgTe/superconductor interfaces with high interfacial transparency. In addition, we reported on the appearance of peaks in differential resistance at Delta/e for HgTe-NW/superconductor and 2*Delta/e for superconductor/HgTe-NW/superconductor junctions, which is possibly related to unconventional pairing at the HgTe/superconductor interface. We noticed that the great advantage of our self-organized growth is the possibility to employ the metallic droplet, formerly seeding the NW growth, as a superconducting contact. The insulating wire cores with a metallic droplet at the tip have been overgrown with HgTe in a fully in-situ process. A very high interface quality was achieved in this case. N2 - Topologische Isolatoren (TI) sind ein faszinierendes Forschungsfeld der Festkörperphysik. Im Inneren sind diese Materialien isolierend, am Rand zeigen sich jedoch topologisch geschützte, leitfähige Oberflächen-Zustände. Ihre lineare Energiedispersion und die Kopplung des Elektronenspins an die Bewegungsrichtung ermöglichen die Untersuchung von Teilchen, die sich als Dirac-Fermionen beschreiben lassen. Für Nanodrähte, als Vertreter mesoskopischer Strukturen, spielen die Eigenschaften der Oberfläche eine größere Rolle, als für Strukturen mit makroskopischem Volumen. Ihr geringer Umfang beschränkt durch zusätzliche periodische Randbedingungen die erlaubten elektronischen Zustände. Durch ein externes Magnetfeld lassen sich TI-Nanodrähte vom trivialen in den helikalen Zustand überführen. Bringt man einen solchen Draht in direkten Kontakt mit einem Supraleiter, so werden Quasiteilchen vorhergesagt, die sich wie Majorana-Fermionen verhalten sollen. Zur Untersuchung dieser Phänomene sind zunächst entscheidende technologische Hürden zu überwinden. Verschiedene TI sind derzeit bekannt. HgTe ist einer von ihnen und zeichnet sich bei tiefen Temperaturen durch eine hohe Beweglichkeit der Oberflächen-Elektronen und gleichzeitig einer geringen Leitfähigkeit im Volumen aus. Die bisherigen Untersuchungen in diesem Materialsystem beschränken sich auf zwei- und dreidimensionale Strukturen. In dieser Arbeit wurde ein Verfahren zur Herstellung von quasi eindimensionalen TI-Nanodrähten entwickelt. Mittels vapor-liquid-solid Methode gewachsene CdTe Nanokristallite werden epitaktisch mit HgTe umwachsen. Die hergestellten Heterostrukturen werden mit Beugungsexperimenten charakterisiert, um den Einfluss der Wachstumsparameter wie Temperatur und Teilchenstrom auf die Qualität der Proben zu bestimmen und diese zu verbessern. In dieser Arbeit wird zum ersten mal eine Rekonstruktion der Oberflächenatome von Nanodrähten beschrieben. Für den Rückschluss auf die atomare Konfiguration mittels Elektronenbeugung müssen die einzelnen Kristallite eine hohe Selbstähnlichkeit aufweisen. Wie Bilder in atomarer Auflösung und hochaufgelöste Röntgenbeugung zeigen, werden einkristalline und verspannte CdTe-HgTe Strukturen erzeugt. Diese sollten die typischen TI Eigenschaften haben. Zur weiteren Untersuchung wurden Verfahren für die Manipulation und exakte Ausrichtung der Nanodrähte, sowie für die Kontaktierung mit verschiedenen Metallen entwickelt. Die blanken CdTe Nanodraht-Kerne selbst sind wie erwartet isolierend, mit HgTe umwachsene Proben jedoch leiten einen elektrischen Strom. Die aktuelle Forschung beschäftigt sich nun intensiv mit dem Transport von Ladungs-trägern durch diese Nanodrähte. Dazu wird die Leitfähigkeit der Proben unter anderem bei tiefen Temperaturen und in Abhängigkeit äußerer elektrostatischer und magnetischer Felder bestimmt. Es werden verschiedene Effekte beobachtet. Universelle Fluktuationen des gemessenen Widerstandes, als ein Beispiel, resultieren aus einer Veränderung der geometrischen Phase der Ladungsträger. Dieser Effekt deutet auf elastische Rückstreuung der Ladungsträger in den HgTe Nanodrähten hin. Die Beobachtung kohärenter Transportphänomene erlaubt den Rückschluss, dass inelastische Streuprozesse bei tiefen Temperaturen kaum eine Rolle spielen. Für Drähte mit supraleitenden Kontakten können induzierte Supraleitung und multiple Andreev-Reflektionen beobachtet werden. Zusammen mit dem beschriebenen excess current ist dies ein klares Zeichen für einen guten elektrischen Kontakt zwischen TI und Supraleiter. Zusätzlich beobachten wir eine Signatur nahe der Kante der Energielücke des Supraleiters, die eventuell durch pairing an der Grenzfläche zu erklären ist. Für die Verbindung von Spin-Bahn-Kopplung des TI und der Cooper-Paare des konventionellen Supraleiters wird die Entstehung eines unkonventionellen Supraleiters vorhergesagt. Dies ist ein weiteres interessantes Feld der modernen Festkörperphysik und Gegenstand aktueller Forschung. Besonders bemerkenswert ist in diesem Zusammenhang, dass der metallische Tropfen, welcher ursprünglich das Nanodraht-Wachstum katalysiert hat, bei tiefen Temperaturen supraleitend wird. Der in dieser Arbeit vorgestellte selbst-organisierte Wachstumsprozess resultiert in einer sauberen Grenzfläche zwischen TI und Supraleiter. Zur Untersuchung der Effekte an dieser Grenzfläche muss nicht zwingend in einem separaten Schritt ein supraleitender Kontakt aufgebracht werden. Die in dieser Arbeit vorgestellten Methoden und Erkenntnisse sind die Grundlage für die Realisierung von Experimenten, die geeignet wären, die erwarteten Majorana-Zustände in TI-Nanodrähten nachzuweisen. KW - Quecksilbertellurid KW - Nanodraht KW - Halbleiter-Supraleiter-Kontakt KW - vapor-liquid-solid KW - RHEED KW - MBE KW - CdTe KW - HgTe KW - Cadmiumtellurid KW - Topologischer Isolator KW - Kern-Schale-Struktur Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149069 ER - TY - THES A1 - Hajer, Jan T1 - Mercury Telluride Nanowires for Topological Quantum Transport T1 - Quecksilbertellurid-Nanodrähte für Quantentransport-Untersuchungen N2 - Novel appraches to the molecular beam epitaxy of core-shell nanowires in the group II telluride material system were explored in this work. Significant advances in growth spurred the development of a flexible and reliable platform for a charge transport characterization of the topological insulator HgTe in a tubular nanowire geometry. The transport results presented provide an important basis for the design of future studies that strive for the experimental realization of topological charge transport in the quantum wire limit. N2 - Die vorliegende Arbeit befasst sich mit der Herstellung und Charakterisierung von Nanodraht-Heterostrukturen, die den Topologischen Isolator HgTe enthalten. Bedeutende Fortschritte bei der Probenherstellung ermöglichten die Entwicklung einer flexiblen und zuverlässigen Plattform für Ladungstransportuntersuchungen. Die Ergebnisse dieser Transportuntersuchung bieten eine wichtige Grundlage für die Planung zukünftiger Studien, die den experimentellen Nachweis von topologischem Ladungstransport in quasi-eindimensionalen HgTe-Nanostrukturen zum Ziel haben. KW - Quecksilbertellurid KW - Nanodraht KW - Halbleiter-Supraleiter-Kontakt KW - Topologischer Isolator KW - Core-shell KW - Nanowires KW - Vapor-liquid-solid KW - Molecular beam epitaxy KW - HgTe KW - CdTe KW - ZnTe KW - Aharonov-Bohm KW - Shapiro Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293222 ER -