TY - JOUR A1 - Heisswolf, Annette A1 - Ulmann, Sandra A1 - Obermaier, Elisabeth A1 - Mitesser, Oliver A1 - Poethke, Hans J. T1 - Host plant finding in the specialised leaf beetle Cassida canaliculata: an analysis of small-scale movement behaviour N2 - 1. Host plant finding in walking herbivorous beetles is still poorly understood. Analysis of small-scale movement patterns under semi-natural conditions can be a useful tool to detect behavioural responses towards host plant cues. 2. In this study, the small-scale movement behaviour of the monophagous leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) was studied in a semi-natural arena (r = 1 m). In three different settings, a host (Salvia pratensis L., Lamiales: Lamiaceae), a non-host (Rumex conglomeratus Murr., Caryophyllales: Polygonaceae), or no plant was presented in the centre of the arena. 3. The beetles showed no differences in the absolute movement variables, straightness and mean walking speed, between the three settings. However, the relative movement variables, mean distance to the centre and mean angular deviation from walking straight to the centre, were significantly smaller when a host plant was offered. Likewise, the angular deviation from walking straight to the centre tended to decline with decreasing distance from the centre. Finally, significantly more beetles were found on the host than on the non-host at the end of all the trials. 4. It is concluded that C. canaliculata is able to recognise its host plant from a distance. Whether olfactory or visual cues (or a combination of both) are used to find the host plant remains to be elucidated by further studies. KW - Käfer KW - Blattkäfer KW - Ampfer KW - Wiesensalbei KW - Arena experiment KW - Coleoptera KW - Chrysomelidae KW - olfaction KW - Rumex KW - Salvia pratensis KW - vision KW - walking Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49485 ER - TY - JOUR A1 - Isaias, Ioannis U. A1 - Volkmann, Jens A1 - Marzegan, Alberto A1 - Marotta, Giorgio A1 - Cavallari, Paolo A1 - Pezzoli, Gianni T1 - The Influence of Dopaminergic Striatal Innervation on Upper Limb Locomotor Synergies JF - PLoS One N2 - To determine the role of striatal dopaminergic innervation on upper limb synergies during walking, we measured arm kinematics in 13 subjects with Parkinson disease. Patients were recruited according to several inclusion criteria to represent the best possible in vivo model of dopaminergic denervation. Of relevance, we included only subjects with normal spatio-temporal parameters of the stride and gait speed to avoid an impairment of upper limbs locomotor synergies as a consequence of gait impairment per se. Dopaminergic innervation of the striatum was measured by FP-CIT and SPECT. All patients showed a reduction of gait-associated arms movement. No linear correlation was found between arm ROM reduction and contralateral dopaminergic putaminal innervation loss. Still, a partition analysis revealed a 80% chance of reduced arm ROM when putaminal dopamine content loss was >47%. A significant correlation was described between the asymmetry indices of the swinging of the two arms and dopaminergic striatal innervation. When arm ROM was reduced, we found a positive correlation between upper-lower limb phase shift modulation ( at different gait velocities) and striatal dopaminergic innervation. These findings are preliminary evidence that dopaminergic striatal tone plays a modulatory role in upper-limb locomotor synergies and upper-lower limb coupling while walking at different velocities. KW - pet KW - Parkinsons disease KW - basal ganglia KW - spinal-cord KW - walking KW - gait KW - arm KW - coordination KW - movements Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133976 VL - 7 IS - 12 ER - TY - JOUR A1 - Isaias, Ioannis Ugo A1 - Dipaola, Mariangela A1 - Michi, Marlies A1 - Marzegan, Alberto A1 - Volkmann, Jens A1 - Rodocanachi Roidi, Mariana L. A1 - Frigo, Carlo Albino A1 - Cavallari, Paolo T1 - Gait Initiation in Children with Rett Syndrome JF - PLoS ONE N2 - Rett syndrome is an X-linked neurodevelopmental condition mainly characterized by loss of spoken language and a regression of purposeful hand use, with the development of distinctive hand stereotypies, and gait abnormalities. Gait initiation is the transition from quiet stance to steady-state condition of walking. The associated motor program seems to be centrally mediated and includes preparatory adjustments prior to any apparent voluntary movement of the lower limbs. Anticipatory postural adjustments contribute to postural stability and to create the propulsive forces necessary to reach steady-state gait at a predefined velocity and may be indicative of the effectiveness of the feedforward control of gait. In this study, we examined anticipatory postural adjustments associated with gait initiation in eleven girls with Rett syndrome and ten healthy subjects. Muscle activity (tibialis anterior and soleus muscles), ground reaction forces and body kinematic were recorded. Children with Rett syndrome showed a distinctive impairment in temporal organization of all phases of the anticipatory postural adjustments. The lack of appropriate temporal scaling resulted in a diminished impulse to move forward, documented by an impairment in several parameters describing the efficiency of gait start: length and velocity of the first step, magnitude and orientation of centre of pressure-centre of mass vector at the instant of (swing-)toe off. These findings were related to an abnormal muscular activation pattern mainly characterized by a disruption of the synergistic activity of antagonistic pairs of postural muscles. This study showed that girls with Rett syndrome lack accurate tuning of feedforward control of gait. KW - syndrome KW - ankles   KW - biological locomotion KW - kinematics KW - rett KW - soleus muscles KW - walking KW - velocity KW - children Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119789 SN - 1932-6203 VL - 9 IS - 4 ER - TY - JOUR A1 - Dipaola, Mariangela A1 - Pavan, Esteban E. A1 - Cattaneo, Andrea A1 - Frazzitta, Giuseppe A1 - Pezzoli, Gianni A1 - Cavallari, Paolo A1 - Frigo, Carlo A. A1 - Isaias, Ioannis U. T1 - Mechanical Energy Recovery during Walking in Patients with Parkinson Disease JF - PLoS ONE N2 - The mechanisms of mechanical energy recovery during gait have been thoroughly investigated in healthy subjects, but never described in patients with Parkinson disease (PD). The aim of this study was to investigate whether such mechanisms are preserved in PD patients despite an altered pattern of locomotion. We consecutively enrolled 23 PD patients (mean age 64±9 years) with bilateral symptoms (H&Y ≥II) if able to walk unassisted in medication-off condition (overnight suspension of all dopaminergic drugs). Ten healthy subjects (mean age 62±3 years) walked both at their ‘preferred’ and ‘slow’ speeds, to match the whole range of PD velocities. Kinematic data were recorded by means of an optoelectronic motion analyzer. For each stride we computed spatio-temporal parameters, time-course and range of motion (ROM) of hip, knee and ankle joint angles. We also measured kinetic (Wk), potential (W\(_{p}\)), total (W\(_{totCM}\)) energy variations and the energy recovery index (ER). Along with PD progression, we found a significant correlation of W\(_{totCM}\) and W\(_{p}\) with knee ROM and in particular with knee extension in terminal stance phase. W\(_{k}\) and ER were instead mainly related to gait velocity. In PD subjects, the reduction of knee ROM significantly diminished both W\(_{p}\) and W\(_{totCM}\). Rehabilitation treatments should possibly integrate passive and active mobilization of knee to prevent a reduction of gait-related energetic components. KW - Parkinson disease KW - mechanical energy KW - kinematics KW - velocity KW - hip KW - gait analysis KW - walking KW - knees Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179739 VL - 11 IS - 6 ER - TY - JOUR A1 - Batsching, Sophie A1 - Wolf, Reinhard A1 - Heisenberg, Martin T1 - Inescapable Stress Changes Walking Behavior in Flies - Learned Helplessness Revisited JF - PLoS ONE N2 - Like other animals flies develop a state of learned helplessness in response to unescapable aversive events. To show this, two flies, one 'master', one 'yoked', are each confined to a dark, small chamber and exposed to the same sequence of mild electric shocks. Both receive these shocks when the master fly stops walking for more than a second. Behavior in the two animals is differently affected by the shocks. Yoked flies are transiently impaired in place learning and take longer than master flies to exit from the chamber towards light. After the treatment they walk more slowly and take fewer and shorter walking bouts. The low activity is attributed to the fly's experience that its escape response, an innate behavior to terminate the electric shocks, does not help anymore. Earlier studies using heat pulses instead of electric shocks had shown similar effects. This parallel supports the interpretation that it is the uncontrollability that induces the state. KW - learning KW - locomotion KW - animal behavior KW - behavioral conditioning KW - walking KW - vibration KW - light pulses KW - conditioned response Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178640 VL - 11 IS - 11 ER - TY - JOUR A1 - Wallmann-Sperlich, Birgit A1 - Hoffmann, Sophie A1 - Salditt, Anne A1 - Bipp, Tanja A1 - Froboese, Ingo T1 - Moving to an “active” biophilic designed office workplace: a pilot study about the effects on sitting time and sitting habits of office-based workers JF - International Journal of Environmental Research and Public Health N2 - Promising initial insights show that offices designed to permit physical activity (PA) may reduce workplace sitting time. Biophilic approaches are intended to introduce natural surroundings into the workplace, and preliminary data show positive effects on stress reduction and elevated productivity within the workplace. The primary aim of this pilot study was to analyze changes in workplace sitting time and self-reported habit strength concerning uninterrupted sitting and PA during work, when relocating from a traditional office setting to “active” biophilic-designed surroundings. The secondary aim was to assess possible changes in work-associated factors such as satisfaction with the office environment, work engagement, and work performance, among office staff. In a pre-post designed field study, we collected data through an online survey on health behavior at work. Twelve participants completed the survey before (one-month pre-relocation, T1) and twice after the office relocation (three months (T2) and seven months post-relocation (T3)). Standing time per day during office hours increased from T1 to T3 by about 40 min per day (p < 0.01). Other outcomes remained unaltered. The results suggest that changing office surroundings to an active-permissive biophilic design increased standing time during working hours. Future larger-scale controlled studies are warranted to investigate the influence of office design on sitting time and work-associated factors during working hours in depth. KW - desk-based KW - office-workers KW - standing KW - online survey KW - walking KW - work engagement KW - habit strength KW - work performance KW - office environment Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197371 SN - 1660-4601 VL - 16 IS - 9 ER - TY - JOUR A1 - Flachenecker, Peter A1 - Bures, Anna Karoline A1 - Gawlik, Angeli A1 - Weiland, Ann-Christin A1 - Kuld, Sarah A1 - Gusowski, Klaus A1 - Streber, René A1 - Pfeifer, Klaus A1 - Tallner, Alexander T1 - Efficacy of an internet-based program to promote physical activity and exercise after inpatient rehabilitation in persons with multiple sclerosis: a randomized, single-blind, controlled study JF - International Journal of Environmental Research and Public Health N2 - Background: Multimodal rehabilitation improves fatigue and mobility in persons with multiple sclerosis (PwMS). Effects are transient and may be conserved by internet-based physical activity promotion programs. Objective: Evaluate the effects of internet-based physical activity and exercise promotion on fatigue, quality of life, and gait in PwMS after inpatient rehabilitation. Methods: PwMS (Expanded Disability Status Scale (EDSS) ≤ 6.0, fatigue: Würzburg Fatigue Inventory for Multiple Sclerosis (WEIMuS) ≥ 32) were randomized into an intervention group (IG) or a control group (CG). After rehabilitation, IG received 3 months of internet-based physical activity promotion, while CG received no intervention. Primary outcome: self-reported fatigue (WEIMuS). Secondary outcomes: quality of life (Multiple Sclerosis Impact Scale 29, MSIS-29), gait (2min/10m walking test, Tinetti score). Measurements: beginning (T0) and end (T1) of inpatient rehabilitation, 3 (T2) and 6 (T3) months afterwards. Results: 64 of 84 PwMS were analyzed (IG: 34, CG: 30). After rehabilitation, fatigue decreased in both groups. At T2 and T3, fatigue increased again in CG but was improved in IG (p < 0.001). MSIS-29 improved in both groups at T1 but remained improved at T2 and T3 only in IG. Gait improvements were more pronounced in IG at T2. Conclusions: The study provides Class II evidence that the effects of rehabilitation on fatigue, quality of life, and gait can be maintained for 3–6 months with an internet-based physical activity and exercise promotion program. KW - multiple sclerosis KW - rehabilitation KW - fatigue KW - quality of life KW - walking KW - physical activity KW - exercise KW - online systems KW - internet-based intervention KW - health behavior Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207863 SN - 1660-4601 VL - 17 IS - 12 ER - TY - JOUR A1 - Murali, Supriya A1 - Händel, Barbara T1 - Motor restrictions impair divergent thinking during walking and during sitting JF - Psychological Research N2 - Creativity, specifically divergent thinking, has been shown to benefit from unrestrained walking. Despite these findings, it is not clear if it is the lack of restriction that leads to the improvement. Our goal was to explore the effects of motor restrictions on divergent thinking for different movement states. In addition, we assessed whether spontaneous eye blinks, which are linked to motor execution, also predict performance. In experiment 1, we compared the performance in Guilford's alternate uses task (AUT) during walking vs. sitting, and analysed eye blink rates during both conditions. We found that AUT scores were higher during walking than sitting. Albeit eye blinks differed significantly between movement conditions (walking vs. sitting) and task phase (baseline vs. thinking vs. responding), they did not correlate with task performance. In experiment 2 and 3, participants either walked freely or in a restricted path, or sat freely or fixated on a screen. When the factor restriction was explicitly modulated, the effect of walking was reduced, while restriction showed a significant influence on the fluency scores. Importantly, we found a significant correlation between the rate of eye blinks and creativity scores between subjects, depending on the restriction condition. Our study shows a movement state-independent effect of restriction on divergent thinking. In other words, similar to unrestrained walking, unrestrained sitting also improves divergent thinking. Importantly, we discuss a mechanistic explanation of the effect of restriction on divergent thinking based on the increased size of the focus of attention and the consequent bias towards flexibility. KW - creativity KW - humans KW - sitting KW - walking KW - thinking Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267722 SN - 1430-2772 VL - 86 IS - 7 ER -