TY - THES A1 - Blahetek, Gina T1 - The role of alternative intronic polyadenylation on microRNA biogenesis in melanoma T1 - Der Einfluss von alternativer intronischer Polyadenylierung auf die Biogenese von microRNAs im Melanom N2 - mRNA is co- or post-transcriptionally processed from a precursor mRNA to a mature mRNA. In addition to 5'capping and splicing, these modifications also include polyadenylation, the addition of a polyA tail to the 3'end of the mRNA. In recent years, alternative polyadenylation in particular has increasingly been taken into account as a mechanism for regulating gene expression. It is assumed that approximately 70-75 % of human protein coding genes contain alternative polyadenylation signals, which are often located within intronic sequences of protein-coding genes. The use of such polyadenylation signals leads to shortened mRNA transcripts and thus to the generation of C-terminal shortened protein isoforms. Interestingly, the majority of microRNAs, small non-coding RNAs that play an essential role in post-transcriptional gene regulation, are also encoded in intronic sequences of protein-coding genes and are co-transcriptionally expressed with their host genes. The biogenesis of microRNA has been well studied and is well known, but mechanisms that may influence the expression regulation of mature microRNAs are just poorly understood. In the presented work, I aimed to investigate the influence of alternative intronic polyadenylation on the biogenesis of microRNAs. The human ion channel TRPM1 could already be associated with melanoma pathogenesis and truncated isoforms of this protein have already been described in literature. In addition, TRPM1 harbors a microRNA, miR211, in its sixth intron, which is assumed to act as a tumor suppressor. Since both, TRPM1 and miR211 have already been associated with melanoma pathogenesis, the shift towards truncated transcripts during the development of various cancers is already known and it has been shown that certain microRNAs play a crucial role in the development and progression of melanoma, melanoma cell lines were used as an in vitro model for these investigations. N2 - Das Melanom, auch als schwarzer Hautkrebs bekannt, ist einer der gefährlichsten und aggressivsten Hautkrebsarten welcher aus den pigmentgebenden Zellen, den sogenannten Melanozyten, entsteht. Hauptursache dieser malignen Erkrankung ist eine starke und wiederkehrende UV-Belastung, häufig einhergehend mit Sonnenbränden, aber auch genetische Veranlagungen oder das Vorhandensein vieler Leberflecke kann das Risiko einer Melanomerkrankung erhöhen. Weltweit ist in den letzten Jahren ein starker Anstieg an jährlichen Neuerkrankungen zu beobachten. Wird das Melanom frühzeitig erkannt ist die operative Entfernung die wichtigste und effektivste Behandlungsmethode. Hat das Melanom jedoch bereits angefangen in weit entfernte Lymphknoten und in andere Organe zu streuen und Metastasen zu bilden, sinkt die 5-Jahres Überlebensrate drastisch ab. Immuntherapien mit Checkpoint-Inhibitoren, Chemotherapie oder Bestrahlung helfen dann häufig nur noch bedingt. Es ist bereits bekannt, dass TRPM1, ein Kalzium-permeabler Ionenkanal, an der Entstehung eines Melanoms beteiligt sein kann und dessen Expression invers mit der Aggressivität eines Melanoms korreliert. Interessanterweise wurden verkürzte Isoformen dieses Proteins in der Literatur beschrieben, ein Mechanismus wie diese generiert werden wurde bisher jedoch noch nicht untersucht. Ebenfalls nennenswert ist eine im sechsten Intron von TRPM1 codierte microRNA, miR211. In Melanomzellen und Melanom Patientenproben wurde bereits eine verminderte Expression dieser microRNA gezeigt. Messenger RNA (mRNA) wird von einer Vorläuferform (prä-mRNA) zu einer reifen mRNA co- oder posttranskriptionell prozessiert. Zu diesen Modifikationen gehört neben dem 5’Capping und dem Spleißen auch die Polyadenylierung, das Anbringen eines polyA Schwanzes an das 3‘Ende der mRNA. Dieser polyA Schwanz ist essentiell für den Transport der mRNA aus dem Nukleus in das Zytosol, für die Stabilität der mRNA sowie für die Effizienz der Translation. Besonders die alternative Polyadenylierung wurde in den letzten Jahren vermehrt als Mechanismus zur Regulation der Genexpression berücksichtigt. Es wird angenommen, dass etwa 70-75 % der humanen proteincodierenden Gene alternative Polyadenylierungssignale enthalten. Häufig liegen diese in intronischen Sequenzen proteincodierender Gene. Die Verwendung solcher Polyadenylierungssignale führt zu verkürzten mRNA Transkripten und somit zur Generierung C-terminal verkürzter, und im Falle von Transmembranproteinen oft löslichen, Protein Isoformen. Für diverse Krebsarten konnte bereits gezeigt werden, dass es eine Verlagerung hin zu 3’UTR verkürzten mRNA Transkripten gibt oder es im speziellen Fall der chronisch lymphatischen Leukämie zu einem globalen Trend in der Aktivierung intronischer Polyadenylierungssignale kommt. Interessanterweise ist die Mehrheit an microRNAs, kleine nicht codierenden RNAs, die eine essentielle Rolle in der post-transkriptionellen Genregulation spielen, ebenfalls in intronischen Sequenzen proteincodierender Gene codiert und werden co-transkriptionell mit ihren Wirtsgenen exprimiert. Die Biogenese der microRNA ist bereits sehr gut untersucht und bekannt, die Mechanismen hingegen, die einen Einfluss auf die Expressionsregulation reifer microRNAs haben können sind nur sehr wenig untersucht. Durch vorangegangene Studien konnte bereits gezeigt werden, dass die U1 snRNA (U1 small nuclear RNA), neben ihrer initiierenden Rolle in der Spleißreaktion durch das Binden an 5‘ Spleißstellen, auch aktiv die Verwendung intronischer Polyadenylierungssignale unterdrücken kann und dadurch frühzeitiges Schneiden und Polyadenylieren der mRNA verhindert. Die Blockierung oder ein geringeres Level an U1 snRNA führt nicht nur zu einer verminderten Spleißreaktion, sondern auch zu einer vermehrten Aktivierung intronischer Polyadenylierungssignale. Ob diese Aktivierung jedoch auch einen Einfluss auf die Expression intronischer microRNAs haben kann, wurde bisher nicht untersucht. In der vorliegenden Arbeit wurde der Einfluss von alternativer intronischer Polyadenylierung auf die Biogenese von microRNAs untersucht werden. Der humane Ionenkanal TRPM1 konnte bereits mit der Pathogenese des Melanoms assoziiert werden und verkürzte Isoformen dieses Proteins wurden bereits in der Literatur beschrieben. Darüber hinaus beherbergt TRPM1 in seinem sechsten Intron eine microRNA, miR211, von der angenommen wird, dass sie als Tumorsuppressor agiert. Aus diesen Gründen war TRPM1 ein vielversprechendes Ziel die gegenseitige Verbindung zwischen alternativer intronischer Polyadenylierung und der Biogenese von microRNAs zu untersuchen. Da sowohl TRPM1 als auch miR211 bereits mit der Pathogenese des Melanoms assoziiert wurden, die Verlagerung hin zu verkürzten Transkripten während der Entstehung von unterschiedlichen Krebsarten bereits bekannt ist, und gezeigt werden konnte, dass diverse microRNAs eine entscheidende Rolle in der Entstehung und Progression des Melanoms spielen, wurden Melanomzelllinien als in vitro Modell für diese Untersuchungen verwenden. Durch 3’mRNA Sequenzierung von Melanomzelllinien und weitere molekularbiologische Analysen konnten zwei verkürzte Isoformen von TRPM1 identifizieren werden, welche durch Aktivierung alternativer Polyadenylierungssignale in Intron 3 oder Intron 10 generiert werden. Darüber hinaus konnte gezeigt werden, dass in Melanomzelllinien im Vergleich zu einer Melanozyten Kontrollzelllinie, TRPM1 nicht nur vermindert exprimiert wird, sondern auch eine Verlagerung hin zu den verkürzten Isoformen, im Speziellen zur TRPM1 intron 3 Isoform, vorliegt. Durch Modulierung der Expression der unterschiedlichen TRPM1 Isoformen mittels Antisense-Oligonukleotide konnte gezeigt werden, dass speziell die Aktivierung des alternativen Polyadenylierungssignals in Intron 3 einen Einfluss auf die Biogenese der nachfolgend codierten intronischen miR211 hat, mit der Folge eines verringerten Expressionslevels. Zudem konnte eine U1 snRNA abhängige Verbindung zwischen frühzeitiger mRNA Transkriptions-Termination für TRPM1 und der Biogenese von miR211 in Melanomzelllinien gezeigt werden. Darüber hinaus wurde eine verminderte Expression der U1 snRNA in Melanomzelllinien im Vergleich zu einer Melanozyten Kontrollzelllinie gezeigt. Das Expressionslevel der U1 snRNA in Tumorgeweben oder auch anderen Krankheitsbildern im Vergleich zu gesundem Gewebe wurde bisher nur sehr wenig untersucht. Die verminderte Expression an U1 snRNA ist eine mögliche Erklärung für die Verlagerung hin zu verkürzten mRNA Transkripten während der Pathogenese und stellt somit einen vielversprechenden Ansatz für weitere Untersuchungen dar. Der in dieser Arbeit beschriebene Mechanismus zeigt eine neue, bisher nicht berücksichtigte Ebene zur Regulierung der Expression reifer microRNAs über die Aktivierung intronischer Polyadenylierungssignale. Die Möglichkeit, die Expression von mRNA Isoformen eines microRNA Wirtsgenes durch Antisense-Oligonukleotide spezifisch zu modulieren und damit zielgerichtet die Expression nachfolgend codierter microRNAs steuern zu können, bietet einen neuartigen und gezielten therapeutischen Ansatz. Dieser gezielte therapeutische Ansatz kann von TRPM1/miR211 im Melanom auch auf andere microRNA-Wirtsgene und deren intronische microRNAs übertragen werden, die mit der Entstehung von Krankheiten in Verbindung gebracht werden können. KW - Alternative polyadenylation KW - microRNA KW - U1 snRNA KW - alternative intronic polyadenylation KW - microRNA biogenesis KW - Polyadenylierung KW - Biogenese KW - miRNS KW - Melanom Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254743 ER - TY - THES A1 - Veepaschit, Jyotishman T1 - Identification and structural analysis of the Schizosaccharomyces pombe SMN complex T1 - Identifizierung und Strukturanalyse des Schizosaccharomyces pombe SMN-Komplex N2 - The biogenesis of spliceosomal UsnRNPs is a highly elaborate cellular process that occurs both in the nucleus and the cytoplasm. A major part of the process is the assembly of the Sm-core particle, which consists of a ring shaped heptameric unit of seven Sm proteins (SmD1•D2•F•E•G•D3•B) wrapped around a single stranded RNA motif (termed Sm-site) of spliceosomal UsnRNAs. This process occurs mainly in the cytoplasm by the sequential action of two biogenesis factors united in PRMT5- and SMN-complexes, respectively. The PRMT5-complex composed of the three proteins PRMT5, WD45 and pICln is responsible for the symmetric dimethylation of designated arginine residues in the C-terminal tails of some Sm proteins. The action of the PRMT5- complex results in the formation of assembly incompetent Sm-protein intermediates sequestered by the assembly chaperone pICln (SmD1•D2•F•E•G•pICln and pICln•D3•B). Due to the action of pICln, the Sm proteins in these complexes fail to interact with UsnRNAs to form the mature Sm-core. This kinetic trap is relieved by the action of the SMN-complex, which removes the pICln subunit and facilitates the binding of the Sm-core intermediates to the UsnRNA, thus forming the mature Sm-core particle. The human SMN complex consists of 9 subunits termed SMN, Gemin2-8 and Unrip. So far, there are no available atomic structures of the whole SMN-complex, but structures of isolated domains and subunits of the complex have been reported by several laboratories in the past years. The lack of structural information about the entire SMN complex most likely lies in the biophysical properties of the SMN complex, which possesses an oligomeric SMN core, and many unstructured and flexible regions. These were the biggest roadblocks for its structural elucidation using traditional methods such as X-ray crystallography, NMR or CryoEM. To circumvent these obstacles and to obtain structural insight into the SMN-complex, the Schizosaccharomyces pombe SMN complex was used as a model system in this work. In a collaboration with the laboratory of Dr. Remy Bordonne (IGMM, CNRS, France), we could show that the SpSMN complex is minimalistic in its composition, consisting only of SpSMN, SpGemin2, SpGemin8, SpGemin7 and SpGemin6. Using biochemical experiments, an interaction map of the SpSMN complex was established which was found to be highly similar to the reported map of the human SMN complex. The results of this study clearly show that SpSMN is the oligomeric core of the complex and provides the binding sites for the rest of the subunits. Through biochemical and X-ray scattering experiments, the properties of the SpSMN subunit such as oligomerization viii and intrinsic disorder, were shown to determine the overall biophysical characteristics of the whole complex. The structural basis of SpSMN oligomerization is presented in atomic detail which establishes a dimeric SpSMN as the fundamental unit of higher order SpSMN oligomers. In addition to oligomerization, the YG-box domain of SpSMN serves as the binding site for SpGemin8. The unstructured region of SpSMN imparts an unusual large hydrodynamic size, intrinsic disorder, and flexibility to the whole complex. Interestingly, these biophysical properties are partially mitigated by the presence of SpGemin8•SpGemin7•SpGemin6 subunits. These results classify the SpSMN complex as a multidomain entity connected with flexible linkers and characterize the SpSMN subunit to be the central oligomeric structural organizer of the whole complex. N2 - Die Biogenese von spliceosomalen UsnRNPs ist ein hochkomplexer zellulärer Prozess, der sowohl im Zellkern als auch im Zytoplasma stattfindet. Ein Hauptteil dieses Prozesses ist der Aufbau des Sm-Kernpartikels, der aus einem ringförmigen Heptamer aus sieben Sm-Proteinen (SmD1 · D2 · F · E · G · D3 · B) besteht, die um ein einzelsträngiges RNA-Motiv (das auch als Sm-Stelle bezeichnet wird) der spliceosomalen U snRNAs gewickelt ist. Dieser Prozess findet hauptsächlich im Zytoplasma durch die sequenzielle Wirkung von zwei Biogenesefaktoren statt, den PRMT5 und den SMN-Komplexen. Der PRMT5-Komplex besteht aus den drei Proteinen PRMT5, WD45 und pICln und ist für die symmetrische Dimethylierung bestimmter Argininreste in den C-terminalen Schwänzen einiger Sm-Proteine verantwortlich. Die Wirkung des PRMT5-Komplexes führt zur Bildung von inkompetenten Sm-Protein-Intermediaten, die durch das Assemblierungs-Chaperon pICln (SmD1 · D2 · F · E · G · pICln und pICln · D3 · B) sequestriert werden. Aufgrund der Wirkung von pICln interagieren die Sm-Proteine in diesen Komplexen nicht mit den U snRNAs, um den reifen Sm-Kern zu bilden. Diese kinetische Falle wird durch die Wirkung des SMN-Komplexes aufgelöst, der die pICln-Untereinheit entfernt und die Bindung der Sm-Core-Zwischenprodukte an die U snRNA erleichtert, wodurch der reife Sm-Core-Partikel gebildet wird. Der menschliche SMN-Komplex besteht aus 9 Untereinheiten, die als SMN, Gemin2-8 und Unrip bezeichnet werden. Bisher sind keine atomaren Strukturen des gesamten SMN-Komplexes verfügbar, aber Strukturen isolierter Domänen und Untereinheiten des Komplexes wurden in den letzten Jahren von mehreren Laboratorien beschrieben. Der Mangel an strukturellen Informationen über den gesamten SMN-Komplex liegt höchstwahrscheinlich in den biophysikalischen Eigenschaften des SMN-Komplexes, der einen oligomeren SMN-Kern und viele unstrukturierte und flexible Regionen besitzt. Dies waren die größten Hindernisse für die Strukturaufklärung mit traditionellen Methoden wie Röntgenkristallographie, NMR oder CryoEM. Um diese Hindernisse zu umgehen und strukturelle Einblicke in den SMN-Komplex zu erhalten, wurde in dieser Arbeit der SMN-Komplex von Schizosaccharomyces pombe als Modellsystem verwendet. In Zusammenarbeit mit dem Labor von Dr. Remy Bordonne (IGMM, CNRS, Frankreich) konnten wir zeigen, dass der SpSMN-Komplex in seiner Zusammensetzung minimalistisch ist und nur aus SpSMN, SpGemin2, SpGemin8, SpGemin7 und SpGemin6 besteht. Mit biochemischer Experimenten wurde eine x Interaktionskarte des SpSMN-Komplexes erstellt, die der bekannten Karte des menschlichen SMN-Komplexes sehr ähnlich war. Die Ergebnisse dieser Studie zeigen deutlich, dass SpSMN der oligomere Kern des Komplexes ist und die Bindungsstellen für den Rest der Untereinheiten bereitstellt. Durch biochemische und Röntgenstreuungsexperimente wurde gezeigt, dass die Eigenschaften der SpSMNUntereinheit wie Oligomerisierung und intrinsische Störung die gesamten biophysikalischen Eigenschaften des gesamten Komplexes bestimmen. Die strukturelle Basis der SpSMN-Oligomerisierung wird atomar detailliert dargestellt, wodurch ein dimeres SpSMN als zentrale Grundeinheit der SpSMN-Oligomere höherer Ordnung festgelegt wird. Zusätzlich zur Oligomerisierung dient die YG-Box- Domäne von SpSMN als Bindungsstelle für SpGemin8. Die unstrukturierte Region von SpSMN verleiht dem gesamten Komplex eine ungewöhnlich große hydrodynamische Größe, intrinsische Unordnung und Flexibilität. Interessanterweise werden diese biophysikalischen Eigenschaften teilweise durch das Vorhandensein von SpGemin8 • SpGemin7 • SpGemin6-Untereinheiten gemindert. Diese Ergebnisse klassifizieren den SpSMN-Komplex als eine mit flexiblen Wechselwirkungen verbundene Multidomäneneinheit und charakterisieren die SpSMN-Untereinheit als den zentralen oligomeren Strukturorganisator des gesamten Komplexes. KW - Multiproteinkomplex KW - Survival Motor Neuron KW - Protein purification KW - X-ray crystallography KW - Small angle X-ray scattering KW - Biogenese KW - Schizosaccharomyces pombe KW - SMN Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238365 ER - TY - THES A1 - Neuenkirchen, Nils T1 - An in vitro system for the biogenesis of small nuclear ribonucleoprotein particles T1 - Die Biogenese kleiner nukleärer Ribonukleinprotein Partikel - ein in vitro System N2 - Most protein-encoding genes in Eukaryotes are separated into alternating coding and non-coding sequences (exons and introns). Following the transcription of the DNA into pre-messenger RNA (pre-mRNA) in the nucleus, a macromolecular complex termed spliceosome removes the introns and joins the exons to generate mature mRNA that is exported to the cytoplasm. There, it can be interpreted by ribosomes to generate proteins. The spliceosome consists of five small nuclear ribonucleic acids (snRNAs) and more than 150 proteins. Integral components of this complex are RNA-protein particles (RNPs) composed of one or two snRNAs, seven common (Sm) and a various number of snRNP-specific proteins. The Sm proteins form a ring-structure around a conserved site of the snRNA called Sm site. In vitro, Sm proteins (B/B', D1, D2, D3, E, F, G) and snRNA readily assemble to form snRNPs. In the context of the cell, however, two macromolecular trans-acting factors, the PRMT5 (protein arginine methyltransferases type 5) and the SMN (survival motor neuron) complex, are needed to enable this process. Initially, the Sm proteins in the form of heterooligomers D1/D2, D3/B and F/E/G are sequestered by the type II methyltransferase PRMT5. pICln, a component of the PRMT5 complex, readily interacts with Sm proteins to form two distinct complexes. Whereas the first one comprises pICln and D3/B the second one forms a ring consisting of pICln, D1/D2 and F/E/G (6S). It has been found that pICln prevents the premature interaction of snRNAs with the Sm proteins in these complexes and thus functions as an assembly chaperone imposing a kinetic trap upon the further assembly of snRNPs. PRMT5 catalyzes the symmetrical dimethylation of arginine residues in B/B', D1 and D3 increasing their affinity towards the SMN complex. Finally, the SMN complex interacts with the pICln-Sm protein complexes, expels pICln and mediates snRNP assembly in an ATP-dependent reaction. So far, only little is known about the action of PRMT5 in the early phase of snRNP assembly and especially how the 6S complex is formed. Studies of this have so far been hampered by the unavailability of soluble and biologically active PRMT5 enzyme. The composition of the SMN complex and possible functions of individual subunits have been elucidated or hypothesized in recent years. Still, the exact mechanism of the entire machinery forming snRNPs is poorly understood. In vivo, reduced production of functional SMN protein results in the neurodegenerative disease spinal muscular atrophy (SMA). How specific SMN mutations that have been found in SMA patients cause the disease remains elusive, yet, are likely to interfere with either SMN complex stability or snRNP assembly. The aim of this work was to establish an in vitro system to recapitulate the cytoplasmic assembly of snRNPs. This was enabled by the recombinant production of all PRMT5 and SMN complex components as well as Sm proteins in a combination of bacterial and insect cell expression systems. Co-expression of human PRMT5 and its direct interaction partner WD45 (WD-repeat domain 45) in Sf21 (Spodoptera frugiperda 21) insect cells resulted for the first time in soluble and biologically active enzyme. Recombinant PRMT5/WD45 formed complexes with Sm protein heterooligomers as well as pICln-Sm protein complexes but not with F/E/G alone. Also, the enzyme exhibited a type II methyltransferase activity catalyzing the mono- (MMA) and symmetrical dimethylation (sDMA) of Sm proteins B, D1 and D3. Two experimental setups were devised to quantitatively analyze the overall methylation of substrates as well as to identify the type and relative abundance of specific methylation types. Methylation of Sm proteins followed Michaelis-Menten kinetics. Complex reconstitutions and competition of the methylation reaction indicate that 6S is formed in a step-wise manner on the PRMT5 complex. The analysis of the methylation type could be applied to deduce a model of sequential MMA and sDMA formation. It was found that large Sm protein substrate concentrations favored monomethylation. Following a distributive mechanism this leads to the conclusion that PRMT5 most likely confers partial methylation of several different substrate proteins instead of processing a single substrate iteratively until it is completely dimethylated. Finally, the human SMN complex was reconstituted from recombinant sources and was shown to be active in snRNP formation. The introduction of a modified SMN protein carrying a mutation (E134K) present in spinal muscular atrophy (SMA) proved that mutated complexes can be generated in vitro and that these might be applied to elucidate the molecular etiology of this devastating disease. N2 - Der Großteil der Protein-kodierenden Gene in Eukaryoten ist in kodierende und nicht-kodierende Regionen unterteilt - sogenannte Exons und Introns. Damit aus einem Gen ein Protein hergestellt werden kann, muss zunächst die genomische DNA im Rahmen der Translation in prä-messenger RNA (prä-mRNA; Boten-RNA) übersetzt werden. Aus dieser prä-mRNA werden anschließend durch einen makromolekularen Komplex (Spleißosom) die Introns entfernt und die kodieren Exons zusammengefügt. Die daraus resultierende gereifte mRNA dient letztendlich den Ribosomen als Vorlage zur Herstellung von Proteinen. Das Spleißosom besteht aus fünf snRNAs (small nuclear ribonucleic acids) und über 150 weiteren Proteinen. Zentrale Komponenten dieses Komplexes sind RNA-Protein Partikel (RNPs), die aus einer bzw. zwei snRNAs, sieben gemeinsamen (Sm) und weiteren snRNP-spezifischen Proteinen bestehen. Die Sm Proteine (B/B', D1, D2, D3, E, F and G) bilden eine Ringstruktur um eine konservierte Sequenz (Sm-site) der snRNA aus. In vitro erfolgt die Ausbildung dieser Struktur spontan. Im zellulären Kontext wird die Zusammenlagerung dieser snRNPs allerdings erst durch zwei makromolekulare, trans-agierende Proteinkomplexe, den PRMT5 und den SMN Komplex, ermöglicht. Zu Beginn interagieren die Sm Proteine als heterooligomere Strukturen bestehend aus D1/D2, D3/B und F/E/G mit der Typ II Methyltransferase PRMT5. pICln, eine Komponente des PRMT5 Komplexes, interagiert mit den Sm Proteinen und bildet zwei spezifische Komplexe aus. Während der erste aus pICln und D3/B besteht, lagern sich im zweiten die Sm proteine D1/D2 und F/E/G mit pICln zu einem Ring zusammen (6S Komplex). Diese Interaktion erzeugt eine kinetische Falle, so dass die Sm Proteine sich nicht mehr spontan an die snRNA anlagern können und somit die snRNP Biogenese verzögert wird. PRMT5 katalysiert die symmetrische Dimethylierung von Argininresten in B/B', D1 und D3, wodurch deren Affinität zum SMN Komplex erhöht wird. Letztendlich assoziert der SMN Komplex mit den zuvor erzeugten pICln-Sm Protein Komplexen, entlässt pICln und ermöglicht im weiteren die Zusammenlagerung von snRNPs in einer ATP-abhängigen Reaktion. Aktuell ist über die Funktion von PRMT5 in der frühen Phase der snRNP Biogenese wenig bekannt. Dies trifft insbesondere auf die Zusammenlagerung des 6S Komplexes zu. Biochemische Untersuchungen waren bis jetzt nahezu unmöglich, da rekombinant hergestelltes Protein entweder unlöslich oder biochemisch inaktiv war. In den vergangenen Jahren wurde viel über die Zusammensetzung des SMN Komplexes sowie über die Funktionen einzelner Untereinheiten herausgefunden aber auch spekuliert. Trotz alledem ist der genaue Mechanismus der snRNP Biogenese noch nahezu unbekannt. In vivo sind verringerte Mengen an funktionalem SMN Protein der Ausschlaggeber für die neurodegenerative Krankheit Spinale Muskelatrophie (SMA). Welchen Effekt Mutationen im SMN Protein haben, die in SMA Patienten festgestellt wurden ist ungewiss. Es ist allerdings zu vermuten, dass diese entweder die Integrität des SMN Komplexes negativ beeinflussen oder störend auf die snRNP Biogenese wirken. Das Ziel dieser Arbeit war es ein in vitro-System zu generieren, um die zytoplasmatische snRNP Biogenese biochemisch zu untersuchen. Dies geschah durch die rekombinante Produktion aller PRMT5 und SMN Komplex Komponenten sowie der Sm Proteine in einer Kombination von bakterieller und Insektenzell-Expression. Durch die Ko-Expression von humanem PRMT5 und dem Interaktionspartner WD45 (WD-repeat domain 45) in Sf21 (Spodoptera frugiperda 21) Insekten Zellen konnte erstmals lösliches und enzymatisch aktives Protein hergestellt werden. Rekombinantes PRMT5/WD45 bildete Komplexe mit heterooligomeren Sm Proteinen sowie pICln-Sm Protein Komplexen, allerdings nicht mit F/E/G. Zusätzlich konnte eine Typ II Methyltransferase Aktivität dadurch nachgewiesen werden, dass die Sm Protein B, D1 und D3 monomethyliert (MMA) und symmetrisch dimethyliert (sDMA) werden können. Zur weiteren Untersuchung wurden zwei experimentelle Ansätze erarbeitet, um die allgemeine Methylierungsaktivität sowie das relative Vorhandensein von Mono- und Dimethylargininen zu bestimmen. Es konnte gezeigt werden, dass die Methylierung der Sm Proteine einer Michael-Menten Kinetik folgt. Die Rekonstitution von PRMT-Sm Protein Komplexen sowie the Methylierungsreaktionen deuten auf eine schrittweise Zusammenlagerung von 6S auf dem PRMT5 Komplex hin. ... KW - Biogenese KW - Small nuclear RNP KW - Methylierung KW - SMN KW - PRMT5 KW - SMN KW - PRMT5 KW - snRNP KW - sDMA KW - arginine methylation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71300 ER - TY - THES A1 - Chari, Ashwin T1 - The Reaction Mechanism of Cellular U snRNP Assembly T1 - Der Reaktionsmechanismus zellulärer U snRNP Zusammenlagerung N2 - Macromolecular complexes, also termed molecular machines, facilitate a large spectrum of biological reactions and tasks crucial to the survival of cells. These complexes are composed of either protein only, or proteins bound to nucleic acids (DNA or RNA). Prominent examples for each class are the proteosome, the nucleosome and the ribosome. How such units are assembled within the context of a living cell is a central question in molecular biology. Earlier studies had indicated that even very large complexes such as ribosomes could be reconstituted from purified constituents in vitro. The structural information required for the formation of macromolecular complexes, hence, lies within the subunits itself and, thus, allow for self- assembly. However, increasing evidence suggests that in vivo many macromolecular complexes do not form spontaneously but require assisting factors (“assembly chaperones”) for their maturation. In this thesis the assembly of RNA-protein (RNP) complexes has been studied by a combination of biochemical and structural approaches. A resourceful model system to study this process is the biogenesis pathway of the uridine-rich small nuclear ribonucleoproteins (U snRNPs) of the spliceosome. This molecular machine catalyzes pre-mRNA splicing, i.e. the removal of non-coding introns and the joining of coding exons to functional mRNA. The composition and architecture of U snRNPs is well defined, also, the nucleo-cytoplasmic transport events enabling the formation of these particles in vivo have been analyzed in some detail. Furthermore, recent studies suggest that the formation of U snRNPs in vivo is mediated by an elaborate assembly machinery consisting of protein arginine methyltransferase (PRMT5)- and survival motor neuron (SMN)-complexes. The elucidation of the reaction mechanism of cellular U snRNP assembly would serve as a paradigm for our understanding of how RNA-protein complexes are formed in the cellular environment. The following key findings were obtained as part of this study: 1) Efforts were made to establish a full inventory of the subunits of the SMN-complex. This was achieved by the biochemical definition and characterization of an atypical component of this complex, the unrip protein. This protein is associated with the SMN-complex exclusively in the cytoplasm and influences its subcellular localization. 2) With a full inventory of the components in hand, the architecture of the SMN-complex was defined on the basis of an interaction map of all subunits. This study elucidated that the proteins SMN, Gemin7 and Gemin8 form a backbone, onto which the remaining subunits adhere in a modular manner. 3) The two studies mentioned above formed the basis to elucidate the reaction mechanism of cellular U snRNP assembly. Initially, an early phase in the SMN-assisted formation of U snRNPs was analyzed. Two subunits of the U7 snRNP (LSm10 and 11) were found to interact with the PRMT5-complex, without being methylated. This report suggests that the stimulatory role of the PRMT5-complex is independent of its methylation activity. 4) Key reaction intermediates in U snRNP assembly were found and characterized by a combination of biochemistry and structural studies. Initially, a precursor to U snRNPs with a sedimentation coefficient of 6S is formed by the pICln subunit of the PRMT5-complex and Sm proteins. This intermediate was shown to constitute a kinetic trap in the U snRNP assembly reaction. Progression towards the assembled U snRNP depends on the activity of the SMN-complex, which acts as a catalyst. The formation of U snRNPs is shown to be structurally similar to the way clamps are deposited onto DNA to tether poorly processive polymerases. 5) The human SMN-complex is composed of several subunits. However, it is unknown whether all subunits of this entity are essential for U snRNP assembly. A combination of bioinformatics and biochemistry was applied to tackle this question. By mining databases containing whole-genome assemblies, the SMN-Gemin2 heterodimer is recognized as the most ancestral form of the SMN-complex. Biochemical purification of the Drosophila melanogaster SMN-complex reveals that this complex is composed of the same two subunits. Furthermore, evidence is provided that the SMN-Gemin2 heterodimer is necessary and sufficient to promote faithful U snRNP assembly. Future studies will adress further details in the reaction mechanism of cellular U snRNP assembly. The results obtained in this thesis suggest that the SMN and Gemin2 subunits are sufficient to promote U snRNP formation. What then is the function of the remaining subunits of the SMN-complex? The reconstitution schemes established in this thesis will be instrumental to address this question. Furthermore, additional mechanistic insights into the U snRNP assembly reaction will require the elucidation of structures of the assembly machinery trapped at various states. The prerequisite for these structural studies, the capability to generate homogenous complexes in sufficient amounts, has been accomplished in this thesis. N2 - Makromolekulare Komplexe, auch molekulare Maschinen genannt, ermöglichen eine grosse Vielfalt biologischer Reaktionen und Aufgaben, die für das Überleben von Organismen kritisch sind. Diese Komplexe bestehen entweder nur aus Protein, oder setzen sich aus Protein und Nukleinsäure (DNA oder RNA) zusammen. Prominente Beispiele für diese Klassen molekularer Maschinen sind das Proteosom, das Nukleosom oder das Ribosom. Wie sich solche Einheiten innerhalb einer Zelle zusammenlagern ist eine grundlegende Frage der Molekularbiologie. Frühere Studien hatten angeduetet, dass es möglich ist sogar sehr grosse Komplexe wie das Ribosom in vitro aus gereinigten Bestandteilen zu einem aktiven Partikel zu rekonstruieren. Die Strukturinformation, die für die Bildung von makromolekularen Komplexen erforderlich ist, liegt also in den Untereinheiten selbst. Im Gegensatz dazu mehren sich heute die Hinweise dafür, dass sich viele makromolekulare Komplexe nicht spontan zusammenlagern, sondern die Aktivität assistierender Faktoren („Assembly Chaperone“) für ihre Reifung benötigen. In dieser Arbeit wurde der Zusammenbau von RNA-Protein (RNP) Partikeln durch eine Kombination aus Biochemie und Strukturbiologie untersucht. Ein ergiebiges System, um diesen Prozess zu studieren, ist die Biogenese der RNPs (U snRNPs) des Spleissosoms. Aufgabe dieser molekularen Maschine ist das Herausschneiden nicht-kodierender Introns und das Zusammenfügen kodiereneder Exons um so funktionelle mRNA zu bilden. Die Zusammensetzung und Architektur von U snRNPs sind gut definiert. Auch ist der Kern- Zytoplasma Transport, der für die Reifung dieser Partikel notwendig sind, detailliert beschrieben worden. Außerdem weisen neueste Studien darauf hin, dass die Bildung von U snRNPs in vivo durch eine komplexe Maschinerie, die aus den Protein-Arginin- Methyltransferase 5 (PRMT5)- und Survival-Motor-Neuron (SMN)- Komplexen besteht, vermittelt wird. Die Entschlüsselung des Reaktionsmechanismus des zellulärem U snRNP Zusammenbaus würde als Musterbeispiel für unser Verständnis dienen, wie RNPs in einer Zelle gebildet werden. Folgende Erkenntnisse wurden in dieser Arbeit gewonnen: 1) Es wurde zunächst versucht eine komplette Bestandsliste der Untereinheiten des SMN-Komplexes zu erstellen. Dies wurde durch die biochemische Definition und Charakterisierung einer atypischen Komponente dieses Komplexes, des Unrip Proteins, erreicht. Dieses Protein bindet ausschliesslich im Zytoplasma an den SMN-Komplex und beeinflusst dessen subzelluläre Lokalisation. 2) Die komplette Inventarisierung des SMN-Komplexes ermöglichte die Untersuchung der Wechselwirkung aller Untereinheiten und somit die Untersuchung seiner Architektur. Diese Studie zeigte, dass die Proteine SMN, Gemin7 und Gemin8 das Rückgrat des SMN-Komplexes bilden auf dem die restlichen Untereinheiten modular angeordnet werden. 3) Die zwei oben erwähnten Studien bildeten die Grundlage, den Reaktionsmechanismus zellulärer U snRNP Zusammenlagerung zu entschlüsseln. Zunächst wurde eine frühe Phase im SMN-vermittelten U snRNP Zusammenbau analysiert. Es konnte gezeigt werden, dass zwei Untereinheiten des U7 snRNP (LSm10 und 11) mit dem PRMT5-Komplex wechselwirken, ohne methyliert zu werden. Dies deutet darauf hin, dass die unterstützende Rolle des PRMT5-Komplexes von seiner Methylierungsaktivität unabhängig ist. 4) Schlüsselintermediate im Zusammenschluss von U snRNPs wurden identifiziert und durch eine Kombination von Biochemie und Strukturbiologie charakterisiert. In einer ersten Stufe bildet sich ein Vorgänger von U snRNPs mit einem Sedimentationskoeffizienten von 6S aus. Dieses Intermediat, bestehend aus pICln (einer Untereinheit des PRMT5-Komplexes) und Sm Proteinen, stellt eine kinetische Falle in der U snRNP Zusammenlagerung dar. Das Voranschreiten zum maturen U snRNP hängt von der Aktivität des SMN-Komplexes ab, der als Katalysator wirkt. Weiterhin konnte gezeigt werden, dass die Ausbildung von U snRNPs strukturell ähnlich zu der Reaktion verläuft, die Polymerasen mit geringer Prozessivität an der DNA verankert und die als „clamp-loading“ bezeichnet wird. 5) Der menschliche SMN-Komplex setzt sich aus mehreren Untereinheiten zusammen. Es ist jedoch unbekannt, ob alle Teile des Komplexes für die Zusammenlagerung von U snRNPs notwendig sind. Diese Frage wurde durch eine Kombination aus Bioinformatik und Biochemie adressiert. Durch Datenbanksuchen in komplett sequenzierten Genomen wurde festgestellt, dass die evolutionär ursprüngliche Form des SMN-Komplexes aus den zwei Proteinen SMN und Gemin2 besteht. Die biochemische Reinigung des Komplexes der Taufliege Drosophila melanogaster offenbarte, dass er auch in diesem Organismus aus denselben zwei Untereinheiten zusammengebaut ist. Außerdem wurde der Beweis erbracht, dass das SMN-Gemin2 heterodimer notwendig und hinreichend ist, um U snRNPs akkurat zusammenzulagern. Zukünftige Studien werden weitere detaillierte Ansichten des Reaktionsmechanismus in der zellulären Zusammenlagerung von U snRNPs liefern. Die Ergebnisse, die in der vorliegenden Arbeit erhalten wurden, deuten darauf hin, dass die Untereinheiten SMN und Gemin2 des SMN-Komplexes für den Zusammenbau von U snRNPs hinreichend sind. Was also ist die Funktion der weiteren Untereinheiten des SMN-Komplexes? Die Rekonstitutionsschemata, die in dieser Arbeit etabliert wurden, werden essentiell für die Beantwortung dieser Frage sein. Darüberhinaus werden weitere mechanistische Einsichten in die Zusammenlagerung von U snRNPs von der Ermittlung von Strukturen der Assembly-Maschinerie in verschiedenen Zuständen abhängen. Die Voraussetzung für diese strukturbiologische Untersuchungen, die Möglichkeit ausreichende Mengen homogener Komplexe herzustellen, ist ebenfalls in dieser Arbeit geschaffen worden. KW - Small nuclear RNP KW - Katalysator KW - Enzym KW - Maschine KW - Biopolymere KW - Makromolekül KW - Biogenese KW - Reaktionsmechanismus KW - Small nuclear RNP KW - Catalyst KW - Enzyme KW - Molecular Machine KW - Chaperone KW - Macromolecular Complex Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40804 ER -