TY - JOUR A1 - Beykan, Seval A1 - Fani, Melpomeni A1 - Jensen, Svend Borup A1 - Nicolas, Guillaume A1 - Wild, Damian A1 - Kaufmann, Jens A1 - Lassmann, Michael T1 - In vivo biokinetics of \(^{177}\)Lu-OPS201 in Mice and Pigs as a Model for Predicting Human Dosimetry JF - Contrast Media & Molecular Imaging N2 - Introduction. \(^{177}\)Lu-OPS201 is a high-affinity somatostatin receptor subtype 2 antagonist for PRRT in patients with neuroendocrine tumors. The aim is to find the optimal scaling for dosimetry and to compare the biokinetics of \(^{177}\)Lu-OPS201 in animals and humans. Methods. Data on biokinetics of \(^{177}\)Lu-OPS201 were analyzed in athymic nude Foxn1\(^{nu}\) mice (28 F, weight: 26 ± 1 g), Danish Landrace pigs (3 F-1 M, weight: 28 ± 2 kg), and patients (3 F-1 M, weight: 61 ± 17 kg) with administered activities of 0.19–0.27 MBq (mice), 97–113 MBq (pigs), and 850–1086 MBq (patients). After euthanizing mice (up to 168 h), the organ-specific activity contents (including blood) were measured. Multiple planar and SPECT/CT scans were performed until 250 h (pigs) and 72 h (patients) to quantify the uptake in the kidneys and liver. Blood samples were taken up to 23 h (patients) and 300 h (pigs). In pigs and patients, kidney protection was applied. Time-dependent uptake data sets were created for each species and organ/tissue. Biexponential fits were applied to compare the biokinetics in the kidneys, liver, and blood of each species. The time-integrated activity coefficients (TIACs) were calculated by using NUKFIT. To determine the optimal scaling, several methods (relative mass scaling, time scaling, combined mass and time scaling, and allometric scaling) were compared. Results. A fast blood clearance of the compound was observed in the first phase (<56 h) for all species. In comparison with patients, pigs showed higher liver retention. Based on the direct comparison of the TIACs, an underestimation in mice (liver and kidneys) and an overestimation in pigs’ kidneys compared to the patient data (kidney TIAC: mice = 1.4 h, pigs = 7.7 h, and patients = 5.8 h; liver TIAC: mice = 0.7 h, pigs = 4.1 h, and patients = 5.3 h) were observed. Most similar TIACs were obtained by applying time scaling (mice) and combined scaling (pigs) (kidney TIAC: mice = 3.9 h, pigs = 4.8 h, and patients = 5.8 h; liver TIAC: mice = 0.9 h, pigs = 4.7 h, and patients = 5.3 h). Conclusion. If the organ mass ratios between the species are high, the combined mass and time scaling method is optimal to minimize the interspecies differences. The analysis of the fit functions and the TIACs shows that pigs are better mimicking human biokinetics. KW - medicine KW - neuroendocrine tumors KW - biokinetics KW - \(^{177}\)Lu-OPS201 KW - dosimetry Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177382 VL - 2019 ER - TY - JOUR A1 - Hänscheid, Heribert A1 - Hartrampf, Philipp E. A1 - Schirbel, Andreas A1 - Buck, Andreas K. A1 - Lapa, Constantin T1 - Intraindividual comparison of [\(^{177}\)Lu]Lu-DOTA-EB-TATE and [\(^{177}\)Lu]Lu-DOTA-TOC JF - European Journal of Nuclear Medicine and Molecular Imaging N2 - Purpose The radiolabelled somatostatin analogue [\(^{177}\)Lu]Lu-DOTA-EB-TATE binds to albumin via Evans blue, thereby increasing the residence time in the blood and potentially allowing more therapeutic agent to be absorbed into the target tissue during peptide receptor radionuclide therapy. It was tested in selected patients whether the substance is superior to [\(^{177}\)Lu]Lu-DOTA-TOC. Methods Activity kinetics in organs and tumours after [\(^{177}\)Lu]Lu-DOTA-EB-TATE and [\(^{177}\)Lu]Lu-DOTA-TOC were compared intraindividually in five patients with progressive somatostatin receptor-positive disease scheduled for radionuclide therapy. Resuluts In comparison to [\(^{177}\)Lu]Lu-DOTA-TOC, tumour doses per administered activity were higher for [\(^{177}\)Lu]Lu-DOTA-EB-TATE in 4 of 5 patients (median ratio: 1.7; range: 0.9 to 3.9), kidney doses (median ratio: 3.2; range: 1.6 to 9.8) as well as spleen doses (median ratio: 4.7; range 1.2 to 6.2) in all patients, and liver doses in 3 of 4 evaluable patients (median ratio: 4.0; range: 0.7 to 4.9). The tumour to critical organs absorbed dose ratios were higher after [\(^{177}\)Lu]Lu-DOTA-TOC in 4 of 5 patients. Conclusions Prior to a treatment with [\(^{177}\)Lu]Lu-DOTA-EB-TATE, it should be assessed individually whether the compound is superior to established substances. KW - intraindividual comparison KW - DOTA-EB-TATE KW - somatostatin receptor KW - evans blue KW - biokinetics Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265470 SN - 1619-7089 VL - 48 IS - 8 ER - TY - JOUR A1 - Schumann, S. A1 - Eberlein, U. A1 - Lapa, C. A1 - Müller, J. A1 - Serfling, S. A1 - Lassmann, M. A1 - Scherthan, H. T1 - α-Particle-induced DNA damage tracks in peripheral blood mononuclear cells of [\(^{223}\)Ra]RaCl\(_{2}\)-treated prostate cancer patients JF - European Journal of Nuclear Medicine and Molecular Imaging N2 - Purpose One therapy option for prostate cancer patients with bone metastases is the use of [\(^{223}\)Ra]RaCl\(_{2}\). The α-emitter \(^{223}\)Ra creates DNA damage tracks along α-particle trajectories (α-tracks) in exposed cells that can be revealed by immunofluorescent staining of γ-H2AX+53BP1 DNA double-strand break markers. We investigated the time- and absorbed dose-dependency of the number of α-tracks in peripheral blood mononuclear cells (PBMCs) of patients undergoing their first therapy with [\(^{223}\)Ra]RaCl\(_{2}\). Methods Multiple blood samples from nine prostate cancer patients were collected before and after administration of [\(^{223}\)Ra]RaCl\(_{2}\), up to 4 weeks after treatment. γ-H2AX- and 53BP1-positive α-tracks were microscopically quantified in isolated and immuno-stained PBMCs. Results The absorbed doses to the blood were less than 6 mGy up to 4 h after administration and maximally 16 mGy in total. Up to 4 h after administration, the α-track frequency was significantly increased relative to baseline and correlated with the absorbed dose to the blood in the dose range < 3 mGy. In most of the late samples (24 h - 4 weeks after administration), the α-track frequency remained elevated. Conclusion The γ-H2AX+53BP1 assay is a potent method for detection of α-particle-induced DNA damages during treatment with or after accidental incorporation of radionuclides even at low absorbed doses. It may serve as a biomarker discriminating α- from β-emitters based on damage geometry. KW - γ-H2AX KW - DNA damage KW - nuclear medicine KW - dosimetry KW - α-Emitter KW - biokinetics KW - prostate cancer KW - [\(^{223}\)Ra]RaCl\(_{2}\) KW - 53BP1 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265462 SN - 1619-7089 VL - 48 IS - 9 ER - TY - JOUR A1 - Soares Machado, J. A1 - Tran-Gia, J. A1 - Schlögl, S. A1 - Buck, A. K. A1 - Lassmann, M. T1 - Biokinetics, dosimetry, and radiation risk in infants after \(^{99m}\)Tc-MAG3 scans JF - EJNMMI Research N2 - Background: Renal scans are among the most frequent exams performed on infants and toddlers. Due to the young age, this patient group can be classified as a high-risk group with a higher probability for developing stochastic radiation effects compared to adults. As there are only limited data on biokinetics and dosimetry in this patient group, the aim of this study was to reassess the dosimetry and the associated radiation risk for infants undergoing \(^{99m}\)Tc-MAG3 renal scans based on a retrospective analysis of existing patient data. Consecutive data were collected from 20 patients younger than 20 months (14 males; 6 females) with normal renal function undergoing \(^{99m}\)Tc-MAG3 scans. To estimate the patient-specific organ activity, a retrospective calibration was performed based on a set of two 3D-printed infant kidneys filled with known activities. Both phantoms were scanned at different positions along the anteroposterior axis inside a water phantom, providing depth- and size-dependent attenuation correction factors for planar imaging. Time-activity curves were determined by drawing kidney, bladder, and whole-body regions-of-interest for each patient, and subsequently applying the calibration factor for conversion of counts to activity. Patient-specific time-integrated activity coefficients were obtained by integrating the organ-specific time-activity curves. Absorbed and effective dose coefficients for each patient were assessed with OLINDA/EXM for the provided newborn and 1-year-old model. The risk estimation was performed individually for each of the 20 patients with the NCI Radiation Risk Assessment Tool. Results: The mean age of the patients was 7.0 ± 4.5 months, with a weight between 5 and 12 kg and a body size between 60 and 89 cm. The injected activities ranged from 12 to 24 MBq of \(^{99m}\)Tc-MAG3. The patients' organ-specific mean absorbed dose coefficients were 0.04 ± 0.03 mGy/MBq for the kidneys and 0.27 ± 0.24 mGy/MBq for the bladder. The mean effective dose coefficient was 0.02 ± 0.02 mSv/MBq. Based on the dosimetry results, an evaluation of the excess lifetime risk for the development of radiation-induced cancer showed that the group of newborns has a risk of 16.8 per 100,000 persons, which is about 12% higher in comparison with the 1-year-old group with 14.7 per 100,000 persons (all values are given as mean plus/minus one standard deviation except otherwise specified). Conclusion: In this study, we retrospectively derived new data on biokinetics and dosimetry for infants with normal kidney function after undergoing renal scans with \(^{99m}\)Tc-MAG3. In addition, we analyzed the associated age- and gender-specific excess lifetime risk due to ionizing radiation. The radiation-associated stochastic risk increases with the organ doses, taking age- and gender-specific influences into account. Overall, the lifetime radiation risk associated with the \(^{99m}\)Tc-MAG3 scans is very low in comparison to the general population risk for developing cancer. KW - \(^{99m}\)Tc-MAG3 KW - absorbed dose KW - biokinetics KW - dosimetry KW - pediatric patients KW - risk assessment Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175582 VL - 8 IS - 10 ER -