TY - JOUR A1 - Kiryluk, Krzysztof A1 - Yifu, Li A1 - Sanna-Cherchi, Simone A1 - Rohanizadegan, Mersedeh A1 - Suzuki, Hitoshi A1 - Eitner, Frank A1 - Snyder, Holly J. A1 - Choi, Murim A1 - Hou, Ping A1 - Scolari, Francesco A1 - Izzi, Claudia A1 - Gigante, Maddalena A1 - Gesualdo, Loreto A1 - Savoldi, Silvana A1 - Amoroso, Antonio A1 - Cusi, Daniele A1 - Zamboli, Pasquale A1 - Julian, Bruce A. A1 - Novak, Jan A1 - Wyatt, Robert J. A1 - Mucha, Krzysztof A1 - Perola, Markus A1 - Kristiansson, Kati A1 - Viktorin, Alexander A1 - Magnusson, Patrik K. A1 - Thorleifsson, Gudmar A1 - Thorsteinsdottir, Unnur A1 - Stefansson, Kari A1 - Boland, Anne A1 - Metzger, Marie A1 - Thibaudin, Lise A1 - Wanner, Christoph A1 - Jager, Kitty J. A1 - Goto, Shin A1 - Maixnerova, Dita A1 - Karnib, Hussein H. A1 - Nagy, Judit A1 - Panzer, Ulf A1 - Xie, Jingyuan A1 - Chen, Nan A1 - Tesar, Vladimir A1 - Narita, Ichiei A1 - Berthoux, Francois A1 - Floege, Jürgen A1 - Stengel, Benedicte A1 - Zhang, Hong A1 - Lifton, Richard P. A1 - Gharavi, Ali G. T1 - Geographic Differences in Genetic Susceptibility to IgA Nephropathy: GWAS Replication Study and Geospatial Risk Analysis JF - PLoS Genetics N2 - IgA nephropathy (IgAN), major cause of kidney failure worldwide, is common in Asians, moderately prevalent in Europeans, and rare in Africans. It is not known if these differences represent variation in genes, environment, or ascertainment. In a recent GWAS, we localized five IgAN susceptibility loci on Chr.6p21 (HLA-DQB1/DRB1, PSMB9/TAP1, and DPA1/DPB2 loci), Chr.1q32 (CFHR3/R1 locus), and Chr.22q12 (HORMAD2 locus). These IgAN loci are associated with risk of other immune-mediated disorders such as type I diabetes, multiple sclerosis, or inflammatory bowel disease. We tested association of these loci in eight new independent cohorts of Asian, European, and African-American ancestry (N = 4,789), followed by meta-analysis with risk-score modeling in 12 cohorts (N = 10,755) and geospatial analysis in 85 world populations. Four susceptibility loci robustly replicated and all five loci were genome-wide significant in the combined cohort (P = 5x10\(^{-32}\) 3x10\(^{-10}\), with heterogeneity detected only at the PSMB9/TAP1 locus (I\(^{-2}\) = 0.60). Conditional analyses identified two new independent risk alleles within the HLA-DQB1/DRB1 locus, defining multiple risk and protective haplotypes within this interval. We also detected a significant genetic interaction, whereby the odds ratio for the HORMAD2 protective allele was reversed in homozygotes for a CFHR3/R1 deletion (P = 2.5x10\(^{-4}\)). A seven-SNP genetic risk score, which explained 4.7% of overall IgAN risk, increased sharply with Eastward and Northward distance from Africa (r = 0.30, P = 3x10\(^{-128}\)). This model paralleled the known East-West gradient in disease risk. Moreover, the prediction of a South-North axis was confirmed by registry data showing that the prevalence of IgAN-attributable kidney failure is increased in Northern Europe, similar to multiple sclerosis and type I diabetes. Variation at IgAN susceptibility loci correlates with differences in disease prevalence among world populations. These findings inform genetic, biological, and epidemiological investigations of IgAN and permit cross-comparison with other complex traits that share genetic risk loci and geographic patterns with IgAN. KW - linkage KW - genome-wide association KW - multiple sclerosis KW - renal disease KW - New mexico KW - recombination hotspot KW - italian population KW - natural history KW - HLA KW - glomerulonephritis Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130195 VL - 8 IS - 6 ER - TY - JOUR A1 - Ocak, Gurbey A1 - Drechsler, Christiane A1 - Vossen, Carla Y. A1 - Vos, Hans L. A1 - Rosendaal, Frits R. A1 - Reitsma, Pieter H. A1 - Hoffmann, Michael M. A1 - März, Winfried A1 - Ouwehand, Willem H. A1 - Krediet, Raymond T. A1 - Boeschoten, Elisabeth W. A1 - Dekker, Frido W. A1 - Wanner, Christoph A1 - Verduijn, Marion T1 - Single Nucleotide Variants in the Protein C Pathway and Mortality in Dialysis Patients JF - PLOS ONE N2 - Background: The protein C pathway plays an important role in the maintenance of endothelial barrier function and in the inflammatory and coagulant processes that are characteristic of patients on dialysis. We investigated whether common single nucleotide variants (SNV) in genes encoding protein C pathway components were associated with all-cause 5 years mortality risk in dialysis patients. Methods: Single nucleotides variants in the factor V gene (F5 rs6025; factor V Leiden), the thrombomodulin gene (THBD rs1042580), the protein C gene (PROC rs1799808 and 1799809) and the endothelial protein C receptor gene (PROCR rs867186, rs2069951, and rs2069952) were genotyped in 1070 dialysis patients from the NEtherlands COoperative Study on the Adequacy of Dialysis (NECOSAD) cohort) and in 1243 dialysis patients from the German 4D cohort. Results: Factor V Leiden was associated with a 1.5-fold (95% CI 1.1-1.9) increased 5-year all-cause mortality risk and carriers of the AG/GG genotypes of the PROC rs1799809 had a 1.2-fold (95% CI 1.0-1.4) increased 5-year all-cause mortality risk. The other SNVs in THBD, PROC, and PROCR were not associated with 5-years mortality. Conclusion: Our study suggests that factor V Leiden and PROC rs1799809 contributes to an increased mortality risk in dialysis patients. KW - human brian endothelium KW - factor-V-Leiden KW - venous thrombosis KW - activated receptor-1 KW - vascular access KW - severe sepsis KW - gene polymorphism KW - organ dysfunktion KW - ischemic stroke KW - renal disease Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116265 SN - 1932-6203 VL - 9 IS - 5 ER -