TY - JOUR A1 - Bischoff, Joakim M. A1 - Ringsted, Thomas K. A1 - Petersen, Marian A1 - Sommer, Claudia A1 - Üçeyler, Nurcan A1 - Werner, Mads U. T1 - A Capsaicin (8%) Patch in the Treatment of Severe Persistent Inguinal Postherniorrhaphy Pain: A Randomized, Double-Blind, Placebo-Controlled Trial JF - PLOS ONE N2 - Background: Persistent pain after inguinal herniorrhaphy is a disabling condition with a lack of evidence-based pharmacological treatment options. This randomized placebo-controlled trial investigated the efficacy of a capsaicin 8% cutaneous patch in the treatment of severe persistent inguinal postherniorrhaphy pain. Methods: Forty-six patients with persistent inguinal postherniorrhaphy pain were randomized to receive either a capsaicin 8% patch or a placebo patch. Pain intensity (Numerical Rating Scale [NRS 0-10]) was evaluated under standardized conditions (at rest, during movement, and during pressure) at baseline and at 1, 2 and 3 months after patch application. Skin punch biopsies for intraepidermal nerve fiber density (IENFD) measurements were taken at baseline and 1 month after patch application. Quantitative sensory testing was performed at baseline and at 1, 2, and 3 months after patch application. The primary outcome was comparisons of summed pain intensity differences (SPIDs) between capsaicin and placebo treatments at 1, 2 and 3 months after patch application (significance level P<0.01). Results: The maximum difference in SPID, between capsaicin and placebo treatments, was observed at 1 month after patch application, but the pain reduction was not significant (NRS, mean difference [95% CI]: 5.0 [0.09 to 9.9]; P=0.046). No differences in SPID between treatments were observed at 2 and 3 months after patch application. Changes in IENFD on the pain side, from baseline to 1 month after patch application, did not differ between capsaicin and placebo treatment: 1.9 [-0.1 to 3.9] and 0.6 [-1.2 to 2.5] fibers/mm, respectively (P=0.32). No significant changes in sensory function, sleep quality or psychological factors were associated with capsaicin patch treatment. Conclusions: The study did not demonstrate significant differences in pain relief between capsaicin and placebo treatment, although a trend toward pain improvement in capsaicin treated patients was observed 1 month after patch application. KW - postherpetic neuralgia KW - long-term pain KW - crossover trial KW - neuropathic pain KW - risk factors KW - cutaneous patch KW - scale KW - hernia repair KW - interference KW - validation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115198 SN - 1932-6203 VL - 9 IS - 10 ER - TY - JOUR A1 - Chen, Jeremy Tsung-Chieh A1 - Schmidt, Lea A1 - Schürger, Christina A1 - Hankir, Mohammed K. A1 - Krug, Susanne M. A1 - Rittner, Heike L. T1 - Netrin-1 as a multitarget barrier stabilizer in the peripheral nerve after injury JF - International Journal of Molecular Sciences N2 - The blood–nerve barrier and myelin barrier normally shield peripheral nerves from potentially harmful insults. They are broken down during nerve injury, which contributes to neuronal damage. Netrin-1 is a neuronal guidance protein with various established functions in the peripheral and central nervous systems; however, its role in regulating barrier integrity and pain processing after nerve injury is poorly understood. Here, we show that chronic constriction injury (CCI) in Wistar rats reduced netrin-1 protein and the netrin-1 receptor neogenin-1 (Neo1) in the sciatic nerve. Replacement of netrin-1 via systemic or local administration of the recombinant protein rescued injury-induced nociceptive hypersensitivity. This was prevented by siRNA-mediated knockdown of Neo1 in the sciatic nerve. Mechanistically, netrin-1 restored endothelial and myelin, but not perineural, barrier function as measured by fluorescent dye or fibrinogen penetration. Netrin-1 also reversed the decline in the tight junction proteins claudin-5 and claudin-19 in the sciatic nerve caused by CCI. Our findings emphasize the role of the endothelial and myelin barriers in pain processing after nerve damage and reveal that exogenous netrin-1 restores their function to mitigate CCI-induced hypersensitivity via Neo1. The netrin-1-neogenin-1 signaling pathway may thus represent a multi-target barrier protector for the treatment of neuropathic pain. KW - neuropathic pain KW - netrin-1 KW - blood-nerve barrier KW - tight junction proteins Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261695 SN - 1422-0067 VL - 22 IS - 18 ER - TY - JOUR A1 - Hansen, Niels A1 - Kahn, Ann-Kathrin A1 - Zeller, Daniel A1 - Katsarava, Zaza A1 - Sommer, Claudia A1 - Üçeyler, Nurcan T1 - Amplitudes of pain-related evoked potentials are useful to detect small fiber involvement in painful mixed fiber neuropathies in addition to quantitative sensory testing – an electrophysiological study JF - Frontiers in Neurology N2 - To investigate the usefulness of pain-related evoked potentials (PREP) elicited by electrical stimulation for the identification of small fiber involvement in patients with mixed fiber neuropathy (MFN). Eleven MFN patients with clinical signs of large fiber impairment and neuropathic pain and ten healthy controls underwent clinical and electrophysiological evaluation. Small fiber function, electrical conductivity and morphology were examined by quantitative sensory testing (QST), PREP, and skin punch biopsy. MFN was diagnosed following clinical and electrophysiological examination (chronic inflammatory demyelinating neuropathy: n = 6; vasculitic neuropathy: n = 3; chronic axonal ­neuropathy: n = 2). The majority of patients with MFN characterized their pain by descriptors that mainly represent C-fiber-mediated pain. In QST, patients displayed elevated cold, warm, mechanical, and vibration detection thresholds and cold pain thresholds indicative of MFN. PREP amplitudes in patients correlated with cold (p < 0.05) and warm detection thresholds (p < 0.05). Burning pain and the presence of par-/dysesthesias correlated negatively with PREP amplitudes (p < 0.05). PREP amplitudes correlating with cold and warm detection thresholds, burning pain, and par-/dysesthesias support employing PREP amplitudes as an additional tool in conjunction with QST for detecting small fiber impairment in patients with MFN. KW - burning pain KW - quantitative sensory testing KW - mixed fiber neuropathy KW - pain-related evoked potentials KW - Aδ- and C-fibers KW - neuropathic pain Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124824 VL - 6 ER - TY - THES A1 - He, Lan T1 - Small fiber involvement in Fabry's disease N2 - Aim of Investigation: The neurological manifestations of Fabry’s disease, a rare, X-linked, multisystem disorder caused by alpha-galactosidase A deficiency and globotriosylceramide (Gb3) accumulation, include both peripheral and central nervous system symptoms. Here we evaluated a prospectively recruited cohort of patients with Fabry’s disease for pain, small nerve fiber function, and skin innervation. Methods: 66 patients (31 male and 35 female) were enrolled,31 patients were on ERT. All patients underwent quantitative sensory testing (QST), electrophysiological examination, and extra- and transcranial Doppler sonography. For pain and mood assessment standardized questionnaires were used. Skin biopsies were performed at the left distal leg in 38 patients for intraepidermal nerve fiber density (IENFD) assessment. Results: Age at examination did not differ significantly between women (40.2+/-16.2 years) and men (38.9+/-13.8; n.s.). 29/31 male and 19/35 female patients complained of acroparesthesias or neuropathic pain. QST abnormalities indicative of small fiber impairment were found in 26/31 male and 28/35 female patients. Electrophysiological examination of large fibers and autonomic fibers revealed pathological findings in 11/31 male and 3/35 female patients. All patients had normal Doppler sonography results. Indicators for depression were present in 14/31 male and 10/35 female patients. 20/31 male and 18/35 female patients had a skin biopsy, the IENFD was significantly reduced in male (2.0+/-2.8 fibers/mm) compared with female patients (6.7 +/- 4.4 fibers/mm). In 10 patients free from neurological symptoms, QST and IENFD abnormalities were still detected. Follow up examination after one year in 12 patients under ERT (2.1+/-1.7 years) showed improvement in some symptoms and in QST and neurophysiology in six patients with normal renal function. 20/35 female patients older than 40 y had concomitant diseases, while none of the 18 younger female patients did. The corresponding radio in male patients was 5/19 (>=40y) and 2/13 (<40y) respectively. Conclusions: Neuropathic pain and sensory deficits of the distal extremities are common in patients with Fabry’s disease. QST and IENFD analysis are important for early diagnosis of nerve involvement in Fabry’s disease. Small fiber function may improve under ERT in patients without severe renal impairment. KW - Fabry’s disease KW - neuropathic pain KW - QST KW - IENFD KW - ERT KW - Fabry’s disease KW - neuropathic pain KW - QST KW - IENFD KW - ERT Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-32844 ER - TY - JOUR A1 - Jende, Johann M. E. A1 - Kender, Zoltan A1 - Rother, Christian A1 - Alvarez-Ramos, Lucia A1 - Groener, Jan B. A1 - Pham, Mirko A1 - Morgenstern, Jakob A1 - Oikonomou, Dimitrios A1 - Hahn, Artur A1 - Juerchott, Alexander A1 - Kollmer, Jennifer A1 - Heiland, Sabine A1 - Kopf, Stefan A1 - Nawroth, Peter P. A1 - Bendszus, Martin A1 - Kurz, Felix T. T1 - Diabetic Polyneuropathy Is Associated With Pathomorphological Changes in Human Dorsal Root Ganglia: A Study Using 3T MR Neurography JF - Frontiers in Neuroscience N2 - Diabetic neuropathy (DPN) is one of the most severe and yet most poorly understood complications of diabetes mellitus. In vivo imaging of dorsal root ganglia (DRG), a key structure for the understanding of DPN, has been restricted to animal studies. These have shown a correlation of decreased DRG volume with neuropathic symptom severity. Our objective was to investigate correlations of DRG morphology and signal characteristics at 3 Tesla (3T) magnetic resonance neurography (MRN) with clinical and serological data in diabetic patients with and without DPN. In this cross-sectional study, participants underwent 3T MRN of both L5 DRG using an isotropic 3D T2-weighted, fat-suppressed sequence with subsequent segmentation of DRG volume and analysis of normalized signal properties. Overall, 55 diabetes patients (66 ± 9 years; 32 men; 30 with DPN) took part in this study. DRG volume was smaller in patients with severe DPN when compared to patients with mild or moderate DPN (134.7 ± 21.86 vs 170.1 ± 49.22; p = 0.040). In DPN patients, DRG volume was negatively correlated with the neuropathy disability score (r = −0.43; 95%CI = −0.66 to −0.14; p = 0.02), a measure of neuropathy severity. DRG volume showed negative correlations with triglycerides (r = −0.40; 95%CI = −0.57 to −0.19; p = 0.006), and LDL cholesterol (r = −0.33; 95%CI = −0.51 to −0.11; p = 0.04). There was a strong positive correlation of normalized MR signal intensity (SI) with the neuropathy symptom score in the subgroup of patients with painful DPN (r = 0.80; 95%CI = 0.46 to 0.93; p = 0.005). DRG SI was positively correlated with HbA1c levels (r = 0.30; 95%CI = 0.09 to 0.50; p = 0.03) and the triglyceride/HDL ratio (r = 0.40; 95%CI = 0.19 to 0.57; p = 0.007). In this first in vivo study, we found DRG morphological degeneration and signal increase in correlation with neuropathy severity. This elucidates the potential importance of MR-based DRG assessments in studying structural and functional changes in DPN. KW - diabetic polyneuropathy KW - dorsal root ganglion KW - magnetic resonance neurography KW - neuropathic pain KW - peripheral nervous system Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212459 VL - 14 ER - TY - THES A1 - Karl, Franziska T1 - The role of miR-21 in the pathophysiology of neuropathic pain using the model of B7-H1 knockout mice T1 - Die Rolle von miR-21 in der Pathophysiologie von neuropathischem Schmerz am Model der B7-H1 defizienten Maus N2 - The impact of microRNA (miRNA) as key players in the regulation of immune and neuronal gene expression and their role as master switches in the pathophysiology of neuropathic pain is increasingly recognized. miR-21 is a promising candidate that could be linked to the immune and the nociceptive system. To further investigate the pathophysiological role of miR-21 in neuropathic pain, we assesed mice deficient of B7 homolog 1 (B7-H1 ko), a protein with suppressive effect on inflammatory responses. B7-H1 ko mice and wildtype littermates (WT) of three different age-groups, young (8 weeks), middle-aged (6 months), and old (12 months) received a spared nerve injury (SNI). Thermal withdrawal latencies and mechanical withdrawal thresholds were determined. Further, we investigated anxiety-, depression-like and cognitive behavior. Quantitative real time PCR was used to determine miR-21 relative expression in peripheral nerves, dorsal root ganglia and white blood cells (WBC) at distinct time points after SNI. Naïve B7-H1 ko mice showed mechanical hyposensitivity with increasing age. Young and middle-aged B7-H1 ko mice displayed lower mechanical withdrawal thresholds compared to WT mice. From day three after SNI both genotypes developed mechanical and heat hypersensitivity, without intergroup differences. As supported by the results of three behavioral tests, no relevant differences were found for anxiety-like behavior after SNI in B7-H1 ko and WT mice. Also, there was no indication of depression-like behavior after SNI or any effect of SNI on cognition in both genotypes. The injured nerves of B7-H1 ko and WT mice showed higher miR-21 expression and invasion of macrophages and T cells 7 days after SNI without intergroup differences. Perineurial miR-21 inhibitor injection reversed SNI-induced mechanical and heat hypersensitivity in old B7-H1 ko and WT mice. This study reveals that reduced mechanical thresholds and heat withdrawal latencies are associated with miR-21 induction in the tibial and common peroneal nerve after SNI, which can be reversed by perineurial injection of a miR-21 inhibitor. Contrary to expectations, miR-21 expression levels were not higher in B7-H1 ko compared to WT mice. Thus, the B7-H1 ko mouse may be of minor importance for the study of miR-21 related pain. However, these results spot the contribution of miR-21 in the pathophysiology of neuropathic pain and emphasize the crucial role of miRNA in the regulation of neuronal and immune circuits that contribute to neuropathic pain. N2 - Die Beteiligung von microRNA (miRNA) an der Genregulation immunologischer und neuronaler Prozesse und deren Rolle als Schlüsselelement in der Pathophysiologie von neuropathischem Schmerz gewinnt zunehmend an Bedeutung. miR-21 ist ein vielversprechender Kandidat, der sowohl das Immunsystem, als auch das nozizeptive System beeinflusst. Um die pathophysiologische Rolle von miR-21 bei neuropathischem Schmerz besser zu verstehen wurden Mäuse mit B7 homolog 1 Defizienz (B7-H1 ko), einem immunsupprimierendem Protein, untersucht. Eine frühere Studie zeigte eine Hochregulierung von miR-21 in murinen Lymphozyten. Junge (8 Wochen), mittelalte (6 Monate) und alte (12 Monate) B7-H1 ko Mäuse und Wildtypwurfgeschwister (WT) erhielten eine spared nerve injury (SNI) als neuropathischem Schmerzmodell. Es wurden thermische Rückzugslatenzen und mechanische Rückzugsschwellen bestimmt. Des weiteren wurde sowohl das Angstverhalten, das depressive Verhalten, als auch das kognitive Verhalten untersucht. Um die relative Expression von miR-21 in den peripheren Nerven, den Spinalganglien und in den weißen Blutzellen zu verschiedenen Zeitpunkten zu bestimmen, wurde die quantitative real time PCR angewandt. Naive B7-H1 ko Mäuse zeigten mit zunehmendem Alter eine mechanische Hyposensitivität. Bereits 3 Tage nach SNI entwickelten beide Genotypen eine Überempfindlichkeit gegenüber Hitze und mechanischer Stimulation. In drei durchgeführten Verhaltenstests konnten keine relevanten Unterschiede im Angstverhalten nach SNI von B7-H1 ko und WT Mäusen festgestellt werden. Bei beiden Genotypen gab es weder Hinweise auf depressives Verhalten nach SNI, noch wurde das kognitive Verhalten durch SNI beeinträchtigt. Die verletzen Nerven der B7-H1 ko und WT Mäuse zeigten 7 Tage nach SNI eine höhere miR-21 Expression und eine Invasion durch Makrophagen und T-Zellen ohne Gruppenunterschiede. Die perineurale Injektion eines miR-21 Inhibitors konnte die durch SNI induzierte mechanische und thermische Hypersensitivität lindern. Diese Studie zeigt, dass der Anstieg von miR-21 im N. tibialis und N. peroneus communis mit reduzierten Rückzugsschwellen gegen mechanische Reize und verkürzten Wegzugslatenzen bei Hitzestimulation einhergeht, welche durch perineurale Injektion eines miR-21 Inhibitors verringert werden können. Entgegen der Erwartungen zeigten B7-H1 ko Mäuse im Vergleich zu WT Mäusen keine erhöhte miR-21 Expression und sind daher möglicherweise von geringer Bedeutung für die Untersuchung von miR-21 assoziiertem Schmerz. Jedoch bekräftigen diese Ergebnisse eine Beteiligung von miR-21 an der Pathophysiologie von neuropathischem Schmerz und bestätigen die wichtige Rolle von miRNA bei der Regulation von neuronalen und immunologischen Prozessen, die zu neuropathischem Schmerz beitragen. KW - neuropathic pain KW - inflammation KW - B7-H1 KW - immune system KW - neuropathic pain KW - miRNA KW - miR-21 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-156004 ER - TY - JOUR A1 - Karl, Franziska A1 - Grießhammer, Anne A1 - Üçeyler, Nurcan A1 - Sommer, Claudia T1 - Differential Impact of miR-21 on Pain and Associated Affective and Cognitive Behavior after Spared Nerve Injury in B7-H1 ko Mouse JF - Frontiers in Molecular Neuroscience N2 - MicroRNAs (miRNAs) are increasingly recognized as regulators of immune and neuronal gene expression and are potential master switches in neuropathic pain pathophysiology. miR-21 is a promising candidate that may link the immune and the pain system. To investigate the pathophysiological role of miR-21 in neuropathic pain, we assessed mice deficient of B7 homolog 1 (B7-H1), a major inhibitor of inflammatory responses. In previous studies, an upregulation of miR-21 had been shown in mouse lymphocytes. Young (8 weeks), middle-aged (6 months), and old (12 months) B7-H1 ko mice and wildtype littermates (WT) received a spared nerve injury (SNI). We assessed thermal withdrawal latencies and mechanical withdrawal thresholds. Further, we performed tests for anxiety-like and cognitive behavior. Quantitative real time PCR was used to determine miR-21 relative expression in peripheral nerves, and dorsal root ganglia (DRG) at distinct time points after SNI. We found mechanical hyposensitivity with increasing age of naïve B7-H1 ko mice. Young and middle-aged B7-H1 ko mice were more sensitive to mechanical stimuli compared to WT mice (young: p < 0.01, middle-aged: p < 0.05). Both genotypes developed mechanical and heat hypersensitivity (p < 0.05) after SNI, without intergroup differences. No relevant differences were found after SNI in three tests for anxiety like behavior in B7-H1 ko and WT mice. Also, SNI had no effect on cognition. B7-H1 ko and WT mice showed a higher miR-21 expression (p < 0.05) and invasion of macrophages and T cells in the injured nerve 7 days after SNI without intergroup differences. Our study reveals that increased miR-21 expression in peripheral nerves after SNI is associated with reduced mechanical and heat withdrawal thresholds. These results point to a role of miR-21 in the pathophysiology of neuropathic pain, while affective behavior and cognition seem to be spared. Contrary to expectations, B7-H1 ko mice did not show higher miR-21 expression than WT mice, thus, a B7-H1 knockout may be of limited relevance for the study of miR-21 related pain. KW - B7-H1 KW - PD-L1 KW - immune system KW - neuropathic pain KW - SNI KW - miRNA KW - miR-21 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170722 VL - 10 IS - 219 ER - TY - JOUR A1 - Kollert, Sina A1 - Dombert, Benjamin A1 - Döring, Frank A1 - Wischmeyer, Erhard T1 - Activation of TRESK channels by the inflammatory mediator lysophosphatidic acid balances nociceptive signalling JF - Scientific Reports N2 - In dorsal root ganglia (DRG) neurons TRESK channels constitute a major current component of the standing outward current IK\(_{SO}\). A prominent physiological role of TRESK has been attributed to pain sensation. During inflammation mediators of pain e.g. lysophosphatidic acid (LPA) are released and modulate nociception. We demonstrate co-expression of TRESK and LPA receptors in DRG neurons. Heterologous expression of TRESK and LPA receptors in Xenopus oocytes revealed augmentation of basal K\(^{+}\) currents upon LPA application. In DRG neurons nociception can result from TRPV\(_{1}\) activation by capsaicin or LPA. Upon co-expression in Xenopus oocytes LPA simultaneously increased both depolarising TRPV\(_{1}\) and hyperpolarising TRESK currents. Patch-clamp recordings in cultured DRG neurons from TRESK[wt] mice displayed increased IK\(_{SO}\) after application of LPA whereas under these conditions IK\(_{SO}\) in neurons from TRESK[ko] mice remained unaltered. Under current-clamp conditions LPA application differentially modulated excitability in these genotypes upon depolarising pulses. Spike frequency was attenuated in TRESK[wt] neurons and, in contrast, augmented in TRESK[ko] neurons. Accordingly, excitation of nociceptive neurons by LPA is balanced by co-activation of TRESK channels. Hence excitation of sensory neurons is strongly controlled by the activity of TRESK channels, which therefore are good candidates for the treatment of pain disorders. KW - protein coupled receptors KW - molecular mechanisms KW - neuropathic pain KW - migraine KW - initiation KW - modulation KW - cells KW - sensory neurons KW - domain K\(^{+}\) channels KW - 2-pore potassium channel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148312 VL - 5 IS - 12548 ER - TY - JOUR A1 - Lux, Thomas J. A1 - Hu, Xiawei A1 - Ben-Kraiem, Adel A1 - Blum, Robert A1 - Chen, Jeremy Tsung-Chieh A1 - Rittner, Heike L. T1 - Regional differences in tight junction protein expression in the blood−DRG barrier and their alterations after nerve traumatic injury in rats JF - International Journal of Molecular Sciences N2 - The nervous system is shielded by special barriers. Nerve injury results in blood–nerve barrier breakdown with downregulation of certain tight junction proteins accompanying the painful neuropathic phenotype. The dorsal root ganglion (DRG) consists of a neuron-rich region (NRR, somata of somatosensory and nociceptive neurons) and a fibre-rich region (FRR), and their putative epi-/perineurium (EPN). Here, we analysed blood–DRG barrier (BDB) properties in these physiologically distinct regions in Wistar rats after chronic constriction injury (CCI). Cldn5, Cldn12, and Tjp1 (rats) mRNA were downregulated 1 week after traumatic nerve injury. Claudin-1 immunoreactivity (IR) found in the EPN, claudin-19-IR in the FRR, and ZO-1-IR in FRR-EPN were unaltered after CCI. However, laser-assisted, vessel specific qPCR, and IR studies confirmed a significant loss of claudin-5 in the NRR. The NRR was three-times more permeable compared to the FRR for high and low molecular weight markers. NRR permeability was not further increased 1-week after CCI, but significantly more CD68\(^+\) macrophages had migrated into the NRR. In summary, NRR and FRR are different in naïve rats. Short-term traumatic nerve injury leaves the already highly permeable BDB in the NRR unaltered for small and large molecules. Claudin-5 is downregulated in the NRR. This could facilitate macrophage invasion, and thereby neuronal sensitisation and hyperalgesia. Targeting the stabilisation of claudin-5 in microvessels and the BDB barrier could be a future approach for neuropathic pain therapy. KW - tight junction KW - claudin-5 KW - neuropathic pain KW - nerve injury KW - dorsal root ganglion Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285029 SN - 1422-0067 VL - 21 IS - 1 ER - TY - JOUR A1 - Reinhold, Ann Kristin A1 - Krug, Susanne M. A1 - Salvador, Ellaine A1 - Sauer, Reine S. A1 - Karl-Schöller, Franziska A1 - Malcangio, Marzia A1 - Sommer, Claudia A1 - Rittner, Heike L. T1 - MicroRNA-21-5p functions via RECK/MMP9 as a proalgesic regulator of the blood nerve barrier in nerve injury JF - Annals of the New York Academy of Sciences N2 - Both nerve injury and complex regional pain syndrome (CRPS) can result in chronic pain. In traumatic neuropathy, the blood nerve barrier (BNB) shielding the nerve is impaired—partly due to dysregulated microRNAs (miRNAs). Upregulation of microRNA-21-5p (miR-21) has previously been documented in neuropathic pain, predominantly due to its proinflammatory features. However, little is known about other functions. Here, we characterized miR-21 in neuropathic pain and its impact on the BNB in a human-murine back translational approach. MiR-21 expression was elevated in plasma of patients with CRPS as well as in nerves of mice after transient and persistent nerve injury. Mice presented with BNB leakage, as well as loss of claudin-1 in both injured and spared nerves. Moreover, the putative miR-21 target RECK was decreased and downstream Mmp9 upregulated, as was Tgfb. In vitro experiments in human epithelial cells confirmed a downregulation of CLDN1 by miR-21 mimics via inhibition of the RECK/MMP9 pathway but not TGFB. Perineurial miR-21 mimic application in mice elicited mechanical hypersensitivity, while local inhibition of miR-21 after nerve injury reversed it. In summary, the data support a novel role for miR-21, independent of prior inflammation, in elicitation of pain and impairment of the BNB via RECK/MMP9. KW - claudin-1 KW - RECK KW - MMP9 KW - CRPS KW - microRNA KW - neuropathic pain KW - blood nerve barrier Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-318226 VL - 1515 IS - 1 SP - 184 EP - 195 ER -