TY - JOUR A1 - Meyer, Constantin A1 - Peters, Jan Christoph A1 - Thiel, Michael A1 - Rathmann, Joachim A1 - Job, Hubert T1 - Monitoring von Freiflächeninanspruchnahme und -versiegelung für eine nachhaltige Raumentwicklung in Bayern JF - Raumforschung und Raumordnung JF - Spatial Research and Planning N2 - Im Freistaat Bayern wird intensiv diskutiert, wie die nach wie vor hohe Freiflächeninanspruchnahme für Siedlungs- und Verkehrszwecke reduziert werden kann. Wissenschaftliche Grundlage für Steuerungsansätze in der Stadt- und Regionalentwicklung sollte ein verbessertes staatliches Flächenmonitoring sein, welches über die amtliche Statistik und deren Hauptindikator "Siedlungs- und Verkehrsfläche" hinaus auch die qualitative Dimension der Flächeninanspruchnahme einbezieht. Dafür stellt dieser Beitrag methodische Erweiterungsansätze für das Flächenmonitoring vor, welche kleinräumige Analysen der Zersiedelung, Freiraumstruktur, Flächenversiegelung und Ökosystemleistungen am Beispiel des Landkreises Rhön-Grabfeld aufzeigen. Diese werden im Kontext der Debatte zu Ursachen und Steuerung der Freiflächeninanspruchnahme sowie zu aktuellen Anforderungen an das Flächenmonitoring diskutiert. Betont wird deren Bedeutung für das Monitoring rechtlicher Vorgaben und politischer Ziele zur nachhaltigen Flächennutzung. N2 - In the federal state of Bavaria, there is currently intensive discussion on how land consumption for settlement and transport purposes can be reduced in the long term. In order to provide a solid scientific basis for steering instruments in urban and regional development, the official land use monitoring should be improved by including also the qualitative and structural dimension of land consumption in addition to existing official statistics and their main indicator ‘settlement and traffic area’. For this purpose, the paper presents methodological extensions, which show small-scale analyses of urban sprawl, open space structure, soil sealing and ecosystem services using the example of the district of Rhön-Grabfeld. These methodological extensions are discussed in the context of the relevant debates on the causes and steering of land consumption as well as on current requirements for land use monitoring, emphasising their importance for the monitoring of legal guidelines and political objectives on sustainable land use. T2 - Monitoring of land consumption and soil sealing as a contribution to sustainable spatial development in Bavaria KW - Bayern KW - Flächenmonitoring KW - Freiraumstruktur KW - Ökosystemleistungen KW - Siedlungs-und Verkehrsfläche KW - Zersiedelung KW - Bavaria KW - Ecosystem services KW - Land use monitoring KW - Open spaces KW - Settlement and traffic area KW - Urban sprawl Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261622 VL - 79 IS - 2 ER - TY - JOUR A1 - Vogel, Cassandra A1 - Chunga, Timothy L. A1 - Sun, Xiaoxuan A1 - Poveda, Katja A1 - Steffan-Dewenter, Ingolf T1 - Higher bee abundance, but not pest abundance, in landscapes with more agriculture on a late-flowering legume crop in tropical smallholder farms JF - PeerJ N2 - Background Landscape composition is known to affect both beneficial insect and pest communities on crop fields. Landscape composition therefore can impact ecosystem (dis)services provided by insects to crops. Though landscape effects on ecosystem service providers have been studied in large-scale agriculture in temperate regions, there is a lack of representation of tropical smallholder agriculture within this field of study, especially in sub-Sahara Africa. Legume crops can provide important food security and soil improvement benefits to vulnerable agriculturalists. However, legumes are dependent on pollinating insects, particularly bees (Hymenoptera: Apiformes) for production and are vulnerable to pests. We selected 10 pigeon pea (Fabaceae: Cajunus cajan (L.)) fields in Malawi with varying proportions of semi-natural habitat and agricultural area within a 1 km radius to study: (1) how the proportion of semi-natural habitat and agricultural area affects the abundance and richness of bees and abundance of florivorous blister beetles (Coleoptera: Melloidae), (2) if the proportion of flowers damaged and fruit set difference between open and bagged flowers are correlated with the proportion of semi-natural habitat or agricultural area and (3) if pigeon pea fruit set difference between open and bagged flowers in these landscapes was constrained by pest damage or improved by bee visitation. Methods We performed three, ten-minute, 15 m, transects per field to assess blister beetle abundance and bee abundance and richness. Bees were captured and identified to (morpho)species. We assessed the proportion of flowers damaged by beetles during the flowering period. We performed a pollinator and pest exclusion experiment on 15 plants per field to assess whether fruit set was pollinator limited or constrained by pests. Results In our study, bee abundance was higher in areas with proportionally more agricultural area surrounding the fields. This effect was mostly driven by an increase in honeybees. Bee richness and beetle abundances were not affected by landscape characteristics, nor was flower damage or fruit set difference between bagged and open flowers. We did not observe a positive effect of bee density or richness, nor a negative effect of florivory, on fruit set difference. Discussion In our study area, pigeon pea flowers relatively late—well into the dry season. This could explain why we observe higher densities of bees in areas dominated by agriculture rather than in areas with more semi-natural habitat where resources for bees during this time of the year are scarce. Therefore, late flowering legumes may be an important food resource for bees during a period of scarcity in the seasonal tropics. The differences in patterns between our study and those conducted in temperate regions highlight the need for landscape-scale studies in areas outside the temperate region. KW - Pollination KW - Small-holder agriculture KW - Legume crops KW - Insect pests KW - Tropical agriculture KW - Landscape ecology KW - Plant-insect interactions KW - African agriculture KW - Ecosystem services KW - Agro-ecology Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231491 VL - 9 ER -