TY - THES A1 - Arumugam, Manimozhiyan T1 - Comparative metagenomic analysis of the human intestinal microbiota T1 - Vergleichende metagenomische Analyse des menschlichen Darmflora N2 - The human gut is home for thousands of microbes that are important for human life. As most of these cannot be cultivated, metagenomics is an important means to understand this important community. To perform comparative metagenomic analysis of the human gut microbiome, I have developed SMASH (Simple metagenomic analysis shell), a computational pipeline. SMASH can also be used to assemble and analyze single genomes, and has been successfully applied to the bacterium Mycoplasma pneumoniae and the fungus Chaetomium thermophilum. In the context of the MetaHIT (Metagenomics of the human intestinal tract) consortium our group is participating in, I used SMASH to validate the assembly and to estimate the assembly error rate of 576.7 Gb metagenome sequence obtained using Illumina Solexa technology from fecal DNA of 124 European individuals. I also estimated the completeness of the gene catalogue containing 3.3 million open reading frames obtained from these metagenomes. Finally, I used SMASH to analyze human gut metagenomes of 39 individuals from 6 countries encompassing a wide range of host properties such as age, body mass index and disease states. We find that the variation in the gut microbiome is not continuous but stratified into enterotypes. Enterotypes are complex host-microbial symbiotic states that are not explained by host properties, nutritional habits or possible technical biases. The concept of enterotypes might have far reaching implications, for example, to explain different responses to diet or drug intake. We also find several functional markers in the human gut microbiome that correlate with a number of host properties such as body mass index, highlighting the need for functional analysis and raising hopes for the application of microbial markers as diagnostic or even prognostic tools for microbiota-associated human disorders. N2 - Der menschliche Darm beheimatet tausende Mikroben, die für das menschliche Leben wichtig sind. Da die meisten dieser Mikroben nicht kultivierbar sind, ist „Metagenomics“ ein wichtiges Werkzeug zum Verständnis dieser wichtigen mikrobiellen Gemeinschaft. Um vergleichende Metagenomanalysen durchführen zu können, habe ich das Computerprogramm SMASH (Simple metagenomic analysis shell) entwickelt. SMASH kann auch zur Assemblierung und Analyse von Einzelgenomen benutzt werden und wurde erfolgreich auch das Bakterium Mycoplasma pneumoniae und den Pilz Chaetomium thermophilum angewandt. Im Zusammenhang mit der Beteiligung unserer Arbeitsgruppe am MetaHIT (Metagenomics of the human intestinal tract) Konsortium, habe ich SMASH benutzt um die Assemblierung zu validieren und die Fehlerrate der Assemblierung von 576.7 Gb Metagenomsequenzen, die mit der Illumina Solexa Technologie aus der fäkalen DNS von 124 europäischen Personen gewonnen wurde, zu bestimmen. Des Weiteren habe ich die Vollständigkeit des Genkatalogs dieser Metagenome, der 3.3 Millionen offene Leserahmen enthält, geschätzt. Zuletzt habe ich SMASH benutzt um die Darmmetagenome von 39 Personen aus 6 Ländern zu analysieren. Hauptergebnis dieser Analyse war, dass die Variation der Darmmikrobiota nicht kontinuierlich ist. Anstatt dessen fanden wir so genannte Enterotypen. Enterotypen sind komplexe Zustände der Symbiose zwischen Wirt und Mikroben, die sich nicht durch Wirteigenschaften, wie Alter, Body-Mass-Index, Erkrankungen und Ernährungseigenschaften oder ein mögliches technisches Bias erklären lassen. Das Konzept der Enterotypen könnte weitgehende Folgen haben. Diese könnten zum Beispiel die unterschiedlichen Reaktionen auf Diäten oder Medikamenteneinahmen erklären. Weiterhin konnten wir eine Anzahl an Markern im menschlichen Darmmikrobiome finden, die mit unterschiedlichen Wirtseigenschaften wie dem Body-Mass-Index korrelieren. Dies hebt die Wichtigkeit dieser Analysemethode hervor und erweckt Hoffnungen auf Anwendung mikrobieller Marker als diagnostisches oder sogar prognostisches Werkzeug für menschliche Erkrankungen in denen das Mikrobiom eine Rolle spielt. KW - Darmflora KW - Metagenom KW - Bioinformatik KW - human gut microbiome KW - metagenomics KW - comparative metagenomics KW - computational analysis Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-55903 ER - TY - THES A1 - Beisser, Daniela T1 - Integrated functional analysis of biological networks T1 - Integrierte funktionelle Analyse biologischer Netzwerke N2 - In recent years high-throughput experiments provided a vast amount of data from all areas of molecular biology, including genomics, transcriptomics, proteomics and metabolomics. Its analysis using bioinformatics methods has developed accordingly, towards a systematic approach to understand how genes and their resulting proteins give rise to biological form and function. They interact with each other and with other molecules in highly complex structures, which are explored in network biology. The in-depth knowledge of genes and proteins obtained from high-throughput experiments can be complemented by the architecture of molecular networks to gain a deeper understanding of biological processes. This thesis provides methods and statistical analyses for the integration of molecular data into biological networks and the identification of functional modules, as well as its application to distinct biological data. The integrated network approach is implemented as a software package, termed BioNet, for the statistical language R. The package includes the statistics for the integration of transcriptomic and functional data with biological networks, the scoring of nodes and edges of these networks as well as methods for subnetwork search and visualisation. The exact algorithm is extensively tested in a simulation study and outperforms existing heuristic methods for the calculation of this NP-hard problem in accuracy and robustness. The variability of the resulting solutions is assessed on perturbed data, mimicking random or biased factors that obscure the biological signal, generated for the integrated data and the network. An optimal, robust module can be calculated using a consensus approach, based on a resampling method. It summarizes optimally an ensemble of solutions in a robust consensus module with the estimated variability indicated by confidence values for the nodes and edges. The approach is subsequently applied to two gene expression data sets. The first application analyses gene expression data for acute lymphoblastic leukaemia (ALL) and differences between the subgroups with and without an oncogenic BCR/ABL gene fusion. In a second application gene expression and survival data from diffuse large B-cell lymphomas are examined. The identified modules include and extend already existing gene lists and signatures by further significant genes and their interactions. The most important novelty is that these genes are determined and visualised in the context of their interactions as a functional module and not as a list of independent and unrelated transcripts. In a third application the integrative network approach is used to trace changes in tardigrade metabolism to identify pathways responsible for their extreme resistance to environmental changes and endurance in an inactive tun state. For the first time a metabolic network approach is proposed to detect shifts in metabolic pathways, integrating transcriptome and metabolite data. Concluding, the presented integrated network approach is an adequate technique to unite high-throughput experimental data for single molecules and their intermolecular dependencies. It is flexible to apply on diverse data, ranging from gene expression changes over metabolite abundances to protein modifications in a combination with a suitable molecular network. The exact algorithm is accurate and robust in comparison to heuristic approaches and delivers an optimal, robust solution in form of a consensus module with confidence values. By the integration of diverse sources of information and a simultaneous inspection of a molecular event from different points of view, new and exhaustive insights into biological processes can be acquired. N2 - In den letzten Jahren haben Hochdurchsatz-Experimente gewaltige Mengen an molekularbiologischen Daten geliefert, angefangen mit dem ersten sequenzierten Genom von Haemophilus influenzae im Jahr 1995 und dem menschlichen Genom im Jahr 2001. Mittlerweile umfassen die resultierenden Daten neben der Genomik die Bereiche der Transkriptomik, Proteomik und Metabolomik. Die Analyse der Daten mithilfe von bioinformatischen Methoden hat sich entsprechend mit verändert und weiterentwickelt. Durch neuartige, systembiologische Ansätze versucht man zu verstehen, wie Gene und die aus ihnen resultierenden Proteine, biologische Formen und Funktionen entstehen lassen. Dabei interagieren sie miteinander und mit anderen Molekülen in hoch komplexen Strukturen, welche durch neue Ansätze der Netzwerkbiologie untersucht werden. Das tiefgreifende Wissen über einzelne Moleküle, verfügbar durch Hochdurchsatz-Technologien, kann komplementiert werden durch die Architektur und dynamischen Interaktionen molekularer Netzwerke und somit ein umfassenderes Verständnis biologischer Prozesse ermöglichen. Die vorliegende Dissertation stellt Methoden und statistische Analysen zur Integration molekularer Daten in biologische Netzwerke, Identifikation robuster, funktionaler Subnetzwerke sowie die Anwendung auf verschiedenste biologische Daten vor. Der integrative Netzwerkansatz wurde als ein Softwarepaket, BioNet, in der statistischen Programmiersprache R implementiert. Das Paket beinhaltet statistische Verfahren zur Integration transkriptomischer und funktionaler Daten, die Gewichtung von Knoten und Kanten in biologischen Netzwerken sowie Methoden zur Suche signifikanter Bereiche, Module, und deren Visualisierung. Der exakte Algorithmus wird ausführlich in einer Simulationsstudie getestet und übertrifft heuristische Methoden zur Lösung dieses NP-vollständigen Problems in Genauigkeit und Robustheit. Die Variabilität der resultierenden Lösungen wird bestimmt anhand von gestörten integrierten Daten und gestörten Netzwerken, welche zufällige und verzerrende Einflüsse darstellen, die die Daten verrauschen. Ein optimales, robustes Modul kann durch einen Konsensusansatz bestimmt werden. Basierend auf einer wiederholten Stichprobennahme der integrierten Daten, wird ein Ensemble von Lösungen erstellt, aus welchem sich das robuste und optimale Konsensusmodul berechnen lässt. Zusätzlich erlaubt dieser Ansatz eine Schätzung der Variabilität des Konsensusmoduls und die Berechnung von Konfidenzwerte für Knoten und Kanten. Der Ansatz wird anschließend auf zwei Genexpressionsdatensätze angewandt. Die erste Anwendung untersucht Genexpressionsdaten für akute lymphoblastische Leukämie (ALL) und analysiert Unterschiede in Subgruppen mit und ohne BRC/ABL Genfusion. Die zweite Anwendung wertet Genexpressions- und Lebenszeitdaten für diffuse großzellige B-Zell Lymphome (DLBCL) aus, beruhend auf molekularen Unterschieden zwischen zwei DLBCL Subtypen mit unterschiedlicher Malignität. In einer dritten Anwendung wird der integrierte Netzwerkansatz benutzt, um Veränderungen im Metabolismus von Tardigraden aufzuspüren und Signalwege zu identifizieren, welche für die extreme Anpassungsfähigkeit an wechselnde Umweltbedingungen und Überdauerung in einem inaktiven Tönnchenstadium verantwortlich sind. Zum ersten Mal wird dafür ein metabolischer Netzwerkansatz vorgeschlagen, der metabolische Veränderungen durch die Integration von metabolischen und transkriptomischen Daten bestimmt. Abschließend ist zu bemerken, dass die präsentierte integrierte Netzwerkanalyse eine adäquate Technik ist, um experimentelle Daten aus Hochdurchsatz-Methoden, die spezialisiert auf eine Molekülart sind, mit ihren intermolekularen Wechselwirkungen und Abhängigkeiten in Verbindung zu bringen. Sie ist flexibel in der Anwendung auf verschiedenste Daten, von der Analyse von Genexpressionsveränderungen, über Metabolitvorkommen bis zu Proteinmodifikationen, in Kombination mit einem geeigneten molekularen Netzwerk. Der exakte Algorithmus ist akkurat und robust in Vergleich zu heuristischen Methoden und liefert eine optimale, robuste Lösung in Form eines Konsensusmoduls mit zugewiesenen Konfidenzwerten. Durch die Integration verschiedenster Informationsquellen und gleichzeitige Betrachtung eines biologischen Ereignisses von diversen Blickwinkeln aus, können neue und vollständigere Erkenntnisse physiologischer Prozesse gewonnen werden. KW - Bioinformatik KW - differenzielle Genexpression KW - Bioinformatik KW - Netzwerkanalyse KW - differenzielle Genexpression KW - funktionelle Module KW - bioinformatics KW - networkanalysis KW - differential geneexpression KW - functional modules Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70150 ER - TY - THES A1 - Bertram, Helge T1 - Bioinformatische Identifikation von Domänenunterschieden bei Parasit und Wirt am Beispiel der Malaria T1 - Bioinformatic identification of domain differences in parasite and host using malaria as an example N2 - Diese Arbeit untersucht zelluläre Netzwerke mit dem Ziel, die so gewonnenen Einsichten medizinisch beziehungsweise biotechnologisch zu nutzen. Hierzu müssen zunächst Proteindomänen und wichtige regulatorische RNA Elemente erkannt werden. Dies geschieht für regulatorische Elemente in Nukleinsäuren am Beispiel von Iron Responsive Elements (IREs) in Staphylococcus aureus, wobei sich solche Elemente in viel versprechender Nähe zu exprimierten Sequenzen finden lassen (T. Dandekar, F. Du, H. Bertram (2001) Nonlinear Analysis 47(1): 225-34). Noch bedeutsamer als Ziele zur Medikamentenentwicklung gegen Parasiten sind Domänenunterschiede in Struktur und Sequenz bei Proteinen (T. Dandekar, F. Du, H. Bertram (2001) Nonlinear Analysis 47(1): 225-34). Ihre Identifikation wird am Beispiel eines potentiellen Transportproteins in Plasmodium falciparum exemplarisch dargestellt. Anschließend wird das Zusammenwirken von regulatorischen Elementen und Domänen in Netzwerken betrachtet (einschließlich experimenteller Daten). Dies kann einerseits zu allgemeineren Schlussfolgerungen über das Netzwerkverhalten führen, andererseits für konkrete Anwendungen genutzt werden. Als Beispiel wählten wir hier Redoxnetzwerke und die Bekämpfung von Plasmodien als Verursacher der Malaria. Da das gesamte Redoxnetzwerk einer lebenden Zelle mit Methoden der pH Wert Messung nur unzureichend zu erfassen ist, werden als alternative Messmethode für dieses Netzwerk Mikrokristalle der Glutathionreduktase als Indikatorsystem nach digitaler Verstärkung experimentell genutzt (H. Bertram, M. A. Keese, C. Boulin, R. H. Schirmer, R. Pepperkok, T. Dandekar (2002) Chemical Nanotechnology Talks III - Nano for Life Sciences). Um komplexe Redoxnetzwerke auch bioinformatisch zu modulieren, werden Verfahren der metabolischen Fluxanalyse vorgestellt und verbessert, um insbesondere ihrer Verzahnung besser gerecht zu werden und solche Netzwerke mit möglichst wenig elementaren Flussmoden zutreffend beschreiben zu können. Die Reduktion der Anzahl von Elementarmoden bei sehr großen metabolischen Netzwerken einer Zelle gelingt hier mit Hilfe unterschiedlicher Methoden und führt zu einer vereinfachten Darstellungsmöglichkeit komplexer Stoffwechselwege von Metaboliten. Dabei dient bei jeder dieser Methoden die biochemisch sinnvolle Definition von externen Metaboliten als Grundlage (T. Dandekar, F. Moldenhauer, S. Bulik, H. Bertram, S. Schuster (2003) Biosystems 70(3): 255-70). Allgemeiner werden Verfahren der Proteindomänenklassifikation sowie neue Strategien gegen mikrobielle Erreger betrachtet. In Bezug auf automatisierte Einteilung von Proteinen in Domänen wird ein neues System von Taylor (2002b) mit bekannten Systemen verglichen, die in unterschiedlichem Umfang menschlichen Eingriffs bedürfen (H. Bertram, T. Dandekar (2002) Chemtracts 15: 735-9). Außerdem wurde neben einer Arbeit über die verschiedenen Methoden aus den Daten eines Genoms Informationen über das metabolische Netzwerk der Zelle zu erlangen (H. Bertram, T. Dandekar (2004) it 46(1): 5-11) auch eine Übersicht über die Schwerpunkte der Bioinformatik in Würzburg zusammengestellt (H. Bertram, S. Balthasar, T. Dandekar (2003) Bioforum 1-2: 26-7). Schließlich wird beschrieben, wie die Pathogenomik und Virulenz von Bakterien der bioinformatischen Analyse zugänglich gemacht werden können (H. Bertram, S. Balthasar, T. Dandekar (2003) Bioforum Eur. 3: 157-9). Im letzten Teil wird die metabolische Fluxanalyse zur Identifikation neuer Strategien zur Bekämpfung von Plasmodien dargestellt: Beim Vergleich der Stoffwechselwege mit Glutathion und Thioredoxin in Plasmodium falciparum, Anopheles und Mensch geht es darum, gezielte Störungen im Stoffwechsel des Malariaerregers auszulösen und dabei den Wirt zu schonen. Es ergeben sich einige interessante Ansatzpunkte, deren medizinische Nutzung experimentell angestrebt werden kann. N2 - The objective of this thesis is to obtain information, which may be advantageous for biotechnical and medical purposes. In order to achieve this aim it is first necessary to identify protein domains and essential regulatory RNA elements. In case of regulatory RNA elements this is accomplished by investigating Iron Responsive Elements (IREs) in Staphylocuccus aureus as a model. In this case these elements are found in much promising vicinity to open reading frames coding for proteins (T. Dandekar, F. Du, H. Bertram (2001) Nonlinear Analysis 47(1): 225-34). Even more significant for the purpose of developing pharmaceuticals against parasites are differences of structure and sequence in protein domains (T. Dandekar, F. Du, H. Bertram (2001) Nonlinear Analysis 47(1): 225-34). Their identification is shown in a potential transport protein in Plasmodium falciparum. Subsequently the interaction of regulatory elements and domains in networks is considered (including experimental data). The resulting observations may lead to general conclusions concerning network reaction, as well as specific applications. Our example and field of interest are redox networks and Plasmodia causing malaria. It is not possible to cover the redox network state of a living cell using only pH measurements. Therefore small crystals of glutathione reductase are employed as a more suitable indicator, whose signal is digitally amplified (H. Bertram, M. A. Keese, C. Boulin, R. H. Schirmer, R. Pepperkok, T. Dandekar (2002) Chemical Nanotechnology Talks III - Nano for Life Sciences). In order to bioinformatically modulate complex redox networks techniques of metabolic flux analysis are presented. They are also improved particularly to advance the understanding of interdependences and to facilitate the correct comprehension of such networks with as few elementary flux modes as possible. In this thesis the reduction of the number of elementary modes of large and intertwined metabolic networks succeeds with various methods. This leads to a simpler model of complex metabolic functions. For each of the methods used in this process the biochemically justified definition of external and internal metabolites constitutes the basis (T. Dandekar, F. Moldenhauer, S. Bulik, H. Bertram, S. Schuster (2003) Biosystems 70(3): 255-70). In a more general sense methods of protein domain classification and new strategies for the control of microbial pathogens are considered. In reference to automated classification of protein domains a new system by Taylor (2002b) is compared with traditional systems, which require a varying degree of human intervention (H. Bertram, T. Dandekar (2002) Chemtracts 15: 735-9). In addition different methods of acquiring information on the cellular metabolic network from genomic data is discussed (H. Bertram, T. Dandekar (2004) it 46(1): 5-11). Furthermore a survey of the main fields of bioinformatic research in Würzburg is given (H. Bertram, S. Balthasar, T. Dandekar (2003) Bioforum 1-2: 26-7). Finally it is outlined how pathogenicity and virulence of bacteria may be made accessible to bioinformatic analysis (H. Bertram, S. Balthasar, T. Dandekar (2003) Bioforum Eur. 3: 157-9). In the conclusion metabolic flux analysis is used for the identification of new strategies in the battle against Plasmodia: The comparison of metabolic pathways with glutathione and thioredoxin in Plasmodium falciparum, Anopheles and man aims at raising planned dysfunctions in the metabolism of Plasmodium or Anopheles without harming the human host. Valuable suggestions for medical applications and pharmacological targets are obtained. KW - Plasmodium falciparum KW - Domäne KW - Klassifikation KW - Bioinformatik KW - Redoxsystem KW - Glutathion-Reductase KW - Malariamücke KW - Mensch KW - Stoffwechselweg KW - Malaria KW - metabolische Fluxanalyse KW - Glutathionreduktase KW - Iron Responsive Elements KW - Proteindomänenklassifikation KW - malaria KW - metabolic fluxanalysis KW - glutathione reductase KW - iron responsive elements KW - classification of protein domains Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-17188 ER - TY - THES A1 - Blenk, Steffen T1 - Bioinformatical analysis of B-cell lymphomas T1 - Bioinformatische Analyse von B-Zell Lymphomen N2 - Background: The frequency of the most observed cancer, Non Hodgkin Lymphoma (NHL), is further rising. Diffuse large B-cell lymphoma (DLBCL) is the most common of the NHLs. There are two subgroups of DLBCL with different gene expression patterns: ABC (“Activated B-like DLBCL”) and GCB (“Germinal Center B-like DLBCL”). Without therapy the patients often die within a few months, the ABC type exhibits the more aggressive behaviour. A further B-cell lymphoma is the Mantle cell lymphoma (MCL). It is rare and shows very poor prognosis. There is no cure yet. Methods: In this project these B-cell lymphomas were examined with methods from bioinformatics, to find new characteristics or undiscovered events on the molecular level. This would improve understanding and therapy of lymphomas. For this purpose we used survival, gene expression and comparative genomic hybridization (CGH) data. In some clinical studies, you get large data sets, from which one can reveal yet unknown trends. Results (MCL): The published proliferation signature correlates directly with survival. Exploratory analyses of gene expression and CGH data of MCL samples (n=71) revealed a valid grouping according to the median of the proliferation signature values. The second axis of correspondence analysis distinguishes between good and bad prognosis. Statistical testing (moderate t-test, Wilcoxon rank-sum test) showed differences in the cell cycle and delivered a network of kinases, which are responsible for the difference between good and bad prognosis. A set of seven genes (CENPE, CDC20, HPRT1, CDC2, BIRC5, ASPM, IGF2BP3) predicted, similarly well, survival patterns as proliferation signature with 20 genes. Furthermore, some bands could be associated with prognosis in the explorative analysis (chromosome 9: 9p24, 9p23, 9p22, 9p21, 9q33 and 9q34). Results (DLBCL): New normalization of gene expression data of DLBCL patients revealed better separation of risk groups by the 2002 published signature based predictor. We could achieve, similarly well, a separation with six genes. Exploratory analysis of gene expression data could confirm the subgroups ABC and GCB. We recognized a clear difference in early and late cell cycle stages of cell cycle genes, which can separate ABC and GCB. Classical lymphoma and best separating genes form a network, which can classify and explain the ABC and GCB groups. Together with gene sets which identify ABC and GCB we get a network, which can classify and explain the ABC and GCB groups (ASB13, BCL2, BCL6, BCL7A, CCND2, COL3A1, CTGF, FN1, FOXP1, IGHM, IRF4, LMO2, LRMP, MAPK10, MME, MYBL1, NEIL1 and SH3BP5; Altogether these findings are useful for diagnosis, prognosis and therapy (cytostatic drugs). N2 - Hintergrund: Die Häufigkeit von Non-Hodgkin-Lymphomen (NHL), den am meisten beobachteten Krebserkrankungen, steigt weiter an. Von den aggressiven Non-Hodgkin-Lymphomen (NHL) macht das “großzellige, diffuse B-Zell-Lymphom” (DLBCL) den größten Anteil aus. Durch Genexpressionsmuster wurden zwei Subtypen definiert: ACB (“Activated B-like DLBCL”) und GCB (“Germinal Center B-like DLBCL”). Die Patienten der Gruppe ABC sterben ohne Therapie oft innerhalb weniger Monate, weil der ABC Typ einen aggressiveren Krankheitsverlauf aufweist. Ein weiteres, von einer malignen Entartung der B-Lymphozyten ausgehendes Lymphom, ist das “Mantelzell Lymphom” (MCL). Es tritt selten auf und ist ebenfalls mit einer schlechten Prognose verbunden. Eine vollständige Heilung nach der Therapie ist sehr selten. Methoden: In diesem Projekt wurden diese B-zell Lymphome mit bioinformatischen Methoden untersucht, um auf molekularer Ebene neue Eigenschaften oder bisher unentdeckte Zusammenhänge zu finden. Das würde das Verständnis und damit auch die Therapie voranbringen. Dafür standen uns Überlebens-, Genexpressions- und chromosomale Aberrationsdaten zur Verfügung. Sie sind die bevorzugte Wahl der Mittel, um genetische Veränderungen in Tumorzellen zu bestimmen. Hierbei fallen oft große Datenmengen an, aus welchen man mit bioinformatischen Methoden vorher unerkannte Trends und Hinweise identifizieren kann. Ergebnisse (MCL): Explorative Analysen sowohl der Genexpressions- (zweite Hauptachse der Korrespondenz Analyse) als auch der chromosomalen Aberrationsdaten des Mantelzell-Lymphom zeigten uns hierbei, daß es trotz der linearen Korrelation zwischen der veröffentlichten Proliferationssignatur und der Überlebenszeit sinnvoll ist, in den Patienten (n=71) zwei Ausprägungen zu betrachten: Patienten mit schlechter und mit guter Prognose. Statistische Tests (moderate t-test, Wilcoxon rank-sum test) dieser beiden Typen zeigten Unterschiede im Zellzyklus und ein Netzwerk von Kinasen auf, welche für den Unterschied zwischen guter und schlechter Prognose verantwortlich sind. Sieben Gene (CENPE, CDC20, HPRT1, CDC2, BIRC5, ASPM, IGF2BP3) konnten gefunden werden, die eine ähnliche gute Prognose für Überlebenszeiten ermöglichen, wie eine früher veröffentlichte Proliferationssignatur mit 20 Genen. Außerdem konnten chromosomale Banden durch eine explorative Analyse mit der Prognose assoziiert werden (Chromosom 9: 9p24, 9p23, 9p22, 9p21, 9q33 and 9q34). Ergebnisse (DLBCL): Durch geeignete Normalisierung der Genexpressionsdaten von 248 DLBCL-Patienten trennte der Signatur basierte Predictor die Risikogruppen nun besser auf. Eine ähnlich gute Auftrennung konnte von uns sogar mit sechs Genen erreicht werden. Die explorative Analyse der Genexpressionsdaten konnte die Subtypen ABC und GCB als valide Gruppen bestätigen. In den Genen, die ABC und GCB unterscheiden, ergab sich eine Häufung in späten und frühen Zellzyklusstadien. Klassische Lymphommarker, neu aufgefundene spezielle Gene und Zellzyklusgene bilden ein Netzwerk, das die ABC und GCB Gruppen klassifizieren und Unterschiede in deren Regulation erklären kann (ASB13, BCL2, BCL6, BCL7A, CCND2, COL3A1, CTGF, FN1, FOXP1, IGHM, IRF4, LMO2, LRMP, MAPK10, MME, MYBL1, NEIL1 and SH3BP5. Dies ist auch für die Diagnose, Prognose und Therapie (Zytostatika) interessant. KW - Bioinformatik KW - Genexpression KW - Auswertung KW - B-Zell-Lymphom KW - Diffuses großzelliges B-Zell-Lymphom KW - Mantelzell-Lymphom KW - Bioinformatics KW - gene expression KW - B-cell lymphoma KW - Diffuse large B-cell lymphoma (DLBCL) KW - Mantle cell lymphoma (MCL) Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27421 ER - TY - THES A1 - Breitenbach, Tim T1 - A mathematical optimal control based approach to pharmacological modulation with regulatory networks and external stimuli T1 - Ein auf mathematischer Optimalkontrolle basierender Ansatz für pharmakologische Modulation mit regulatorischen Netzwerken und externen Stimuli N2 - In this work models for molecular networks consisting of ordinary differential equations are extended by terms that include the interaction of the corresponding molecular network with the environment that the molecular network is embedded in. These terms model the effects of the external stimuli on the molecular network. The usability of this extension is demonstrated with a model of a circadian clock that is extended with certain terms and reproduces data from several experiments at the same time. Once the model including external stimuli is set up, a framework is developed in order to calculate external stimuli that have a predefined desired effect on the molecular network. For this purpose the task of finding appropriate external stimuli is formulated as a mathematical optimal control problem for which in order to solve it a lot of mathematical methods are available. Several methods are discussed and worked out in order to calculate a solution for the corresponding optimal control problem. The application of the framework to find pharmacological intervention points or effective drug combinations is pointed out and discussed. Furthermore the framework is related to existing network analysis tools and their combination for network analysis in order to find dedicated external stimuli is discussed. The total framework is verified with biological examples by comparing the calculated results with data from literature. For this purpose platelet aggregation is investigated based on a corresponding gene regulatory network and associated receptors are detected. Furthermore a transition from one to another type of T-helper cell is analyzed in a tumor setting where missing agents are calculated to induce the corresponding switch in vitro. Next a gene regulatory network of a myocardiocyte is investigated where it is shown how the presented framework can be used to compare different treatment strategies with respect to their beneficial effects and side effects quantitatively. Moreover a constitutively activated signaling pathway, which thus causes maleficent effects, is modeled and intervention points with corresponding treatment strategies are determined that steer the gene regulatory network from a pathological expression pattern to physiological one again. N2 - In dieser Arbeit werden Modelle für molekulare Netzwerke bestehend aus gewöhnlichen Differentialgleichungen durch Terme erweitert, die die Wechselwirkung zwischen dem entsprechenden molekularen Netzwerk und der Umgebung berücksichtigen, in die das molekulare Netzwerk eingebettet ist. Diese Terme modellieren die Effekte von externen Stimuli auf das molekulare Netzwerk. Die Nutzbarkeit dieser Erweiterung wird mit einem Modell der circadianen Uhr demonstriert, das mit gewissen Termen erweitert wird und Daten von mehreren verschiedenen Experimenten zugleich reproduziert. Sobald das Modell einschließlich der externen Stimuli aufgestellt ist, wird eine Grundstruktur entwickelt um externe Stimuli zu berechnen, die einen gewünschten vordefinierte Effekt auf das molekulare Netzwerk haben. Zu diesem Zweck wird die Aufgabe, geeignete externe Stimuli zu finden, als ein mathematisches optimales Steuerungsproblem formuliert, für welches, um es zu lösen, viele mathematische Methoden zur Verfügung stehen. Verschiedene Methoden werden diskutiert und ausgearbeitet um eine Lösung für das entsprechende optimale Steuerungsproblem zu berechnen. Auf die Anwendung dieser Grundstruktur pharmakologische Interventionspunkte oder effektive Wirkstoffkombinationen zu finden, wird hingewiesen und diese diskutiert. Weiterhin wird diese Grundstruktur in Bezug zu existierenden Netzwerkanalysewerkzeugen gesetzt und ihre Kombination für die Netzwerkanalyse diskutiert um zweckbestimmte externe Stimuli zu finden. Die gesamte Grundstruktur wird mit biologischen Beispielen verifiziert, indem man die berechneten Ergebnisse mit Daten aus der Literatur vergleicht. Zu diesem Zweck wird die Blutplättchenaggregation untersucht basierend auf einem entsprechenden genregulatorischen Netzwerk und damit assoziierte Rezeptoren werden detektiert. Weiterhin wird ein Wechsel von einem T-Helfer Zelltyp in einen anderen in einer Tumorumgebung analysiert, wobei fehlende Agenzien berechnet werden um den entsprechenden Wechsel in vitro zu induzieren. Als nächstes wird ein genregulatorisches Netzwerk eines Myokardiozyten untersucht, wobei gezeigt wird wie die präsentierte Grundstruktur genutzt werden kann um verschiedene Behandlungsstrategien in Bezug auf ihre nutzbringenden Wirkungen und Nebenwirkungen quantitativ zu vergleichen. Darüber hinaus wird ein konstitutiv aktivierter Signalweg, der deshalb unerwünschte Effekte verursacht, modelliert und Interventionspunkte mit entsprechenden Behandlungsstrategien werden bestimmt, die das genregulatorische Netzwerk wieder von einem pathologischen Expressionsmuster zu einem physiologischen steuern. KW - Bioinformatik KW - systematic drug targeting KW - optimal drug combination KW - disease modelling KW - external stimuli KW - intervention point analyzing KW - Molekülsystem KW - Reiz Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174368 ER - TY - THES A1 - Cecil, Alexander [geb. Schmid] T1 - Metabolische Netzwerkanalysen für den Weg von xenobiotischen zu verträglichen antibiotischen Substanzen T1 - Metabolic network analysis for the path from xenobiotic to compliant antibiotic substances N2 - Durch das Auftreten neuer Stämme resistenter Krankheitserreger ist die Suche nach neuartigen Wirkstoffen gegen diese, sich ständig weiter ausbreitende Bedrohung, dringend notwendig. Der interdisziplinäre Sonderforschungsbereich 630 der Universität Würzburg stellt sich dieser Aufgabe, indem hier neuartige Xenobiotika synthetisiert und auf ihre Wirksamkeit getestet werden. Die hier vorgelegte Dissertation fügt sich hierbei nahtlos in die verschiedenen Fachbereiche des SFB630 ein: Sie stellt eine Schnittstelle zwischen Synthese und Analyse der Effekte der im Rahmen des SFB630 synthetisierten Isochinolinalkaloid-Derivaten. Mit den hier angewandten bioinformatischen Methoden wurden zunächst die wichtigsten Stoffwechselwege von S. epidermidis R62A, S. aureus USA300 und menschlicher Zellen in sogenannten metabolischen Netzwerkmodellen nachgestellt. Basierend auf diesen Modellen konnten Enzymaktivitäten für verschiedene Szenarien an zugesetzten Xenobiotika berechnet werden. Die hierfür benötigten Daten wurden direkt aus Genexpressionsanalysen gewonnen. Die Validierung dieser Methode erfolgte durch Metabolommessungen. Hierfür wurde S. aureus USA300 mit verschiedenen Konzentrationen von IQ-143 behandelt und gemäß dem in dieser Dissertation vorgelegten Ernteprotokoll aufgearbeitet. Die Ergebnisse hieraus lassen darauf schließen, dass IQ-143 starke Effekte auf den Komplex 1 der Atmungskette ausübt – diese Resultate decken sich mit denen der metabolischen Netzwerkanalyse. Für den Wirkstoff IQ-238 ergaben sich trotz der strukturellen Ähnlichkeiten zu IQ-143 deutlich verschiedene Wirkeffekte: Dieser Stoff verursacht einen direkten Abfall der Enzymaktivitäten in der Glykolyse. Dadurch konnte eine unspezifische Toxizität dieser Stoffe basierend auf ihrer chemischen Struktur ausgeschlossen werden. Weiterhin konnten die bereits für IQ-143 und IQ-238 auf Bakterien angewandten Methoden erfolgreich zur Modellierung der Effekte von Methylenblau auf verschiedene resistente Stämme von P. falciparum 3D7 angewandt werden. Dadurch konnte gezeigt werden, dass Methylenblau in einer Kombination mit anderen Präparaten gegen diesen Parasiten zum einen die Wirkung des Primärpräparates verstärkt, zum anderen aber auch in gewissem Maße vorhandene Resistenzen gegen das Primärpräparat zu verringern vermag. Somit konnte durch die vorgelegte Arbeit eine Pipeline zur Identifizierung der metabolischen Effekte verschiedener Wirkstoffe auf unterschiedliche Krankheitserreger erstellt werden. Diese Pipeline kann jederzeit auf andere Organismen ausgeweitet werden und stellt somit einen wichtigen Ansatz um Netzwerkeffekte verschiedener, potentieller Medikamente aufzuklären. N2 - With the emergence of new strains of resistant pathogens, the search for new compounds against this spreading threat is of utmost importance. The interdisciplinary special research field SFB630 of the University of Würzburg is ready to tackle this task by synthesizing and analysing the effects of xenobiotics. The presented dissertation is seamlessly integrated into the diverse range of special fields of the SFB630: it provides a gateway between synthesis and analysis of the effects of the newly synthesized isoquinoline alkaloid derivatives. The presented bioinformatic methods were used to build a so called metabolic network model of the most important pathways of S. epidermidis RP62A, S. aureus USA300 and human cells. Based on these models it was possible to calculate the enzyme activities for different scenarios of added xenobiotics. The data needed for these calculations were derived directly from gene expression analysis. Validation of this method was done by metabolomic measurements. In order to accomplish this, a strain of S. aureus USA300 was subjected to different concentrations of IQ-143 and processed according to the workflow also published in this dissertation. The results suggest that IQ-143 has very strong effects on the complex 1 of the oxidative phosphorylation – these results are consistent with the results obtained by the metabolic network analysis. Although IQ-238 is structurally a close relative to IQ-143, the effects of this compound are very different: it leads to a drop of the enzyme activities in the glycolysis. Therefore an unspecific toxicity of those compounds based on their chemical structure dould be ruled out. The methods used to model the effects of IQ-143 and IQ-238 on bacteria were furthermore successfully transferred to model the effects of methylene blue on several resistant strains of P. falciparum 3D7. It was shown that a combination of methylene blue and other malaria medications either enhances the effects of the primary medication, or – in the case of a resistant strain – methylene blue was able to mitigate the resistances against the primary medication. The presented dissertation was thus successfully able to build a pipeline to identify the metabolic effects of different compounds on various germs. This pipeline can be expanded to other organisms at any time and therefore yields an important approach to identify network effects of various potential drugs. KW - Stoffwechsel KW - Bioinformatik KW - Mathematisches Modell KW - Enzymaktivität KW - Xenobiotikum KW - Netzwerkanalyse KW - Bioinformatik KW - Metabolische Stoffwechselmodellierung KW - Metabolomik KW - Metabonomik KW - Network analysis KW - Bioinformatics KW - metabolic pathway modeling KW - metabolomics KW - metabonomics Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71866 ER - TY - JOUR A1 - Dandekar, Thomas A1 - Liang, Chunguang A1 - Krüger, Beate T1 - GoSynthetic database tool to analyse natural and engineered molecular processes JF - Database N2 - An essential topic for synthetic biologists is to understand the structure and function of biological processes and involved proteins and plan experiments accordingly. Remarkable progress has been made in recent years towards this goal. However, efforts to collect and present all information on processes and functions are still cumbersome. The database tool GoSynthetic provides a new, simple and fast way to analyse biological processes applying a hierarchical database. Four different search modes are implemented. Furthermore, protein interaction data, cross-links to organism-specific databases (17 organisms including six model organisms and their interactions), COG/KOG, GO and IntAct are warehoused. The built in connection to technical and engineering terms enables a simple switching between biological concepts and concepts from engineering, electronics and synthetic biology. The current version of GoSynthetic covers more than one million processes, proteins, COGs and GOs. It is illustrated by various application examples probing process differences and designing modifications. KW - Bioinformatik Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97023 ER - TY - THES A1 - Förster, Frank T1 - Making the most of phylogeny: Unique adaptations in tardigrades and 216374 internal transcribed spacer 2 structures T1 - Einzigartige Anpassungen in Tardigraden und 216374 "internal transcribed spacer 2" Strukturen N2 - The phylum Tardigrada consists of about 1000 described species to date. The animals live in habitats within marine, freshwater and terrestrial ecosystems allover the world. Tardigrades are polyextremophiles. They are capable to resist extreme temperature, pressure or radiation. In the event of desiccation, tardigrades enter a so-called tun stage. The reason for their great tolerance capabilities against extreme environmental conditions is not discovered yet. Our Funcrypta project aims at finding answers to the question what mechanisms underlie these adaption capabilities particularly with regard to the species Milnesium tardigradum. The first part of this thesis describes the establishment of expressed sequence tags (ESTs) libraries for different stages of M. tardigradum. From proteomics data we bioinformatically identified 144 proteins with a known function and additionally 36 proteins which seemed to be specific for M. tardigradum. The generation of a comprehensive web-based database allows us to merge the proteome and transcriptome data. Therefore we created an annotation pipeline for the functional annotation of the protein and nucleotide sequences. Additionally, we clustered the obtained proteome dataset and identified some tardigrade-specific proteins (TSPs) which did not show homology to known proteins. Moreover, we examined the heat shock proteins of M. tardigradum and their different expression levels depending on the actual state of the animals. In further bioinformatical analyses of the whole data set, we discovered promising proteins and pathways which are described to be correlated with the stress tolerance, e.g. late embryogenesis abundant (LEA) proteins. Besides, we compared the tardigrades with nematodes, rotifers, yeast and man to identify shared and tardigrade specific stress pathways. An analysis of the 50 and 30 untranslated regions (UTRs) demonstrates a strong usage of stabilising motifs like the 15-lipoxygenase differentiation control element (15-LOX-DICE) but also reveals a lack of other common UTR motifs normally used, e.g. AU rich elements. The second part of this thesis focuses on the relatedness between several cryptic species within the tardigrade genus Paramacrobiotus. Therefore for the first time, we used the sequence-structure information of the internal transcribed spacer 2 (ITS2) as a phylogenetic marker in tardigrades. This allowed the description of three new species which were indistinguishable using morphological characters or common molecular markers like the 18S ribosomal ribonucleic acid (rRNA) or the Cytochrome c oxidase subunit I (COI). In a large in silico simulation study we also succeeded to show the benefit for the phylogenetic tree reconstruction by adding structure information to the ITS2 sequence. Next to the genus Paramacrobiotus we used the ITS2 to corroborate a monophyletic DO-group (Sphaeropleales) within the Chlorophyceae. Additionally we redesigned another comprehensive database—the ITS2 database resulting in a doubled number of sequence-structure pairs of the ITS2. In conclusion, this thesis shows the first insights (6 first author publications and 4 coauthor publications) into the reasons for the enormous adaption capabilities of tardigrades and offers a solution to the debate on the phylogenetic relatedness within the tardigrade genus Paramacrobiotus. N2 - Der Tierstamm Tardigrada besteht aus derzeitig etwa 1000 beschriebenen Arten. Die Tiere leben in Habitaten in marinen, limnischen und terrestrischen Ökosystemen auf der ganzen Welt. Tardigraden sind polyextremophil. Sie können extremer Temperatur, Druck oder Strahlung widerstehen. Beim Austrocknen bilden sie ein so genanntes Tönnchenstadium. Der Grund für die hohe Toleranz gegenüber extremen Umweltbedingungen ist bis jetzt nicht aufgeklärt worden. Unser Funcrypta Projekt versucht Antworten darauf zu finden, was die hinter dieser Anpassungsfähigkeit liegenden Mechanismen sind. Dabei steht die Art Milnesium tardigradum im Mittelpunkt. Der erste Teil dieser Arbeit beschreibt die Etablierung einer expressed sequence tags (ESTs) Bibliothek für verschiedene Stadien von M. tardigradum. Aus unseren Proteomansatz konnten wir bislang 144 Proteine bioinformatisch identifizieren, denen eine Funktion zugeordnet werden konnte. Darüber hinaus wurden 36 Proteine gefunden, welche spezifisch für M. tardigradum zu sein scheinen. Die Erstellung einer umfassenden internetbasierenden Datenbank erlaubt uns die Verknüpfung der Proteom und Transkriptomdaten. Dafür wurde eine Annotations-Pipeline erstellt um den Sequenzen Funktionen zuordnen zu können. Außerdem wurden die erhaltenen Proteindaten von uns geclustert. Dabei konnten wir einige Tardigraden-spezifische Proteine (tardigrade-specific protein, TSP) identifizieren die keinerlei Homologie zu bekannten Proteinen zeigen. Außerdem untersuchten wir die Hitze-Schock-Proteine von M. tardigradum und deren differenzielle Expression in Abhängigkeit vom Stadium der Tiere. In weiteren bioinformatischen Analysen konnten wir viel versprechende Proteine und Stoffwechselwege entdecken für die beschrieben ist, dass sie mit Stressreaktionen in Verbindung stehen, beispielsweise late embryogenesis abundant (LEA) Proteine. Des Weiteren verglichen wir Tardigraden mit Nematoden, Rotatorien, Hefe und dem Menschen, um gemeinsame und Tardigraden-spezifische Stoffwechselwege identifizieren zu können. Analysen der 50 und 30 untranslatierten Bereiche zeigen eine verstärkte Nutzung von stabilisierenden Motiven, wie dem 15-lipoxygenase differentiation control element (LEA). Im Gegensatz dazu werden häufig benutzte Motive, wie beispielsweise AU-reiche Bereiche, gar nicht gefunden. Der zweite Teil der Doktorarbeit beschäftigt sich mit den Verwandtschaftsverhältnissen einiger kryptischer Arten in der Tardigradengattung Paramacrobiotus. Hierfür haben wir, zum ersten Mal in Tardigraden, die Sequenz-Struktur-Informationen der internal transcribed spacer 2 Region als phylogenetischen Marker verwendet. Dies erlaubte uns die Beschreibung von drei neuen Arten, welche mit klassischen morphologischen Merkmalen oder anderen molekularen Markern wie 18S ribosomaler RNA oder Cytochrome c oxidase subunit I (COI) nicht unterschieden werden konnten. In einer umfangreichen in silico Simulationsstudie zeigten wir den Vorteil der bei der Rekonstruktion phylogenetischer Bäume unter der Hinzunahme der Strukturinformationen zur Sequenz der ITS2 entsteht. ITS2 Sequenz-Struktur-Informationen wurden außerdem auch dazu benutzt, eine monophyletische DO-Gruppe (Sphaeropleales) in den Chlorophyceae zu bestätigen. Zusätzlich haben wir eine umfassende Datenbank, die ITS2-Datenbank, überarbeitet. Dadurch konnten die Sequenz-Struktur-Informationen verdoppelt werden, die in dieser Datenbank verfügbar sind. Die vorliegende Doktorarbeit zeigt erste Einblicke (6 Erstautor- und 4 Koautor-Publikationen) in die Ursachen für die hervorragende Anpassungsfähigkeit der Tardigraden und beschreibt die erfolgreiche Aufklärung der Verwandtschaftsverhältnisse in der Tardigradengattung Paramacrobiotus. KW - Phylogenie KW - Bioinformatik KW - Würzburg / Universität / Lehrstuhl für Bioinformatik KW - Anpassung KW - Datenbank KW - ITS2 KW - Marker KW - Tardigraden KW - Bärtierchen KW - ITS2 KW - Marker KW - Tardigrades KW - Waterbear Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-51466 ER - TY - THES A1 - Förstner, Konrad Ulrich T1 - Computational analysis of metagenomic data: delineation of compositional features and screens for desirable enzymes T1 - Computergestützte Analyse von Metagenomedate: Beschreibung von kompositionellen Eigenschaften und Suchen nach gewünschten Enzymen N2 - The topic of my doctorial research was the computational analysis of metagenomic data. A metagenome comprises the genomic information from all the microorganisms within a certain environment. The currently available metagenomic data sets cover only parts of these usually huge metagenomes due to the high technical and financial effort of such sequencing endeavors. During my thesis I developed bioinformatic tools and applied them to analyse genomic features of different metagenomic data sets and to search for enzymes of importance for biotechnology or pharmaceutical applications in those sequence collections. In these studies nine metagenomic projects (with up to 41 subsamples) were analysed. These samples originated from diverse environments like farm soil, acid mine drainage, microbial mats on whale bones, marine water, fresh water, water treatment sludges and the human gut flora. Additionally, data sets of conventionally retrieved sequence data were taken into account and compared with each other N2 - Das Thema meiner Doktorarbeit war die bioinformatische Analyse von metagenomischen Sequenzdaten. Ein Metagenom umfasst die genomische Information aller Mikroorganismen eines Biotops. Die bisher durchgeführten metagenomische Projekte sequenzierten auf Grund des technischen und finanziellen Aufwands einer solchen Unternehmung nur kleine Teile dieser im allgemeinen sehr großen Metagenome. Im Zuge meiner Doktorarbeit, die auf solchen Sequenzierungprojekten aufbaut, wurden bioinformatische Werkzeuge entwickelt und angewandt um genomische Eigenschaften verschiedener metagenomische Datensätze zu analysieren und um biotechnologisch und pharmakologisch relevante Enzyme exemplarisch in diesen Datensätzen zu suchen. In den Analysen wurden neun publizierte, metagenomische Projektedatensammlungen (teilweise mit bis zu 41 Subproben) untersucht. Die Probem stammen von zahlreichen unterschiedlichen Habitaten wie Farmerde, sauerer Minendrainage, dem mikrobiellen Belag auf Walknochen, Meerwasser, Süßwasser, Abwasseraufbereitungssschlamm und der menschlichen Darmu flora. Zusätzlich wurden in den meisten Analysen konventionell gewonnene Sequenzdaten vergleichend hinzugezogen und analysiert. KW - Bioinformatik KW - Metagenomomanalyse KW - GC-Wert KW - Enyzme KW - PKS KW - NHase KW - Nitrilase KW - Metagenomics KW - GC-value KW - enzymes KW - PKS KW - NHase KW - Nitrilase Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-33577 ER - TY - THES A1 - Karl, Stefan T1 - Control Centrality in Non-Linear Biological Networks T1 - Kontrollzentralität in nichtlinearen biologischen Netzwerken N2 - Biological systems such as cells or whole organisms are governed by complex regulatory networks of transcription factors, hormones and other regulators which determine the behavior of the system depending on internal and external stimuli. In mathematical models of these networks, genes are represented by interacting “nodes” whose “value” represents the activity of the gene. Control processes in these regulatory networks are challenging to elucidate and quantify. Previous control centrality metrics, which aim to mathematically capture the ability of individual nodes to control biological systems, have been found to suffer from problems regarding biological plausibility. This thesis presents a new approach to control centrality in biological networks. Three types of network control are distinguished: Total control centrality quantifies the impact of gene mutations and identifies potential pharmacological targets such as genes involved in oncogenesis (e.g. zinc finger protein GLI2 or bone morphogenetic proteins in chondrocytes). Dynamic control centrality describes relaying functions as observed in signaling cascades (e.g control in mouse colon stem cells). Value control centrality measures the direct influence of the value of the node on the network (e.g. Indian hedgehog as an essential regulator of proliferation in chondrocytes). Well-defined network manipulations define all three centralities not only for nodes, but also for the interactions between them, enabling detailed insights into network pathways. The calculation of the new metrics is made possible by substantial computational improvements in the simulation algorithms for several widely used mathematical modeling paradigms for genetic regulatory networks, which are implemented in the regulatory network simulation framework Jimena created for this thesis. Applying the new metrics to biological networks and artificial random networks shows how these mathematical concepts correspond to experimentally verified gene functions and signaling pathways in immunity and cell differentiation. In contrast to controversial previous results even from the Barabási group, all results indicate that the ability to control biological networks resides in only few driver nodes characterized by a high number of connections to the rest of the network. Autoregulatory loops strongly increase the controllability of the network, i.e. its ability to control itself, and biological networks are characterized by high controllability in conjunction with high robustness against mutations, a combination that can be achieved best in sparsely connected networks with densities (i.e. connections to nodes ratios) around 2.0 - 3.0. The new concepts are thus considerably narrowing the gap between network science and biology and can be used in various areas such as system modeling, plausibility trials and system analyses. Medical applications discussed in this thesis include the search for oncogenes and pharmacological targets, as well their functional characterization. N2 - Biologische Systeme wie Zellen aber auch ganze Organismen werden durch ein komplexes Netzwerk von Transkriptionsfaktoren, Hormonen und anderen Regulatoren kontrolliert, welche das Verhalten des Systems in Abhängigkeit von internen und externen Einflüssen steuern. In mathematischen Modellen dieser Netzwerke werden Gene durch „Knoten“ repräsentiert, deren „Wert“ die Aktivität des Gens wiederspiegelt. Kontrollvorgänge in diesen Regulationsnetzwerken sind schwierig zu quantifizieren. Existierende Maße für die Kontrollzentralität, d.h. die Fähigkeit einzelner Knoten biologische Systeme zu kontrollieren, zeigen vor allem Probleme mit der biologischen Plausibilität der Ergebnisse. Diese Dissertation stellt eine neue Definition der Kontrollzentralität vor. Dabei werden drei Typen der Kontrollzentralität unterschieden: Totale Kontrollzentralität quantifiziert den Einfluss von Mutationen eines Gens und hilft mögliche pharmakologische Ziele wie etwa Onkogene (z. B. das Zinkfingerprotein GLI2 oder Bone Morphogenetic Proteins in Chondrozyten) zu identifizieren. Dynamische Kontrollzentralität beschreibt signalweiterleitende Funktionen in Signalkaskaden (z. B. in Kontrollprozessen in Stammzellen des Mauskolons). Wert-Kontrollzentralität misst den Einfluss des Werts des Knotens (zum Beispiel die Rolle von Indian hedgehog als essentieller Regulator der Chondrozytenproliferation). Durch gezielte Manipulation von Netzwerken können die Zentralitäten nicht nur für Knoten, sondern auch für die Interaktionen zwischen ihnen bestimmt werden, was detaillierte Einblicke in Netzwerkpfade erlaubt. Möglich wird die Berechnung der neuen Maße durch substantielle Verbesserungen der Simulationsalgorithmen mehrerer häufig verwendeter mathematischer Muster für Genregulationsnetzwerke, welche in der für diese Dissertation entwickelten Software Jimena implementiert wurden. Durch die Anwendung der neuen Metriken auf biologische Netzwerke und künstliche Zufallsnetzwerke kann gezeigt werden, dass die mathematischen Konzepte experimentell bestätigte Funktionen von Genen und Signalpfaden im Immunsystem und der Zelldifferenzierung korrekt wiedergeben. Im Gegensatz zu umstrittenen Ergebnissen der Forschungsgruppe Barabási zeigt sich hier, dass die Fähigkeit, biologische Netzwerke zu kontrollieren, in nur wenigen Knoten konzentriert ist, welche sich vor allem durch viele Verbindungen zum Rest des Netzwerks auszeichnen. Knoten, welche ihre eigene Expression beeinflussen, steigern die Fähigkeit eines Netzwerkes sich selbst zu kontrollieren (Kontrollierbarkeit), und biologische Netzwerke zeichnen sich durch hohe Kontrollierbarkeit bei gleichzeitig hoher Resistenz gegenüber Mutationen aus. Diese Kombination kann am besten durch eher schwach verbundene Netzwerke erreicht werden, bei denen auf einen Knoten nur etwa 2 bis 3 Verbindungen kommen. Die neuen Konzepte schlagen so eine Brücke zwischen Netzwerkwissenschaften und Biologie, und sind in einer Vielzahl von Gebieten wie der Modellierung von Systemen sowie der Überprüfung ihrer Plausibilität und ihrer Analyse anwendbar. Medizinische Anwendungen, auf welche in dieser Dissertation eingegangen wird, sind zum Beispiel die Suche nach Onkogenen und pharmakologischen Zielen, aber auch deren funktionelle Analyse. KW - Bioinformatik KW - Genregulation KW - Nichtlineare Differentialgleichung KW - Genetic regulatory networks KW - Control centrality Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150838 ER -