TY - JOUR A1 - Clauss, Kersten A1 - Yan, Huimin A1 - Kuenzer, Claudia T1 - Mapping Paddy Rice in China in 2002, 2005, 2010 and 2014 with MODIS Time Series JF - Remote Sensing N2 - Rice is an important food crop and a large producer of green-house relevant methane. Accurate and timely maps of paddy fields are most important in the context of food security and greenhouse gas emission modelling. During their life-cycle, rice plants undergo a phenological development that influences their interaction with waves in the visible light and infrared spectrum. Rice growth has a distinctive signature in time series of remotely-sensed data. We used time series of MODIS (Moderate Resolution Imaging Spectroradiometer) products MOD13Q1 and MYD13Q1 and a one-class support vector machine to detect these signatures and classify paddy rice areas in continental China. Based on these classifications, we present a novel product for continental China that shows rice areas for the years 2002, 2005, 2010 and 2014 at 250-m resolution. Our classification has an overall accuracy of 0.90 and a kappa coefficient of 0.77 compared to our own reference dataset for 2014 and correlates highly with rice area statistics from China’s Statistical Yearbooks (R2 of 0.92 for 2010, 0.92 for 2005 and 0.90 for 2002). Moderate resolution time series analysis allows accurate and timely mapping of rice paddies over large areas with diverse cropping schemes. KW - agriculture KW - rice KW - China KW - MODIS KW - time series KW - SVM KW - OCSVM KW - change detection Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180557 VL - 8 IS - 5 ER - TY - THES A1 - Colditz, Rene Roland T1 - Time Series Generation and Classification of MODIS Data for Land Cover Mapping T1 - Zeitreihengenerierung und Klassifikation von MODIS Daten zur Landbedeckungsklassifikation N2 - Processes of the Earth’s surface occur at different scales of time and intensity. Climate in particular determines the activity and seasonal development of vegetation. These dynamics are predominantly driven by temperature in the humid mid-latitudes and by the availability of water in semi-arid regions. Human activities are a modifying parameter for many ecosystems and can become the prime force in well-developed regions with an intensively managed environment. Accounting for these dynamics, i.e. seasonal dynamics of ecosystems and short- to long-term changes in land-cover composition, requires multiple measurements in time. With respect to the characterization of the Earth surface and its transformation due to global warming and human-induced global change, there is a need for appropriate data and methods to determine the activity of vegetation and the change of land cover. Space-borne remote sensing is capable of monitoring the activity and development of vegetation as well as changes of the land surface. In many instances, satellite images are the only means to comprehensively assess the surface characteristics of large areas. A high temporal frequency of image acquisition, forming a time series of satellite data, can be employed for mapping the development of vegetation in space and time. Time series allow for detecting and assessing changes and multi-year transformation processes of high and low intensity, or even abrupt events such as fire and flooding. The operational processing of satellite data and automated information-extraction techniques are the basis for consistent and continuous long-term product generation. This provides the potential for directly using remote-sensing data and products for analyzing the land surface in relation to global warming and global change, including deforestation and land transformation. This study aims at the development of an advanced approach to time-series generation using data-quality indicators. A second goal focuses on the application of time series for automated land-cover classification and update, using fractional cover estimates to accommodate for the comparatively coarse spatial resolution. Requirements of this study are the robustness and high accuracy of the approaches as well as the full transferability to other regions and datasets. In this respect, the developments of this study form a methodological framework, which can be filled with appropriate modules for a specific sensor and application. In order to attain the first goal, time-series compilation, a stand-alone software application called TiSeG (Time Series Generator) has been developed. TiSeG evaluates the pixel-level quality indicators provided with each MODIS land product. It computes two important data-availability indicators, the number of invalid pixels and the maximum gap length. Both indices are visualized in time and space, indicating the feasibility of temporal interpolation. The level of desired data quality can be modified spatially and temporally to account for distinct environments in a larger study area and for seasonal differences. Pixels regarded as invalid are either masked or interpolated with spatial or temporal techniques. N2 - Prozesse an der Erdoberfläche finden auf verschiedenen Intensitätsskalen und in unterschiedlichen Zeiträumen statt. Dabei steuert das Klima die saisonale Aktivität der Vegetation, welche in den humiden Mittelbreiten hauptsächlich durch die Temperatur bestimmt wird. In semi-ariden Gebieten hingegen ist die Verfügbarkeit von Wasser als Haupteinflussfaktor für das Pflanzenwachstum zu betrachten. Andererseits greift auch der Mensch modifizierend in das Ökosystem ein. Dies gilt insbesondere für die stark besiedelten und intensiver genutzten Räume der Erde, in denen die Umwelt nahezu ausschließlich durch den Menschen gesteuert wird. Zur Beurteilung dieser Dynamiken, sowohl der natürlichen saisonalen Muster als auch der kurz- bis langfristigen Änderungen der Landschaft, ist die Aufnahme einer Vielzahl von Messungen über eine längere Periode erforderlich. Insbesondere im Zusammenhang mit der Charakterisierung der Landoberfläche und deren Veränderung im Rahmen der Erderwärmung aber auch des wachsenden Einflusses des Menschen auf die Umwelt besteht somit ein Bedarf an geeigneten Daten und Methoden zur Bestimmung der jährlichen Aktivität von Vegetationseinheiten und der wiederholbaren Kartierung der Landoberfläche. Die Satellitenfernerkundung ist in der Lage, durch Messung von Strahlung die Aktivität der Vegetation zu bestimmen sowie die Klassifikation der Landoberfläche abzuleiten. In vielen Fällen sind Satellitenaufnahmen die einzige Möglichkeit, große Flächen der Erde umfassend und einheitlich zu beurteilen. Dabei kann durch eine Vielzahl aufeinander folgender Aufnahmen, d.h. eine Zeitreihe aus Satellitendaten, die Entwicklung der Vegetation in Raum und Zeit beobachtet werden. Zeitreihen bieten das Potential, Veränderungen der Landoberfläche über mehrere Jahre zu dokumentieren und somit Prozesse sowohl hoher als auch niedriger Intensität abzuleiten. Neben diesen gerichteten Veränderungen können auch plötzliche Ereignisse, wie z.B. Hochwasser oder Brände, mit Zeitreihen erfasst und in Bezug auf normale Bedingungen ausgewertet werden. Insbesondere die operationelle Prozessierung der Satellitendaten und die automatisierte Ableitung von Informationen bilden die Basis für konsistente und kontinuierliche Produkte über längere Zeiträume. Somit besteht das Potential, die Ergebnisse direkt in die Erforschung der Landoberfläche und deren Veränderung, z.B. durch die Erderwärmung, Walddegradation, oder die Nutzung vormals natürlicher Flächen, einzubinden. Diese Dissertation befasst sich mit der Entwicklung von Methoden zur Zeitreihengenerierung unter Verwendung der Qualitätsindikatoren einzelner Aufnahmen. Ein zweites Ziel der Arbeit ist die Anwendung der optimierten Zeitreihen zur automatisierten und reproduzierbaren Kartierung der Landoberfläche, wobei unscharfe Klassifikationsverfahren zur genaueren Charakterisierung der räumlich nur grob aufgelösten Daten eingesetzt werden. Damit erfordert diese Arbeit sowohl Robustheit der eingesetzten Methoden als auch eine hohe Genauigkeit der Ergebnisse. Ebenso maßgeblich ist die Übertragbarkeit der Verfahren, einerseits auf verschiedene Regionen als auch auf verschiedene Datensätze. Daher sind die hier vorgenommenen Entwicklungen als ein Rahmen zu verstehen, der je nach Sensor oder Anwendung mit verschiedenen Modulen besetzt werden kann. Zum Erreichen des ersten Zieles, der Zeitreihengenerierung, wurde das eigenständige Softwareprodukt TiSeG (Time Series Generator) entwickelt. TiSeG dient der Auswertung der Qualitätsindikatoren die mit jedem MODIS-Produkt für terrestrische Applikationen zur Verfügung gestellt werden. Dabei werden in Bezug auf die Generierung von Zeitreihen zwei Indizes der Datenverfügbarkeit ermittelt: erstens die Anzahl der ungültigen Pixel und zweitens die längste zeitliche Datenlücke. Beide Indizes werden räumlich und zeitlich dargestellt und geben so dem Bearbeiter die Information, ob mit den aktuellen Qualitätsangaben die Generierung einer sinnvollen Zeitreihe durch zeitliche Dateninterpolation möglich ist. Die Qualitätseinstellungen können sowohl zeitlich als auch räumlich angepasst werden. Eine zeitliche Änderung kann beispielsweise für bestimmte Jahreszeiten sinnvoll sein. Räumlich unterschiedliche Qualitätseinstellungen eignen sich für größere Untersuchungsgebiete mit differenzierten physisch-geographischen Charakteristika. Als ungültig betrachtete Pixel können durch einen Fehlwert maskiert oder durch zeitliche und räumliche Interpolation neu errechnet werden. Das zweite Ziel dieser Arbeit ist die automatische Klassifikation von Zeitreihen. Hierzu wurde ein modulares Verfahren der überwachten Klassifikation entwickelt. Aufgrund der groben räumlichen Auflösung von MODIS-Daten erschien es besonders wichtig, ein unscharfes Verfahren aufzubauen, das die Heterogenität der Klassen in vielen Räumen besser abbilden kann. Dabei wurde der Klassenanteil eines jeden Pixel ermittelt. Die Schlüsselmodule zur erfolgreichen Durchführung der Klassifikation waren eine Multiskalenanalyse und die geeignete Auswahl von Merkmalen und Stichproben zum Trainieren des Klassifikators. Der eigentliche Klassifikationsschritt wurde durch eine Erweiterung des Entscheidungsbaumklassifikators durchgeführt. Diese Erweiterung kann in den bestehenden Rahmen von „random forest“ und „bagging“ (ein Akronym für „bootstrap aggregation“) eingeordnet werden. Jedoch wurden die dort angewendeten Verfahren in dieser Arbeit zu einem deutlich strategischen Vorgehen modifiziert, d.h. es wurde auf das Prinzip der Zufallsauswahl und der Wiederverwendung von Stichproben (Ziehen mit Zurücklegen) verzichtet. In Bezug auf die anfangs geschilderten Anforderungen, Robustheit, Genauigkeit und Übertragbarkeit, kann an dieser Stelle festgestellt werden, dass sich die in dieser Arbeit entwickelten Methodiken als geeignet erwiesen haben. Insbesondere die Übertragbarkeit auf andere Regionen und Daten war eine große Herausforderung, da hierdurch kein zusätzliches a priori Wissen außer den Trainingsdaten zum überwachten Klassifizieren benutzt werden konnte. Die regionale Übertragbarkeit ist für mehrere Untersuchungsräume mit sehr unterschiedlichen physisch-geographischen Eigenschaften demonstriert worden. Obwohl TiSeG derzeit nicht direkt auf andere Datensätze außer MODIS angewendet wird, bildet die zugrunde liegende Idee der Auswertung von Qualitätsdaten zur Zeitreihengenerierung sowie der entwickelte Rahmen der Software die Möglichkeit der Erweiterung, z.B. auf Daten von MERIS und auf das zukünftige VIIRS-Instrument. Des Weiteren ist das grundlegende Konzept der Qualitätsauswertung in einem separaten Prozessor für AVHRR NDVI Daten zu einem vollautomatischen, schrittweise interpolierenden Verfahren erweitert worden. Das in dieser Arbeit vorgestellte modulare Klassifikationsverfahren erfordert keine besonderen Eingangsdaten, wie z.B. bestimmte MODIS Zeitreihen. Dies wurde durch den Gebrauch unterschiedlicher Eingangsdaten zur Generierung der Maßzahlen bei der Sensitivitätsanalyse bestätigt. Damit ist der Prozess weder auf MODIS-Zeitserien noch auf Zeitreihen generell beschränkt. Der gesamte automatische Klassifikationsprozess ist datengesteuert, sowohl was die zu klassifizierenden Daten als auch die Trainingsdaten angeht. Die Unschärfe in den Ergebnissen ermöglicht die detaillierte Auswertung der Klassenzusammensetzung, was ein besonders wichtiger Aspekt bei grob aufgelösten Datenprodukten und deren Anpassungsfähigkeit auf andere Anwendungen ist. KW - Zeitreihe KW - Automatische Klassifikation KW - Klassifikations- und Regressionsbaum KW - Fernerkundung KW - Time Series KW - Automated Classification KW - Land Cover Mapping KW - MODIS Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-25908 ER - TY - THES A1 - Cord, Anna T1 - Potential of multi-temporal remote sensing data for modeling tree species distributions and species richness in Mexico T1 - Eignung multi-temporaler Fernerkundungsdaten für die Modellierung von Artverbreitungsgebieten und Diversität von Baumarten in Mexiko N2 - Current changes of biodiversity result almost exclusively from human activities. This anthropogenic conversion of natural ecosystems during the last decades has led to the so-called ‘biodiversity crisis’, which comprises the loss of species as well as changes in the global distribution patterns of organisms. Species richness is unevenly distributed worldwide. Altogether, 17 so-called ‘megadiverse’ nations cover less than 10% of the earth’s land surface but support nearly 70% of global species richness. Mexico, the study area of this thesis, is one of those countries. However, due to Mexico’s large extent and geographical complexity, it is impossible to conduct reliable and spatially explicit assessments of species distribution ranges based on these collection data and field work alone. In the last two decades, Species distribution models (SDMs) have been established as important tools for extrapolating such in situ observations. SDMs analyze empirical correlations between geo-referenced species occurrence data and environmental variables to obtain spatially explicit surfaces indicating the probability of species occurrence. Remote sensing can provide such variables which describe biophysical land surface characteristics with high effective spatial resolutions. Especially during the last three to five years, the number of studies making use of remote sensing data for modeling species distributions has therefore multiplied. Due to the novelty of this field of research, the published literature consists mostly of selective case studies. A systematic framework for modeling species distributions by means of remote sensing is still missing. This research gap was taken up by this thesis and specific studies were designed which addressed the combination of climate and remote sensing data in SDMs, the suitability of continuous remote sensing variables in comparison with categorical land cover classification data, the criteria for selecting appropriate remote sensing data depending on species characteristics, and the effects of inter-annual variability in remotely sensed time series on the performance of species distribution models. The corresponding novel analyses were conducted with the Maximum Entropy algorithm developed by Phillips et al. (2004). In this thesis, a more comprehensive set of remote sensing predictors than in the existing literature was utilized for species distribution modeling. The products were selected based on their ecological relevance for characterizing species distributions. Two 1 km Terra-MODIS Land 16-day composite standard products including the Enhanced Vegetation Index (EVI), Reflectance Data, and Land Surface Temperature (LST) were assembled into enhanced time series for the time period of 2001 to 2009. These high-dimensional time series data were then transformed into 18 phenological and 35 statistical metrics that were selected based on an extensive literature review. Spatial distributions of twelve tree species were modeled in a hierarchical framework which integrated climate (WorldClim) and MODIS remote sensing data. The species are representative of the major Mexican forest types and cover a variety of ecological traits, such as range size and biotope specificity. Trees were selected because they have a high probability of detection in the field and since mapping vegetation has a long tradition in remote sensing. The result of this thesis showed that the integration of remote sensing data into species distribution models has a significant potential for improving and both spatial detail and accuracy of the model predictions. N2 - Sämtliche aktuell zu beobachtenden Veränderungen in der Biodiversität lassen sich fast ausschließlich auf menschliche Aktivitäten zurückführen. In den letzten Jahrzehnten hat insbesondere die anthropogene Umwandlung bisher unberührter, natürlicher Ökosysteme zur sogenannten ‚Biodiversitätskrise‘ geführt. Diese umfasst nicht nur das Aussterben von Arten, sondern auch räumliche Verschiebungen in deren Verbreitungsgebieten. Global gesehen ist der Artenreichtum ungleich verteilt. Nur insgesamt 17 sogenannte ‚megadiverse‘ Länder, welche 10% der globalen Landoberfläche umfassen, beherbergen fast 70% der weltweiten Artenvielfalt. Mexiko, das Studiengebiet dieser Arbeit, ist eine dieser außerordentlich artenreichen Nationen. Aufgrund seiner großen Ausdehnung und geographischen Komplexität kann eine verlässliche und detaillierte räumliche Erfassung von Artverbreitungsgebieten in Mexiko jedoch nicht nur auf Basis dieser Datenbanken sowie von Feldarbeiten erfolgen. In den letzten beiden Jahrzehnten haben sich Artverbreitungsmodelle (Species distribution models, SDMs) als wichtige Werkzeuge für die räumliche Interpolation solcher in situ Beobachtungen in der Ökologie etabliert. Artverbreitungsmodelle umfassen die Analyse empirischer Zusammenhänge zwischen georeferenzierten Fundpunkten einer Art und Umweltvariablen mit dem Ziel, räumlich kontinuierliche Vorhersagen zur Wahrscheinlichkeit des Vorkommens der jeweiligen Art zu treffen. Mittels Fernerkundung können Umweltvariablen mit Bezug zu den biophysikalischen Eigenschaften der Landoberfläche in hohen effektiven räumlichen Auflösungen bereitgestellt werden. Insbesondere in den letzten drei bis fünf Jahren ist daher die Verwendung von Fernerkundungsdaten in der Artverbreitungsmodellierung sprunghaft angestiegen. Da es sich hierbei jedoch immer noch um ein sehr neues Forschungsfeld handelt, stellen diese meist nur Einzelstudien mit Beispielcharakter dar. Eine systematische Untersuchung zur Modellierung von Artverbreitungsgebieten mit Hilfe von Fernerkundungsdaten fehlt bisher. Diese Forschungslücke wurde in der vorliegenden Arbeit aufgegriffen. Hierzu wurden spezifische Untersuchungen durchgeführt, welche insbesondere folgende Aspekte betrachteten: die sinnvolle Verknüpfung von Klima- und Fernerkundungsdaten im Rahmen von Artverbreitungsmodellen, den quantitativen Vergleich von kontinuierlichen Fernerkundungsdaten und einer bestehenden kategorialen Landbedeckungsklassifikation, die Identifizierung von Kriterien zur Auswahl geeigneter Fernerkundungsprodukte, welche die Eigenschaften der Studienarten berücksichtigen, sowie der Einfluss inter-annueller Variabilität in fernerkundlichen Zeitreihen auf die Ergebnisse und Leistungsfähigkeit von Artverbreitungsmodellen. Die entsprechenden neuen Analysen wurden mit Hilfe des von Phillips et al. (2004) entwickelten Maximum Entropy Algorithmus zur Artverbreitungsmodellierung durchgeführt. Im Rahmen dieser Arbeit wurde ein umfangreicherer Datensatz an Fernerkundungsvariablen als in der bisherigen Literatur verwendet. Die entsprechenden Fernerkundungsprodukte wurden spezifisch aufgrund ihrer Eignung für die Beschreibung ökologisch relevanter Parameter, die sich auf die Verbreitungsgebiete von Arten auswirken, ausgewählt. Für den Zeitraum von 2001 bis 2009 wurden zwei Terra-MODIS Standardprodukte mit 1 km räumlicher und 16-tägiger zeitlicher Auflösung zu geglätteten, kontinuierlichen Zeitreihen zusammengefügt. Diese Produkte beinhalten den verbesserten Vegetationsindex (Enhanced Vegetation Index, EVI), Reflexionsgrade und die Landoberflächentemperatur (Land Surface Temperature, LST). Diese hochdimensionalen Zeitreihendaten wurden in insgesamt 18 phänologische sowie 35 statistische Maßzahlen überführt, welche auf der Basis einer umfassenden Sichtung der vorhandenen Literatur zusammengestellt wurden. Die Verbreitungsgebiete von zwölf Baumarten wurden mit Hilfe eines hierarchisch aufgebauten Ansatzes, welcher sowohl Klimadaten (WorldClim) als auch Fernerkundungsdaten des MODIS-Sensors berücksichtigt, modelliert. Die Studienarten sind repräsentativ für die in Mexiko vorkommenden Waldtypen und decken eine breite Spannweite ökologischer Eigenschaften wie Größe des Verbreitungsgebietes und Breite der ökologischen Nische ab. Als Studienobjekte wurden Bäume ausgewählt, weil sie im Feld mit hoher Wahrscheinlichkeit richtig erfasst werden und außerdem die fernerkundungsbasierte Kartierung von Vegetation bereits auf eine Vielzahl an Studien zurückgreifen kann. Durch die im Rahmen dieser Dissertation durchgeführten Untersuchungen konnte gezeigt werden, dass die Integration von Fernerkundungsdaten in Artverbreitungsmodelle ein signifikantes Potential zur Verbesserung der räumlichen Detailgenauigkeit und der Güte der Modellvorhersagen bietet. KW - Fernerkundung KW - Biodiversität KW - Landnutzung KW - Zeitreihenanalyse KW - Mexiko KW - Artverbreitungsmodellierung KW - Maximum Entropy Algorithmus KW - MODIS KW - Modellierung KW - Remote sensing KW - Species distribution modeling KW - Maximum Entropy algorithm KW - MODIS KW - Mexico Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71021 ER - TY - JOUR A1 - Dhillon, Maninder Singh A1 - Dahms, Thorsten A1 - Kuebert-Flock, Carina A1 - Borg, Erik A1 - Conrad, Christopher A1 - Ullmann, Tobias T1 - Modelling Crop Biomass from Synthetic Remote Sensing Time Series: Example for the DEMMIN Test Site, Germany JF - Remote Sensing N2 - This study compares the performance of the five widely used crop growth models (CGMs): World Food Studies (WOFOST), Coalition for Environmentally Responsible Economies (CERES)-Wheat, AquaCrop, cropping systems simulation model (CropSyst), and the semi-empiric light use efficiency approach (LUE) for the prediction of winter wheat biomass on the Durable Environmental Multidisciplinary Monitoring Information Network (DEMMIN) test site, Germany. The study focuses on the use of remote sensing (RS) data, acquired in 2015, in CGMs, as they offer spatial information on the actual conditions of the vegetation. Along with this, the study investigates the data fusion of Landsat (30 m) and Moderate Resolution Imaging Spectroradiometer (MODIS) (500 m) data using the spatial and temporal reflectance adaptive reflectance fusion model (STARFM) fusion algorithm. These synthetic RS data offer a 30-m spatial and one-day temporal resolution. The dataset therefore provides the necessary information to run CGMs and it is possible to examine the fine-scale spatial and temporal changes in crop phenology for specific fields, or sub sections of them, and to monitor crop growth daily, considering the impact of daily climate variability. The analysis includes a detailed comparison of the simulated and measured crop biomass. The modelled crop biomass using synthetic RS data is compared to the model outputs using the original MODIS time series as well. On comparison with the MODIS product, the study finds the performance of CGMs more reliable, precise, and significant with synthetic time series. Using synthetic RS data, the models AquaCrop and LUE, in contrast to other models, simulate the winter wheat biomass best, with an output of high R2 (>0.82), low RMSE (<600 g/m\(^2\)) and significant p-value (<0.05) during the study period. However, inputting MODIS data makes the models underperform, with low R2 (<0.68) and high RMSE (>600 g/m\(^2\)). The study shows that the models requiring fewer input parameters (AquaCrop and LUE) to simulate crop biomass are highly applicable and precise. At the same time, they are easier to implement than models, which need more input parameters (WOFOST and CERES-Wheat). KW - crop growth models KW - Landsat KW - MODIS KW - data fusion KW - STARFM KW - climate parameters KW - winter wheat Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207845 SN - 2072-4292 VL - 12 IS - 11 ER - TY - JOUR A1 - Dhillon, Maninder Singh A1 - Kübert-Flock, Carina A1 - Dahms, Thorsten A1 - Rummler, Thomas A1 - Arnault, Joel A1 - Steffan-Dewenter, Ingolf A1 - Ullmann, Tobias T1 - Evaluation of MODIS, Landsat 8 and Sentinel-2 data for accurate crop yield predictions: a case study using STARFM NDVI in Bavaria, Germany JF - Remote Sensing N2 - The increasing availability and variety of global satellite products and the rapid development of new algorithms has provided great potential to generate a new level of data with different spatial, temporal, and spectral resolutions. However, the ability of these synthetic spatiotemporal datasets to accurately map and monitor our planet on a field or regional scale remains underexplored. This study aimed to support future research efforts in estimating crop yields by identifying the optimal spatial (10 m, 30 m, or 250 m) and temporal (8 or 16 days) resolutions on a regional scale. The current study explored and discussed the suitability of four different synthetic (Landsat (L)-MOD13Q1 (30 m, 8 and 16 days) and Sentinel-2 (S)-MOD13Q1 (10 m, 8 and 16 days)) and two real (MOD13Q1 (250 m, 8 and 16 days)) NDVI products combined separately to two widely used crop growth models (CGMs) (World Food Studies (WOFOST), and the semi-empiric Light Use Efficiency approach (LUE)) for winter wheat (WW) and oil seed rape (OSR) yield forecasts in Bavaria (70,550 km\(^2\)) for the year 2019. For WW and OSR, the synthetic products’ high spatial and temporal resolution resulted in higher yield accuracies using LUE and WOFOST. The observations of high temporal resolution (8-day) products of both S-MOD13Q1 and L-MOD13Q1 played a significant role in accurately measuring the yield of WW and OSR. For example, L- and S-MOD13Q1 resulted in an R\(^2\) = 0.82 and 0.85, RMSE = 5.46 and 5.01 dt/ha for WW, R\(^2\) = 0.89 and 0.82, and RMSE = 2.23 and 2.11 dt/ha for OSR using the LUE model, respectively. Similarly, for the 8- and 16-day products, the simple LUE model (R\(^2\) = 0.77 and relative RMSE (RRMSE) = 8.17%) required fewer input parameters to simulate crop yield and was highly accurate, reliable, and more precise than the complex WOFOST model (R\(^2\) = 0.66 and RRMSE = 11.35%) with higher input parameters. Conclusively, both S-MOD13Q1 and L-MOD13Q1, in combination with LUE, were more prominent for predicting crop yields on a regional scale than the 16-day products; however, L-MOD13Q1 was advantageous for generating and exploring the long-term yield time series due to the availability of Landsat data since 1982, with a maximum resolution of 30 m. In addition, this study recommended the further use of its findings for implementing and validating the long-term crop yield time series in different regions of the world. KW - MODIS KW - Sentinel-2 KW - Landsat 8 KW - sustainable agriculture KW - decision-making KW - winter wheat KW - oil seed rape KW - resolution Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311132 SN - 2072-4292 VL - 15 IS - 7 ER - TY - THES A1 - Dietz, Andreas T1 - Central Asian Snow Cover Characteristics between 1986 and 2012 derived from Time Series of Medium Resolution Remote Sensing Data T1 - Charakteristik der Schneebedeckung in Zentralasien zwischen 1986 und 2012 abgeleitet von Zeitreihen mittelaufgelöster Fernerkundungsdaten N2 - The eminent importance of snow cover for climatic, hydrologic, anthropogenic, and economic reasons has been widely discussed in scientific literature. Up to 50% of the Northern Hemisphere is covered by snow at least temporarily, turning snow to the most prevalent land cover types at all. Depending on regular precipitation and temperatures below freezing point it is obvious that a changing climate effects snow cover characteristics fundamentally. Such changes can have severe impacts on local, national, and even global scale. The region of Central Asia is not an exception from this general rule, but are the consequences accompanying past, present, and possible future changes in snow cover parameters of particular importance. Being characterized by continental climate with hot and dry summers most precipitation accumulates during winter and spring months in the form of snow. The population in this 4,000,000 km² vast area is strongly depending on irrigation to facilitate agriculture. Additionally, electricity is often generated by hydroelectric power stations. A large proportion of the employed water originates from snow melt during spring months, implying that changes in snow cover characteristics will automatically affect both the total amount of obtainable water and the time when this water becomes available. The presented thesis explores the question how the spatial extent of snow covered surface has evolved since the year 1986. This investigation is based on the processing of medium resolution remote sensing data originating from daily MODIS and AVHRR sensors, thus forming a unique approach of snow cover analysis in terms of temporal and spatial resolution. Not only duration but also onset and melt of snow coverage are tracked over time, analyzing for systematic changes within this 26 years lasting time span. AVHRR data are processed from raw Level 1B orbit data to Level 3 thematic snow cover products. Both, AVHRR and MODIS snow maps undergo a further post-processing, producing daily full-area mosaics while completely eliminating inherent cloud cover. Snow cover parameters are derived based on these daily and cloud-free time series, allowing for a detailed analysis of current status and changes. The results confirm the predictions made by coarse resolution predictions from climate models: Central Asian snow cover is changing, posing new challenges for the ecosystem and future water supply. The changes, however, are not aimed at only one direction. Regions with decreasing snow cover exist as well as those where the duration of snow cover increases. A shift towards earlier snow cover start and melt can be observed, posing a serious challenge to water management authorities due to a changed runoff regime. N2 - Die Bedeutung von Schneebedeckung hinsichtlich klimatischer, hydrologischer, anthropogener und ökonomischer Gesichtspunkte wurde in der wissenschaftlichen Literatur bereits umfassend diskutiert. Bis zu 50% der Nördlichen Hemisphäre sind zeitweise schneebedeckt. Abhängig von Niederschlag und Temperaturen unter dem Gefrierpunkt beeinflussen Veränderungen des Klimas zwangsläufig die Charakteristik der Schneeverteilung. Solche Veränderungen können weitreichende Folgen auf lokalem, nationalem und sogar globalem Maßstab haben. Zentralasien stellt in diesem Zusammenhang keine Ausnahme dar, denn die Konsequenzen vergangener, aktueller und möglicher zukünftiger Schneebedeckungsveränderungen sind hier besonders gravierend: Wegen des kontinentalen Klimas und den damit verbundenen trocken-heißen Sommern fällt der Hauptteil des verfügbaren Niederschlages in den Winter- und Frühlingsmonaten in Form von Schnee. Die Bevölkerung in der etwa 4.000.000 km² großen Region ist in besonderem Maße von Bewässerungslandwirtschaft abhängig. Darüber hinaus wird ein Großteil der Elektrizität durch Wasserkraftwerke erzeugt. Das für diese Zwecke verwendete Wasser generiert sich hauptsächlich durch Schneeschmelze im Frühling. Veränderungen im Schneehaushalt haben unmittelbare Auswirkungen auf die Menge des zur Verfügung stehenden Wassers sowie den Zeitpunkt, zu dem dieses frei wird. Die vorgestellte Arbeit wird der Frage nachgehen, wie sich die räumliche Ausdehnung schneebedeckter Flächen seit dem Jahr 1986 entwickelt hat. Diese Untersuchung basiert auf der Analyse mittelaufgelöster Fernerkundungsdaten der Sensoren MODIS und AVHRR, die mit der verbundenen zeitlichen und räumlichen Auflösung einen einmaligen Ansatz darstellen. Nicht nur die Schneebedeckungsdauer, sondern auch Beginn und Ende der Schneesaison werden über die Zeit hinweg verfolgt, um systematische Veränderungen innerhalb der 26 Jahre andauernden Zeitreihe analysieren zu können. Rohe AVHRR Daten werden in thematische Produkte überführt, die dann zusammen mit den MODIS Schneeprodukten prozessiert werden um tägliche, wolkenfreie Mosaike der kompletten Region zu erzeugen. Die Ergebnisse bestätigen Vorhersagen grob aufgelöster Klimamodelle: Die Schneebedeckung in Zentralasien verändert sich und stellt damit die Ökosysteme und Wasserplanungsbehörden vor neue Herausforderungen. Die Änderungen sind jedoch nicht ausschließlich negativ: Regionen mit reduzierte verringerter Schneebedeckung existieren neben solchen, in denen die Bedeckung zunimmt. Eine generelle Verschiebung der Schneebedeckung hin zu früherem Beginn und früherem Ende der Saison kann ebenfalls beobachtet werden. Gerade diese Verschiebung stellt die Behörden und Wasserplaner vor deutliche Herausforderungen, da mit diesen Verschiebungen auch eine Änderung des zugrundeliegenden Abflussregimes einhergeht. N2 - Значение снежного покрова с климатической, гидрологической, антропогенной и экономической точки зрения в научной литературе широко обсуждалось. До 50% северное полушарие временами покрытa снегом. Поэтому снег являетса, по крайней мере временно самым распространенным покрытием земли. В замисимости от осадков и температур ниже градуса звмерзения, изменения климата воздействуют на характеристику распределения снега. Такие изменения могут иметь далеко идущие последствия местного, регионального и дaже глобального масштаба. Центральная Азия в данном моменте не являетса исключенная, потому что последствия прошлых, настояших, и возможных будушщих изменений покрова снега значительны серьезные: из-за континентального климата и связанного с этим сухого жаркого лета, основная часть осадков падает на зимние и весенние месяцы в виде снега. Жители этого примерно 4.000.000 км² региона, в большой степени зависят от оросительной системы. Кроме того, большая часть электричества производится с помощью электростанций. Использумая для этого вода образуется от тайния снега весной. Изменение количества снега оказывает непосредственное влияние на каличество готовой для использования воды и на время её образования. Представленная работа рассматривает вопрос как развивалось пространственное расширение снежного покрова площадей с 1986 года. Эти иследования базироваться на процессиворании данных сеисоров MODIS и AVHRR которые представляют связанные временем и пространством показыват беспримерную методику. Не только время снежного покрова, но и начало и конец снежного сезана наблюдались в течение продолжительного времене, чтобы анализировать систематические изменения произошедшие в течение 26 лет. Результаты подтверждают предсказание модель климата с низким разрешением: снежный покров Центральной Азии изменяетса и ставит экологическую систему и управление водных планирования перед новыми задачами. Однако изменения направленн не только в одну сторону: регионы с уменьшением снежного покрова существовать рядом с такими, в которых величена снежного покрова увеличивается. Всеобщим сдвиг снежного покрова в сторону раннего начала и раннего окончания сезона так же наблюдается. Как раз эти сдвиги ставят а власти и хозяйства вода планирования перед сложные задачи, так как с этими сдвигами связаны и изменения в системе сточных вод. KW - Zentralasien KW - Satellitenfernerkundung KW - Schnee KW - Snow cover KW - MODIS KW - AVHRR KW - snow cover duration KW - Remote sensing of snow KW - Gletscherschwankung KW - Geschichte 1986 - 2012 Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-101221 ER - TY - JOUR A1 - Dietz, Andreas J. A1 - Conrad, Christopher A1 - Kuenzer, Claudia A1 - Gesell, Gerhard A1 - Dech, Stefan T1 - Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data JF - Remote Sensing N2 - Central Asia consists of the five former Soviet States Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan, therefore comprising an area of similar to 4 Mio km(2). The continental climate is characterized by hot and dry summer months and cold winter seasons with most precipitation occurring as snowfall. Accordingly, freshwater supply is strongly depending on the amount of accumulated snow as well as the moment of its release after snowmelt. The aim of the presented study is to identify possible changes in snow cover characteristics, consisting of snow cover duration, onset and offset of snow cover season within the last 28 years. Relying on remotely sensed data originating from medium resolution imagers, these snow cover characteristics are extracted on a daily basis. The resolution of 500-1000 m allows for a subsequent analysis of changes on the scale of hydrological sub-catchments. Long-term changes are identified from this unique dataset, revealing an ongoing shift towards earlier snowmelt within the Central Asian Mountains. This shift can be observed in most upstream hydro catchments within Pamir and Tian Shan Mountains and it leads to a potential change of freshwater availability in the downstream regions, exerting additional pressure on the already tensed situation. KW - AVHRR data KW - satellite KW - Northern Xinjiang KW - cloud KW - products KW - Central Asia KW - climate change KW - Amu Darya KW - Syr Darya KW - Tian Shan KW - snow KW - snow cover KW - snow cover duration KW - Pamir KW - AVHRR KW - MODIS KW - algorithm KW - validation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114470 SN - 2072-4292 VL - 6 IS - 12 ER - TY - JOUR A1 - Dubovyk, Olena A1 - Menz, Gunter A1 - Conrad, Christopher A1 - Kann, Elena A1 - Machwitz, Miriam A1 - Khamzina, Asia T1 - Spatio-temporal analyses of cropland degradation in the irrigated lowlands of Uzbekistan using remote-sensing and logistic regression modeling JF - Environmental Monitoring and Assessment N2 - Advancing land degradation in the irrigated areas of Central Asia hinders sustainable development of this predominantly agricultural region. To support decisions on mitigating cropland degradation, this study combines linear trend analysis and spatial logistic regression modeling to expose a land degradation trend in the Khorezm region, Uzbekistan, and to analyze the causes. Time series of the 250-m MODIS NDVI, summed over the growing seasons of 2000–2010, were used to derive areas with an apparent negative vegetation trend; this was interpreted as an indicator of land degradation. About one third (161,000 ha) of the region’s area experienced negative trends of different magnitude. The vegetation decline was particularly evident on the low-fertility lands bordering on the natural sandy desert, suggesting that these areas should be prioritized in mitigation planning. The results of logistic modeling indicate that the spatial pattern of the observed trend is mainly associated with the level of the groundwater table (odds = 330 %), land-use intensity (odds = 103 %), low soil quality (odds = 49 %), slope (odds = 29 %), and salinity of the groundwater (odds = 26 %). Areas, threatened by land degradation, were mapped by fitting the estimated model parameters to available data. The elaborated approach, combining remote-sensing and GIS, can form the basis for developing a common tool for monitoring land degradation trends in irrigated croplands of Central Asia. KW - lower reaches of Amu Darya River KW - cropland abandonment KW - linear trend analysis KW - logistic regression modeling KW - MODIS KW - NDVI Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129912 VL - 185 IS - 6 ER - TY - JOUR A1 - Knauer, Kim A1 - Gessner, Ursula A1 - Fensholt, Rasmus A1 - Forkuor, Gerald A1 - Kuenzer, Claudia T1 - Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: the role of population growth and implications for the environment JF - Remote Sensing N2 - Burkina Faso ranges amongst the fastest growing countries in the world with an annual population growth rate of more than three percent. This trend has consequences for food security since agricultural productivity is still on a comparatively low level in Burkina Faso. In order to compensate for the low productivity, the agricultural areas are expanding quickly. The mapping and monitoring of this expansion is difficult, even on the basis of remote sensing imagery, since the extensive farming practices and frequent cloud coverage in the area make the delineation of cultivated land from other land cover and land use types a challenging task. However, as the rapidly increasing population could have considerable effects on the natural resources and on the regional development of the country, methods for improved mapping of LULCC (land use and land cover change) are needed. For this study, we applied the newly developed ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) framework to generate high temporal (8-day) and high spatial (30 m) resolution NDVI time series for all of Burkina Faso for the years 2001, 2007, and 2014. For this purpose, more than 500 Landsat scenes and 3000 MODIS scenes were processed with this automated framework. The generated ESTARFM NDVI time series enabled extraction of per-pixel phenological features that all together served as input for the delineation of agricultural areas via random forest classification at 30 m spatial resolution for entire Burkina Faso and the three years. For training and validation, a randomly sampled reference dataset was generated from Google Earth images and based on expert knowledge. The overall accuracies of 92% (2001), 91% (2007), and 91% (2014) indicate the well-functioning of the applied methodology. The results show an expansion of agricultural area of 91% between 2001 and 2014 to a total of 116,900 km\(^2\). While rainfed agricultural areas account for the major part of this trend, irrigated areas and plantations also increased considerably, primarily promoted by specific development projects. This expansion goes in line with the rapid population growth in most provinces of Burkina Faso where land was still available for an expansion of agricultural area. The analysis of agricultural encroachment into protected areas and their surroundings highlights the increased human pressure on these areas and the challenges of environmental protection for the future. KW - remote sensing KW - Africa KW - agriculture KW - Burkina Faso KW - data fusion KW - ESTARFM framework KW - irrigation KW - land surface phenology KW - Landsat KW - MODIS KW - plantation KW - protected areas KW - TIMESAT Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171905 VL - 9 IS - 2 ER - TY - JOUR A1 - Knauer, Kim A1 - Gessner, Ursula A1 - Fensholt, Rasmus A1 - Kuenzer, Claudia T1 - An ESTARFM Fusion Framework for the Generation of Large-Scale Time Series in Cloud-Prone and Heterogeneous Landscapes JF - Remote Sensing N2 - Monitoring the spatio-temporal development of vegetation is a challenging task in heterogeneous and cloud-prone landscapes. No single satellite sensor has thus far been able to provide consistent time series of high temporal and spatial resolution for such areas. In order to overcome this problem, data fusion algorithms such as the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) have been established and frequently used in recent years to generate high-resolution time series. In order to make it applicable to larger scales and to increase the input data availability especially in cloud-prone areas, an ESTARFM framework was developed in this study introducing several enhancements. An automatic filling of cloud gaps was included in the framework to make best use of available, even partly cloud-covered Landsat images. Furthermore, the ESTARFM algorithm was enhanced to automatically account for regional differences in the heterogeneity of the study area. The generation of time series was automated and the processing speed was accelerated significantly by parallelization. To test the performance of the developed ESTARFM framework, MODIS and Landsat-8 data were fused for generating an 8-day NDVI time series for a study area of approximately 98,000 km\(^{2}\) in West Africa. The results show that the ESTARFM framework can accurately produce high temporal resolution time series (average MAE (mean absolute error) of 0.02 for the dry season and 0.05 for the vegetative season) while keeping the spatial detail in such a heterogeneous, cloud-prone region. The developments introduced within the ESTARFM framework establish the basis for large-scale research on various geoscientific questions related to land degradation, changes in land surface phenology or agriculture KW - vegetation dynamics KW - ESTARFM KW - MODIS KW - Landsat KW - phenology KW - West Africa KW - cloud gap filling KW - time series analysis Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-180712 VL - 8 IS - 5 ER -