TY - JOUR A1 - Brumberg, Joachim A1 - Küsters, Sebastian A1 - Al-Momani, Ehab A1 - Marotta, Giorgio A1 - Cosgrove, Kelly P. A1 - van Dyck, Christopher H. A1 - Herrmann, Ken A1 - Homola, György A. A1 - Pezzoli, Gianni A1 - Buck, Andreas K. A1 - Volkmann, Jens A1 - Samnick, Samuel A1 - Isaias, Ioannis U. T1 - Cholinergic activity and levodopa-induced dyskinesia: a multitracer molecular imaging study JF - Annals of Clinical and Translational Neurology N2 - Objective: To investigate the association between levodopa‐induced dyskinesias and striatal cholinergic activity in patients with Parkinson's disease. Methods: This study included 13 Parkinson's disease patients with peak‐of‐dose levodopa‐induced dyskinesias, 12 nondyskinetic patients, and 12 healthy controls. Participants underwent 5‐[\(^{123}\)I]iodo‐3‐[2(S)‐2‐azetidinylmethoxy]pyridine single‐photon emission computed tomography, a marker of nicotinic acetylcholine receptors, [\(^{123}\)I]N‐ω‐fluoropropyl‐2β‐carbomethoxy‐3β‐(4‐iodophenyl)nortropane single‐photon emission computed tomography, to measure dopamine reuptake transporter density and 2‐[\(^{18}\)F]fluoro‐2‐deoxyglucose positron emission tomography to assess regional cerebral metabolic activity. Striatal binding potentials, uptake values at basal ganglia structures, and correlations with clinical variables were analyzed. Results: Density of nicotinic acetylcholine receptors in the caudate nucleus of dyskinetic subjects was similar to that of healthy controls and significantly higher to that of nondyskinetic patients, in particular, contralaterally to the clinically most affected side. Interpretation: Our findings support the hypothesis that the expression of dyskinesia may be related to cholinergic neuronal excitability in a dopaminergic‐depleted striatum. Cholinergic signaling would play a role in maintaining striatal dopaminergic responsiveness, possibly defining disease phenotype and progression. KW - levodopa-induced dyskinesia KW - cholinergic activity KW - Parkinson’s disease Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170406 VL - 4 IS - 9 ER - TY - JOUR A1 - Canessa, Andrea A1 - Pozzi, Nicolò G. A1 - Arnulfo, Gabriele A1 - Brumberg, Joachim A1 - Reich, Martin M. A1 - Pezzoli, Gianni A1 - Ghilardi, Maria F. A1 - Matthies, Cordula A1 - Steigerwald, Frank A1 - Volkmann, Jens A1 - Isaias, Ioannis U. T1 - Striatal Dopaminergic Innervation Regulates Subthalamic Beta-Oscillations and Cortical-Subcortical Coupling during Movements: Preliminary Evidence in Subjects with Parkinson's Disease JF - Frontiers in Human Neuroscience N2 - Activation of the basal ganglia has been shown during the preparation and execution of movement. However, the functional interaction of cortical and subcortical brain areas during movement and the relative contribution of dopaminergic striatal innervation remains unclear. We recorded local field potential (LFP) activity from the subthalamic nucleus (STN) and high-density electroencephalography (EEG) signals in four patients with Parkinson’s disease (PD) off dopaminergic medication during a multi-joint motor task performed with their dominant and non-dominant hand. Recordings were performed by means of a fully-implantable deep brain stimulation (DBS) device at 4 months after surgery. Three patients also performed a single-photon computed tomography (SPECT) with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (FP-CIT) to assess striatal dopaminergic innervation. Unilateral movement execution led to event-related desynchronization (ERD) followed by a rebound after movement termination event-related synchronization (ERS) of oscillatory beta activity in the STN and primary sensorimotor cortex of both hemispheres. Dopamine deficiency directly influenced movement-related beta-modulation, with greater beta-suppression in the most dopamine-depleted hemisphere for both ipsi- and contralateral hand movements. Cortical-subcortical, but not interhemispheric subcortical coherencies were modulated by movement and influenced by striatal dopaminergic innervation, being stronger in the most dopamine-depleted hemisphere. The data are consistent with a role of dopamine in shielding subcortical structures from an excessive cortical entrapment and cross-hemispheric coupling, thus allowing fine-tuning of movement. KW - beta oscillations KW - Parkinson’s disease KW - motor control KW - movement disorders KW - imaging KW - subthalamic nucleus KW - coherence analysis Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164061 VL - 10 IS - 611 ER - TY - JOUR A1 - Palmisano, Chiara A1 - Beccaria, Laura A1 - Haufe, Stefan A1 - Volkmann, Jens A1 - Pezzoli, Gianni A1 - Isaias, Ioannis U. T1 - Gait initiation impairment in patients with Parkinson’s disease and freezing of gait JF - Bioengineering N2 - Freezing of gait (FOG) is a sudden episodic inability to produce effective stepping despite the intention to walk. It typically occurs during gait initiation (GI) or modulation and may lead to falls. We studied the anticipatory postural adjustments (imbalance, unloading, and stepping phase) at GI in 23 patients with Parkinson’s disease (PD) and FOG (PDF), 20 patients with PD and no previous history of FOG (PDNF), and 23 healthy controls (HCs). Patients performed the task when off dopaminergic medications. The center of pressure (CoP) displacement and velocity during imbalance showed significant impairment in both PDNF and PDF, more prominent in the latter patients. Several measurements were specifically impaired in PDF patients, especially the CoP displacement along the anteroposterior axis during unloading. The pattern of segmental center of mass (SCoM) movements did not show differences between groups. The standing postural profile preceding GI did not correlate with outcome measurements. We have shown impaired motor programming at GI in Parkinsonian patients. The more prominent deterioration of unloading in PDF patients might suggest impaired processing and integration of somatosensory information subserving GI. The unaltered temporal movement sequencing of SCoM might indicate some compensatory cerebellar mechanisms triggering time-locked models of body mechanics in PD. KW - freezing of gait KW - gait initiation KW - Parkinson’s disease KW - posture KW - segmental centers of mass KW - anthropometric measurement KW - base of support Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297579 SN - 2306-5354 VL - 9 IS - 11 ER - TY - JOUR A1 - Palmisano, Chiara A1 - Brandt, Gregor A1 - Vissani, Matteo A1 - Pozzi, Nicoló G. A1 - Canessa, Andrea A1 - Brumberg, Joachim A1 - Marotta, Giorgio A1 - Volkmann, Jens A1 - Mazzoni, Alberto A1 - Pezzoli, Gianni A1 - Frigo, Carlo A. A1 - Isaias, Ioannis U. T1 - Gait Initiation in Parkinson’s Disease: Impact of Dopamine Depletion and Initial Stance Condition JF - Frontiers in Bioengineering and Biotechnology N2 - Postural instability, in particular at gait initiation (GI), and resulting falls are a major determinant of poor quality of life in subjects with Parkinson’s disease (PD). Still, the contribution of the basal ganglia and dopamine on the feedforward postural control associated with this motor task is poorly known. In addition, the influence of anthropometric measures (AM) and initial stance condition on GI has never been consistently assessed. The biomechanical resultants of anticipatory postural adjustments contributing to GI [imbalance (IMB), unloading (UNL), and stepping phase) were studied in 26 unmedicated subjects with idiopathic PD and in 27 healthy subjects. A subset of 13 patients was analyzed under standardized medication conditions and the striatal dopaminergic innervation was studied in 22 patients using FP-CIT and SPECT. People with PD showed a significant reduction in center of pressure (CoP) displacement and velocity during the IMB phase, reduced first step length and velocity, and decreased velocity and acceleration of the center of mass (CoM) at toe off of the stance foot. All these measurements correlated with the dopaminergic innervation of the putamen and substantially improved with levodopa. These results were not influenced by anthropometric parameters or by the initial stance condition. In contrast, most of the measurements of the UNL phase were influenced by the foot placement and did not correlate with putaminal dopaminergic innervation. Our results suggest a significant role of dopamine and the putamen particularly in the elaboration of the IMB phase of anticipatory postural adjustments and in the execution of the first step. The basal ganglia circuitry may contribute to defining the optimal referent body configuration for a proper initiation of gait and possibly gait adaptation to the environment. KW - gait initiation KW - Parkinson’s disease KW - basal ganglia KW - dopamine KW - base of support KW - anthropometric measurements Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200801 SN - 2296-4185 VL - 8 ER - TY - JOUR A1 - Pozzi, Nicoló Gabriele A1 - Bolzoni, Francesco A1 - Biella, Gabriele Eliseo Mario A1 - Pezzoli, Gianni A1 - Ip, Chi Wang A1 - Volkmann, Jens A1 - Cavallari, Paolo A1 - Asan, Esther A1 - Isaias, Ioannis Ugo T1 - Brain noradrenergic innervation supports the development of Parkinson’s tremor: a study in a reserpinized rat model JF - Cells N2 - The pathophysiology of tremor in Parkinson’s disease (PD) is evolving towards a complex alteration to monoaminergic innervation, and increasing evidence suggests a key role of the locus coeruleus noradrenergic system (LC-NA). However, the difficulties in imaging LC-NA in patients challenge its direct investigation. To this end, we studied the development of tremor in a reserpinized rat model of PD, with or without a selective lesioning of LC-NA innervation with the neurotoxin DSP-4. Eight male rats (Sprague Dawley) received DSP-4 (50 mg/kg) two weeks prior to reserpine injection (10 mg/kg) (DR-group), while seven male animals received only reserpine treatment (R-group). Tremor, rigidity, hypokinesia, postural flexion and postural immobility were scored before and after 20, 40, 60, 80, 120 and 180 min of reserpine injection. Tremor was assessed visually and with accelerometers. The injection of DSP-4 induced a severe reduction in LC-NA terminal axons (DR-group: 0.024 ± 0.01 vs. R-group: 0.27 ± 0.04 axons/um\(^2\), p < 0.001) and was associated with significantly less tremor, as compared to the R-group (peak tremor score, DR-group: 0.5 ± 0.8 vs. R-group: 1.6 ± 0.5; p < 0.01). Kinematic measurement confirmed the clinical data (tremor consistency (% of tremor during 180 s recording), DR-group: 37.9 ± 35.8 vs. R-group: 69.3 ± 29.6; p < 0.05). Akinetic–rigid symptoms did not differ between the DR- and R-groups. Our results provide preliminary causal evidence for a critical role of LC-NA innervation in the development of PD tremor and foster the development of targeted therapies for PD patients. KW - Parkinson’s disease KW - tremor KW - locus coeruleus KW - noradrenaline KW - reserpinized rat model Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357721 SN - 2073-4409 VL - 12 IS - 21 ER -