TY - THES A1 - Fischer, Andreas T1 - The Role of Protein-Protein Interactions in the Activation Cycle of RAF Kinases T1 - Die Rolle von Protein-Protein Interaktionen im Aktivierungszyklus der RAF Kinasen N2 - Members of the RAF protein kinase family are key regulators of diverse cellular processes. The need for isoform-specific regulation is reflected by the fact that all RAFs not only display a different degree of activity but also perform isoform-specific functions at diverse cellular compartments. Protein-protein-interactions and phosphorylation events are essential for the signal propagation along the Ras-RAF-MEK-ERK cascade. More than 40 interaction partners of RAF kinases have been described so far. Two of the most important regulators of RAF activity, namely Ras and 14-3-3 proteins, are subject of this work. So far, coupling of RAF with its upstream modulator protein Ras has only been investigated using truncated versions of RAF and regardless of the lipidation status of Ras. We quantitatively analyzed the binding properties of full-length B- and C-RAF to farnesylated H-Ras in presence and absence of membrane lipids. While the isolated Ras-binding domain of RAF exhibit a high binding affinity to both, farnesylated and nonfarnesylated H-Ras, the full-length RAF kinases demonstrate crucial differences in their affinity to Ras. In contrast to C-RAF that requires carboxyterminal farnesylated H-Ras for interaction at the plasma membrane, B-RAF also binds to nonfarnesylated H-Ras in the cytosol. For identification of the potential farnesyl binding site we used several fragments of the regulatory domain of C-RAF and found that the binding of farnesylated H-Ras is considerably increased in the presence of the cysteine-rich domain of RAF. In B-RAF a sequence of 98 amino acids at the extreme N terminus enables binding of Ras independent of its farnesylation status. The deletion of this region altered Ras binding as well as kinase properties of B-RAF to resemble C-RAF. Immunofluorescence studies in mammalian cells revealed essential differences between B- and C-RAF regarding the colocalization with Ras. In conclusion, our data suggest that that B-RAF, in contrast to C-RAF, is also accessible for nonfarnesylated Ras in the cytosolic environment due to its prolonged N terminus. Therefore, the activation of B-RAF may take place both at the plasma membrane and in the cytosolic environment. Furthermore, the interaction of RAF isoforms with Ras at different subcellular sites may also be governed by the complex formation with 14-3-3 proteins. 14-3-3 adapter proteins play a crucial role in the activation of RAF kinases, but so far no information about the selectivity of the seven mammalian isoforms concerning RAF association and activation is available. We analyzed the composition of in vivo RAF/14-3-3 complexes isolated from mammalian cells with mass spectrometry and found that B-RAF associates with a greater variety of 14-3-3 proteins than C- and A-RAF. In vitro binding assays with purified proteins supported this observation since B-RAF showed highest affinity to all seven 14-3-3 isoforms, whereas C-RAF exhibited reduced affinity to some and A-RAF did not bind to the 14-3-3 isoforms epsilon, sigma, and tau. To further examine this isoform specificity we addressed the question of whether both homo- and heterodimeric forms of 14-3-3 proteins participate in RAF signaling. By deleting one of the two 14-3-3 isoforms in Saccharomyces cerevisiae we were able to show that homodimeric 14-3-3 proteins are sufficient for functional activation of B- and C-RAF. In this context, the diverging effect of the internal, inhibiting and the activating C-terminal 14-3-3 binding domain in RAF could be demonstrated. Furthermore, we unveil that prohibitin stimulates C-RAF activity by interfering with 14-3-3 at the internal binding site. This region of C-RAF is also target of phosphorylation as part of a negative feedback loop. Using tandem MS we were able to identify so far unknown phosphorylation sites at serines 296 and 301. Phosphorylation of these sites in vivo, mediated by activated ERK, leads to inhibition of C-RAF kinase activity. The relationship of prohibitin interference with 14-3-3 binding and phosphorylation of adjacent sites has to be further elucidated. Taken together, our results provide important new information on the isoform-specific regulation of RAF kinases by differential interaction with Ras and 14-3-3 proteins and shed more light on the complex mechanism of RAF kinase activation. N2 - RAF Protein Kinasen sind essentielle Regulatoren verschiedener zellulärer Prozesse. Unterschiedlich starke Aktivitäten und Lokalisation der drei RAF Isoformen erfordern eine isoform-spezifische Regulation. Der Einfluss von Protein-Protein Interaktionen und Phosphorylierungen ist dabei mitentscheidend für die Signalweiterleitung entlang der Ras-RAF-MEK-ERK Kaskade. Mehr als 40 Interaktionspartner der RAF Kinasen wurden bereits beschrieben von denen zwei der wichtigsten, Ras und 14-3-3 Proteine, Gegenstand der vorliegenden Arbeit sind. Die Interaktion von RAF mit seinem vorgeschaltetem Modulatorprotein Ras wurde bislang nur mit verkürzten RAF-Proteinen und ohne Rücksicht auf den Lipidierungsgrad von Ras untersucht. Wir haben die Bindeeigenschaften von B- und C-RAF in voller, nativer Länge zu farnesyliertem H-Ras in Gegenwart und Abwesenheit von Membranlipiden quantifiziert. Während die isolierte Ras-Bindungsdomäne eine hohe Affinität sowohl zu farnesyliertem als auch nicht-farnesyliertem H-Ras aufweist, zeigen die RAF Proteine in voller Länge entscheidende Unterschiede in ihrem Bindeverhalten zu Ras. C-RAF benötigt für eine effiziente Interaktion mit H-Ras dessen C-terminale Farnesylgruppe, wobei B-RAF auch an nicht-farnesyliertes H-Ras im Cytosol bindet. Um die verantwortliche Farnesylbinderegion zu identifizieren haben wir verschiedene Fragmente der regulatorischen Domäne von C-RAF eingesetzt. Dadurch konnten wir zeigen, dass die Affinität zu farnesyliertem Ras in Gegenwart der sogenannten Cystein-reichen Domäne von RAF beträchtlich erhöht war. In B-RAF ist eine Sequenz von 98 Aminosäuren am N-Terminus verantwortlich für die Ras-Bindung unabhängig von dessen Farnesylierungszustand. Die Deletion dieser Sequenz von B-RAF veränderte die Ras-Bindungseigenschaften sowie die Kinaseaktivität vergleichbar mit C-RAF. Durch Immunfluoreszenzversuche in Säugerzellen konnten darüber hinaus Unterschiede in der Kolokalisation von B- und C-RAF mit Ras beobachtet werden. Zusammenfassend deuten unsere Ergebnisse darauf hin, dass B-RAF, im Gegensatz zu C-RAF, aufgrund seines verlängerten N-Terminus in der Lage ist bereits im Cytosol auch mit unfarnesyliertem Ras zu interagieren, wodurch die Aktivierung von B-RAF sowohl im Cytosol als auch an der Plasmamenbran erfolgen kann. Die Interaktion der RAF-Isoformen mit Ras in unterschiedlichen zellulären Kompartimenten kann aber auch durch die Komplexbildung mit 14-3-3 Proteinen beeinflusst werden. Die 14-3-3 Adapter Proteine spielen eine entscheidende Rolle im Aktivierungszyklus der RAF Proteine. Bislang waren jedoch keine Details bezüglich der Selektivität der sieben 14-3-3 Isoformen aus Säugerzellen hinsichtlich der Assoziation mit und Aktivierung der RAF Kinasen bekannt. Wir haben RAF/14-3-3 Komplexe aus Säugerzellen isoliert und durch Massenspektrometrie analysiert. Dadurch konnten wir zeigen, dass B-RAF mit einer größeren Vielfalt an 14-3-3 Isoformen bindet als C- und A-RAF. In vitro Bindungsversuche mit gereinigten Proteinen bestätigten die höhere Affinität von B-RAF zu allen sieben Säuger-14-3-3 Proteinen. C-RAF dagegen zeigte eine deutlich reduzierte Affinität, während für A-RAF keine Bindung zu den 14-3-3 Isoformen epsilon, sigma, und tau festgestellt wurde. Um diese Isoformspezifität weiter aufzuklären haben wir untersucht, ob sowohl Homo- als auch Heterodimere von 14-3-3 in der Lage sind die RAF-Signaltransduktion zu beeinflussen. Durch die Deletion einer der beiden 14-3-3 Isoformen aus Saccharomyces cerevisiae konnten wir zeigen, dass bereits ein 14-3-3 Homodimer für die korrekte Aktivierung von B- und C-RAF ausreichend ist. In diesem Zusammenhang konnte auch die Rolle der internen, inhibierenden 14-3-3 Bindestelle in RAF gegenüber der C-terminalen, aktivierenden Stelle dargelegt werden. Zusätzlich zeigen wir, dass Prohibitin seinen aktivierenden Einfluss gegenüber C-RAF durch die Beeinträchtigung der 14-3-3 Bindung an der internen Stelle in RAF ausübt. Diese Region in C-RAF ist das Ziel von Phosphorylierungen im Zuge eines negativen Rückkopplungsmechanismus. Durch den Einsatz von Tandem-Massenspektrometrie konnten wir bislang unbekannte Phosphorylierungsstellen an den Serinen 296 und 301 identifizieren deren ERK-vermittelte Phosphorylierung in vivo eine Inaktivierung der C-RAF bewirkt. Der Zusammenhang zwischen der Behinderung der 14-3-3 Anlagerung durch Prohibitin und die Phosphorylierung in unmittelbarer Nachbarschaft bedarf weiterer Untersuchungen. Zusammengefasst liefern unsere Ergebnisse wichtige Informationen bezüglich der isoform-spezifischen Regulation der RAF Kinasen durch die Interaktion mit Ras und 14-3-3 Proteinen und helfen die komplexen Mechanismen der RAF Aktivierung weiter aufzuklären. KW - Signaltransduktion KW - Raf KW - Biochemie KW - Ras KW - H-ras KW - Proteininteraktion KW - signal transduction KW - biochemistry KW - Ras KW - Raf Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48139 N1 - Aus rechtlichen Gründen sind die in der Dissertation abgedruckten, bereits in Zeitschriften veröffentlichten Artikel (Seiten 34 - 80) nicht in der elektronischen Version enthalten. ER - TY - THES A1 - Lütkenhaus, Katharina T1 - Tumour development in Raf-driven cancer mouse models T1 - Tumor-Entwicklung in Raf-transgenen Mausmodellen N2 - Metastasis is the cause of death in 90% of cancer-related deaths in men. Melanoma and Non-Small-Cell Lung Cancer (NSCLC) are both tumour types with poor prognosis, lacking appropriate therapeutic possibilities, not least because of their high rate of metastasis. Thus understanding the process of metastasis might unravel therapeutic targets for developing further therapeutic strategies. The generation of a transgenic mouse model expressing B-RafV600E in melanocytes, a mutation that is found in about 60% of all melanoma, would result in an ideal tool to study melanoma progression and metastasis. In this work, a doxycycline-inducible system was constructed for expression of B-RafV600E and transgenic animals were generated, but the expression system has to be improved, since this strategy didn’t give rise to any viable, transgene carrying mice. Furthermore, since it was shown in the work of others that the metastatic behavior of tumour cell lines could be reversed by an embryonic microenvironment and the influence of a tumourigenic microenvironment on melanocytes lead to the acquisition of tumour cell-like characteristics, the question arose, whether B-Raf is as important in melanocyte development as it is in melanoma progression. In this work, the embryonal melanocyte development in B-Raf-deficient and wildtype mouse embryos was examined and there were no differences observed in the localization and number of neural crest stem cells as well as in the localization of the dopachrome-tautomerase positive melanoblasts in the embryos and in cultured neural tube explants. The expression of oncogenic C-Raf in lung epithelial cells has yielded a model for NSCLC giving rise to adenomas lacking spontaneous progression or metastasis. The co-expression of c-Myc in the same cells accelerates the tumour development and gives rise to liver and lymphnode metastases. The expression of c-Myc alone in lung epithelial cells leads to late tumour development with incomplete penetrance. A mutation screen in this work resulted in the observation that a secondary mutation in KRas or LKB1 is necessary for tumour formation in the c-Myc single transgenic animals and suggested metastasis as an early event, since the corresponding metastases of the mutation-prone primary lung tumours were negative for the observed mutations. Furthermore, in this work it was shown that the expression of chicken c-Myc in a non-metastatic NSCLC cell line leads to metastatic clones, showing that c-Myc is sufficient to induce metastasis. Additionally a panel of metastasis markers was identified, that might serve as diagnostic markers in the future. N2 - In 90% der Todesfälle aufgrund von Krebserkrankungen sind Metastasen für den Tod des Patienten verantwortlich. Sowohl Melanom, als auch nicht-kleinzelliges Lungenkarzinom (Non-Small Cell Lung Cancer, NSCLC) sind beides Tumortypen, die eine schlechte Prognose haben und für die sich wenige Therapiemöglichkeiten bieten, nicht zuletzt aufgrund ihrer häufigen Metastasierung. Somit würde ein besseres Verständnis des Metastasierungsprozesses neue therapeutische Angriffspunkte aufdecken und damit die Möglichkeit zur Entwicklung neuer Therapieansätze bieten. Die Entwicklung eines transgenen Mausmodells, in dem B-RafV600E, eine Mutation die man in 60% der Melanompatienten findet, melanocyten-spezifisch exprimiert wird, würde ein geeignetes Werkzeug ergeben, um die Entstehung und die Metastasierung von Melanom zu untersuchen. Im Rahmen dieser Arbeit wurde ein Konstrukt zur Doxycyclin-abhängingen Expression von B-RafV600E erzeugt und mit diesem wurden transgene Tiere generiert. Da dieser Ansatz nicht zu lebensfähigen, das Transgen tragenden Linien führte, muss das Expressionssystem weiter verbessert werden. Da in der Arbeit von anderen gezeigt wurde, dass das metastasierende Verhalten von Tumor-Zelllinien durch eine embryonale Mikroumgebung aufgehoben werden konnte, und dass der Einfluss einer tumorähnlichen Mikroumgebung in Melanocyten zur Erlangung von Tumorzell-Charakteristika führte, kam die Frage auf, ob B-Raf eine ähnlich wichtige Rolle in der Entwicklung von Melanocyten wie in der Entstehung von Melanomen spielt. Im Rahmen dieser Arbeit wurde die embryonale Melanocytenentwicklung in B-Raf-defizienten sowie in wildtypischen Mausembryonen untersucht. Es konnten keine Unterschiede in der Lokalisation und Anzahl von Stammzellen des Neuralrohres und in der Lokalisation von Dopachrome-tautomerase positiven Melanoblasten in den Embryonen und in kultivierten Explantaten des Neuralrohres festgestellt werden. Die Expression von oncogenem C-Raf in Lungenepithelzellen von Mäusen ist ein Modell für NSCLC und führt zur Ausbildung von Adenomen ohne spontane Weiterentwicklung oder Metastasen. Die Koexpression von C-Raf mit c-Myc in denselben Zellen beschleunigt die Entwicklung von Tumoren und führt zu Metastasen in Leber und Lymphknoten. Die Expression von c-Myc alleine in Lungenepithelzellen führt zu einer verspäteten Entwicklung von Tumoren mit nicht vollständiger Penetranz. Ein Screening für Mutation im Rahmen dieser Arbeit führte zu der Beobachtung, dass Sekundärmutationen in KRas oder LKB1 für die Tumorentwicklung in den c-Myc transgenen Tieren notwendig sind und dass die Metastasierung ein frühes Ereignis zu seien scheint, da die zugehörigen Metastasen in Leber und Lymphknoten im Gegensatz zum Primärtumor in der Lunge keine Mutationen in diesen Genen trugen. Desweiteren wurde in dieser Arbeit gezeigt, dass die Expression von avianem c-Myc in einer nicht-metastasierenden NSCLC Zelllinie zu metastasierenden Klonen führte, was zeigt, dass c-Myc ausreichend ist um Metastasierung auszulösen. Zusätzlich wurde eine Reihe von Markern für Metastasen identifiziert, die in Zukunft als diagnostische Marker Verwendung finden könnten. KW - Raf KW - Melanom KW - Metastase KW - Lungenkrebs KW - Raf KW - Myc KW - NSCLC KW - metastasis KW - Raf KW - Myc Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48332 ER -