TY - JOUR A1 - Sogno, Patrick A1 - Traidl-Hoffmann, Claudia A1 - Kuenzer, Claudia T1 - Earth Observation data supporting non-communicable disease research: a review JF - Remote Sensing N2 - A disease is non-communicable when it is not transferred from one person to another. Typical examples include all types of cancer, diabetes, stroke, or allergies, as well as mental diseases. Non-communicable diseases have at least two things in common — environmental impact and chronicity. These diseases are often associated with reduced quality of life, a higher rate of premature deaths, and negative impacts on a countries' economy due to healthcare costs and missing work force. Additionally, they affect the individual's immune system, which increases susceptibility toward communicable diseases, such as the flu or other viral and bacterial infections. Thus, mitigating the effects of non-communicable diseases is one of the most pressing issues of modern medicine, healthcare, and governments in general. Apart from the predisposition toward such diseases (the genome), their occurrence is associated with environmental parameters that people are exposed to (the exposome). Exposure to stressors such as bad air or water quality, noise, extreme heat, or an overall unnatural surrounding all impact the susceptibility to non-communicable diseases. In the identification of such environmental parameters, geoinformation products derived from Earth Observation data acquired by satellites play an increasingly important role. In this paper, we present a review on the joint use of Earth Observation data and public health data for research on non-communicable diseases. We analyzed 146 articles from peer-reviewed journals (Impact Factor ≥ 2) from all over the world that included Earth Observation data and public health data for their assessments. Our results show that this field of synergistic geohealth analyses is still relatively young, with most studies published within the last five years and within national boundaries. While the contribution of Earth Observation, and especially remote sensing-derived geoinformation products on land surface dynamics is on the rise, there is still a huge potential for transdisciplinary integration into studies. We see the necessity for future research and advocate for the increased incorporation of thematically profound remote sensing products with high spatial and temporal resolution into the mapping of exposomes and thus the vulnerability and resilience assessment of a population regarding non-communicable diseases. KW - Earth Observation KW - land surface dynamics KW - atmosphere KW - exposure KW - geoanalysis KW - non-communicable disease KW - public health KW - remote sensing KW - review Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211113 SN - 2072-4292 VL - 12 IS - 16 ER - TY - JOUR A1 - Uereyen, Soner A1 - Kuenzer, Claudia T1 - A review of earth observation-based analyses for major river basins JF - Remote Sensing N2 - Regardless of political boundaries, river basins are a functional unit of the Earth’s land surface and provide an abundance of resources for the environment and humans. They supply livelihoods supported by the typical characteristics of large river basins, such as the provision of freshwater, irrigation water, and transport opportunities. At the same time, they are impacted i.e., by human-induced environmental changes, boundary conflicts, and upstream–downstream inequalities. In the framework of water resource management, monitoring of river basins is therefore of high importance, in particular for researchers, stake-holders and decision-makers. However, land surface and surface water properties of many major river basins remain largely unmonitored at basin scale. Several inventories exist, yet consistent spatial databases describing the status of major river basins at global scale are lacking. Here, Earth observation (EO) is a potential source of spatial information providing large-scale data on the status of land surface properties. This review provides a comprehensive overview of existing research articles analyzing major river basins primarily using EO. Furthermore, this review proposes to exploit EO data together with relevant open global-scale geodata to establish a database and to enable consistent spatial analyses and evaluate past and current states of major river basins. KW - major river basins KW - catchment KW - watershed KW - Earth observation KW - remote sensing KW - spatial analyses KW - land surface KW - surface water Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193849 SN - 2072-4292 VL - 11 IS - 24 ER - TY - THES A1 - Walz, Yvonne T1 - Remote sensing for disease risk profiling: a spatial analysis of schistosomiasis in West Africa T1 - Fernerkundung für die Risikoabschätzung von Krankheiten: Eine räumliche Analyse der Krankheit Schistosomiasis in West Afrika N2 - Global environmental change leads to the emergence of new human health risks. As a consequence, transmission opportunities of environment-related diseases are transformed and human infection with new emerging pathogens increase. The main motivation for this study is the considerable demand for disease surveillance and monitoring in relation to dynamic environmental drivers. Remote sensing (RS) data belong to the key data sources for environmental modelling due to their capabilities to deliver spatially continuous information repeatedly for large areas with an ecologically adequate spatial resolution. A major research gap as identified by this study is the disregard of the spatial mismatch inherent in current modelling approaches of profiling disease risk using remote sensing data. Typically, epidemiological data are aggregated at school or village level. However, these point data do neither represent the spatial distribution of habitats, where disease-related species find their suitable environmental conditions, nor the place, where infection has occurred. As a consequence, the prevalence data and remotely sensed environmental variables, which aim to characterise the habitat of disease-related species, are spatially disjunct. The main objective of this study is to improve RS-based disease risk models by incorporating the ecological and spatial context of disease transmission. Exemplified by the analysis of the human schistosomiasis disease in West Africa, this objective includes the quantification of the impact of scales and ecological regions on model performance. In this study, the conditions that modify the transmission of schistosomiasis are reviewed in detail. A conceptual underpinning of the linkages between geographical RS measures, disease transmission ecology, and epidemiological survey data is developed. During a field-based analysis, environmental suitability for schistosomiasis transmission was assessed on the ground, which is then quantified by a habitat suitability index (HSI) and applied to RS data. This conceptual model of environmental suitability is refined by the development of a hierarchical model approach that statistically links school-based disease prevalence with the ecologically relevant measurements of RS data. The statistical models of schistosomiasis risk are derived from two different algorithms; the Random Forest and the partial least squares regression (PLSR). Scale impact is analysed based on different spatial resolutions of RS data. Furthermore, varying buffer extents are analysed around school-based measurements. Three distinctive sites of Burkina Faso and Côte d’Ivoire are specifically modelled to represent a gradient of ecozones from dry savannah to tropical rainforest including flat and mountainous regions. The model results reveal the applicability of RS data to spatially delineate and quantitatively evaluate environmental suitability for the transmission of schistosomiasis. In specific, the multi-temporal derivation of water bodies and the assessment of their riparian vegetation coverage based on high-resolution RapidEye and Landsat data proofed relevant. In contrast, elevation data and water surface temperature are constraint in their ability to characterise habitat conditions for disease-related parasites and freshwater snail species. With increasing buffer extent observed around the school location, the performance of statistical models increases, improving the prediction of transmission risk. The most important RS variables identified to model schistosomiasis risk are the measure of distance to water bodies, topographic variables, and land surface temperature (LST). However, each ecological region requires a different set of RS variables to optimise the modelling of schistosomiasis risk. A key result of the hierarchical model approach is its superior performance to explain the spatial risk of schistosomiasis. Overall, this study stresses the key importance of considering the ecological and spatial context for disease risk profiling and demonstrates the potential of RS data. The methodological approach of this study contributes substantially to provide more accurate and relevant geoinformation, which supports an efficient planning and decision-making within the public health sector. N2 - Globale Umweltveränderungen rufen neue Gesundheitsrisiken hervor. Eine Konsequenz sind veränderte Bedingungen für die Übertragung von umweltbezogenen Krankheiten und ansteigende Infektionen mit neu auftauchenden Erregern. Die Motivation für diese Arbeit basiert auf der steigenden Nachfrage, dynamische Veränderungen der Umwelt und deren Beziehung zu Veränderungen von umweltbedingten Krankheiten zu überwachen. Fernerkundungsdaten gehören zu den wichtigsten Datenquellen für die Umweltmodellierung, da diese es ermöglichen, die Landbedeckung flächendeckend, reproduzierbar und in einer adäquaten räumlichen Auflösung zu kartieren. Ein Forschungsbedarf, der in dieser Studie identifiziert wird, ist die fehlende Berücksichtigung einer räumlichen Diskrepanz innerhalb der bisherigen Vorgehensweise der Modellierung von Krankheitsrisiken mit Fernerkundungsdaten. Typischerweise werden epidemiologische Daten als Prävalenz einer Krankheit aggregiert erhoben, beispielsweise auf Schul- oder Dorfebene. Jedoch repräsentieren diese Punktmessungen weder die räumliche Verteilung von Habitaten, in welchen krankheitsrelevante Arten ihre geeigneten Umweltbedingungen vorfinden, noch den Ort, an dem sich die Menschen infiziert haben. Die Konsequenz ist, dass Messpunkte der Krankheitprävalenz und fernerkundungsbasierte Umweltvariablen, welche das Habitat von krankheitsrelevanten Arten charakterisieren sollen, räumlich nicht übereinstimmen. Das Hauptziel dieser Studie ist, ein Verfahren für die Anwendung von Fernerkundungsdaten bei der Modellierung von Krankheitsrisiken zu entwickeln, welches sowohl den ökologischen als auch den räumlichen Kontext der Krankheitsübertragung widerspiegelt. Am Beispiel der Krankheit Schistosomiasis werden weitere mögliche Einflussgrößen auf die Modellgüte quantitativ bewertet. Dies sind unter anderem die verschiedenen Skalenniveaus und die Heterogenität von Ökozonen. In dieser Arbeit werden die Bedingungen, die auf die Übertragung von Schistosomiasis einen Einfluss haben, aus der bestehenden Literatur im Detail ermittelt. Es wird eine konzeptionelle Grundlage entwickelt, die bestehende Zusammenhänge zwischen satellitengestützten Messungen, der Ökologie der Krankheitsübertragung sowie zu den Ergebnissen der epidemiologischen Studien ermittelt. Während eines Aufenthaltes im Untersuchungsgebiet wurde die Eignung der Umwelt für die Übertragung der Schistosomiasis analysiert. Diese Umwelteignung wird durch die Entwicklung eines Habitat-Eignungs-Index (habitat suitability index, HSI) quantifiziert und mit relevanten Fernerkundungsvariablen verknüpft. Im nächsten Schritt werden Inhalte dieses konzeptionellen Modells gezielt für die Entwicklung eines hierarchischen Modellansatzes verwendet, welcher die gemessene Prävalenz in einen statistischen Zusammenhang mit ökologisch relevanten Messungen von Fernerkundungsdaten bringt. Die statistischen Modelle des Risikos, sich mit Schistosomiasis zu infizieren, basieren auf zwei verschiedenen Modellalgorithmen, dem sogenannten Zufalls-Wald Algorithmus (Random Forest) und der Regression der partiellen, kleinsten Quadrate (Partial Least Squares Regression, PLSR). Der Einfluss von räumlichen Skalen auf die Risikomodellierung wird anhand verschiedener räumlicher Auflösungen der Fernerkundungsdaten ermittelt. Darüber hinaus werden unterschiedlich große Einzugsgebiete mit Hilfe eines Pufferverfahrens (Buffer) anhand der Schulen mit Prävalenzmessungen analysiert. Risikomodelle der Schistosomiasis werden für drei ausgewählte Untersuchungsgebiete in Burkina Faso und der Elfenbeinküste erstellt, welche einen ökologischen Gradienten von der Trockensavanne zum tropischen Regenwald sowie von flachen und bergigen Regionen darstellt. Diese Studie zeigt, dass Fernerkundungsdaten für die räumliche Abgrenzung und eine quantitative Bewertung der Umwelteignung für die Übertragung der Schistosomiasis geeignet sind. Besonders relevante Informationen sind zeitlich dynamische Veränderungen der Wasserbedeckung sowie die Erfassung des Grades der Ufervegetationsbedeckung auf Basis von hochaufgelösten RapidEye und Landsat Daten. Hingegen sind topographische Daten und die satellitengestützten Messungen der Temperatur nur eingeschränkt geeignet um Habitate der Parasiten und Frischwasserschnecken als wesentlichen Bestandteil der Krankheitsübertragung zu charakterisieren. Bei zunehmender Größe des Einzugsgebietes der Schulen verbessern sich die statistischen Modelle und können somit das Übertragungsrisiko besser erfassen. Die wichtigsten Fernerkundungsvariablen für die Modellierung des Schistosomiasis Risikos sind die Distanz zum nächstgelegenen Gewässer, topographische Variablen sowie die Landoberflächentemperatur (land surface temperature, LST). Für jede Ökozone muss jedoch eine geeignete Zusammenstellung von Fernerkundungsvariablen getroffen werden. Ein ganz wesentliches Ergebnis der hierarchischen statistischen Modellierung ist eine verbesserte Erklärung des räumlichen Risikos von Schistosomiasis. Insgesamt unterstreicht diese Studie die Bedeutsamkeit des ökologischen und räumlichen Kontexts für die Abschätzung des Krankheitsrisikos und demonstriert das Potential von Fernerkundungsdaten. Der methodische Ansatz dieser Arbeit kann wesentlich dazu beitragen, genaue und relevante Geoinformationen bereitzustellen. Damit wird eine effizientere Planung und Entscheidungsfindung innerhalb des Gesundheitssektors ermöglicht. N2 - Le changement environnemental global conduit à l'émergence de nouveaux risques pour la santé humaine. En conséquence, les voies de transmission des maladies liées à l'environnement, sont modifies de meme que l'infection humaine avec l´accroissement des nouveaux agents pathogènes émergents. La motivation principale de cette étude est la demande considérable pour la surveillance et le suivi des maladie en relation avec la dynamique des facteurs environnementaux. Les données de la télédétection sont les sources principales utilisees pour la modélisation de l'environnement en raison de leurs capacités à fournir une information de maniere spatiale, repetitive et continue pour les grandes surfaces avec une résolution spatiale écologique adéquate. L´importante lacune de la recherche scientifique identifiée par cette étude est la non considération de la disparité spatiale inhérente dans les approches actuelles de modélisation des risques de la maladie en utilisant des données de la télédétection. Généralement, les données épidémiologiques sont regrouper à l'école ou au niveau du village. Toutefois, ces données ne peuvent pas représenter la distribution spatiale des habitats et definir les conditions environnementales favorable a la proliferation des agents pathogenes de la maladie, ni le lieu, où l'infection s´est produite. En conséquence, les données sur la prévalence et les variables environnementales de la télédétection, qui visent à caractériser l'habitat des agents liés à la maladie, sont spatialement disjointes. L'objectif principal de cette étude est d'améliorer en utilisant la télédétection les modèles de risque de maladie en incorporant l´aspect écologique et spatiale de la transmission de la maladie. Illustré par l'étude des personnes infectées de la schistosomiase en Afrique de l'Ouest, cet objectif comprend la quantification du niveau d'impact des régions écologiques sur les performances du modèle. Dans cette étude, les conditions qui modifient la transmission de la schistosomiase sont examinées en détail. Une approche conceptuelle reliant les données mesurées issues de la télédétection, la transmission de la maladie, l'écologie et des données de l'enquête épidémiologique a été développé. A partir d'une étude sur le terrain, les facteurs environnementaux à la transmission de la schistosomiase ont été évalués, ensuite quantifiés par l´indice de qualité de l'habitat (habitat suitability index, HSI) et combiné aux données de la télédétection. Le modèle conceptuel de la pertinence environnemental a été affiné par le développement d'une approche de modèle hiérarchique qui relie statistiquement la prévalence de la maladie en milieu scolaire avec les mesures écologiques pertinentes de données de la télédétection. Les modèles statistiques de risque de schistosomiase proviennent de deux différents algorithmes; la forêt aléatoire (Random Forest) et la régression des moindres carrés partiels (Partial Least Squares Regression, PLSR). Le niveau d'impact a été analysé sur la base de différentes résolutions spatiales de données de la télédétection. En outre, des divers degrés carre des bassin de réception ont été analysés autour de mesures en milieu scolaire. Trois sites distinctifs du Burkina Faso et de la Côte d'Ivoire sont spécifiquement modélisés pour représenter un gradient de écozones de savane sèche a forêt tropicale y compris les régions plates et montagneuses. Les résultats du modèle révèlent l'applicabilité des données de la télédétection pour la délimitation spatiale et l’évaluation quantitative de la pertinence de l'environnement pour la transmission de la schistosomiase. Precisement, la dérivation multi-temporelle des course d'eau et l'évaluation de leur couverture riveraine de végétation a partir des images à haute résolution RapidEye et Landsat jugées adequate. En revanche, les données d'altitude et de température de la surface de l'eau ont montré certaines limites dans leur capacité à caractériser les conditions de l'habitat des parasites et des escargots en tant que composantes essentielles de la transmission de la maladie. Avec l'augmentation des degrés carres des bassins de réception observés autour de l'emplacement de l'école, la performance des modèles statistiques augmente, améliorant ainsi la prédiction du risque de transmission. Les plus importantes variables des données de la télédétection identifiées pour modéliser le risque de schistosomiase sont la mesure de la distance des plans d'eau, les variables topographiques, et la température de surface de la terre (land surface temperature, LST). Cependant, chaque région écologique nécessite une serie différente de variables de données de télédétection afin d´optimiser la modélisation du risque de schistosomiase. Le résultat primordial de l'approche du modèle hiérarchique est sa supérieure performance à expliquer le risque spatiale de la schistosomiase. Dans l'ensemble, cette étude souligne l'importance cruciale de tenir compte du contexte écologique et spatiale pour le profilage du risque de maladie et démontre le potentiel des données de télédétection. L'approche méthodologique de cette étude contribue de manière substantielle à fournir avec plus de précision et de pertinence l'information géographique, prenant en charge une planification efficace et la prise de décision dans le secteur de la santé publique. KW - Westafrika KW - Fernerkundung KW - schistosomiasis KW - risk profiling KW - Umweltveränderung KW - Gesundheitsgefährdung KW - Bilharziose KW - remote sensing KW - diseases Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108845 ER - TY - JOUR A1 - Walz, Yvonne A1 - Wegmann, Martin A1 - Dech, Stefan A1 - Raso, Giovanna A1 - Utzinger, Jürg T1 - Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook JF - Parasites & Vectors N2 - Background: Schistosomiasis is a water-based disease that affects an estimated 250 million people, mainly in sub-Saharan Africa. The transmission of schistosomiasis is spatially and temporally restricted to freshwater bodies that contain schistosome cercariae released from specific snails that act as intermediate hosts. Our objective was to assess the contribution of remote sensing applications and to identify remaining challenges in its optimal application for schistosomiasis risk profiling in order to support public health authorities to better target control interventions. Methods: We reviewed the literature (i) to deepen our understanding of the ecology and the epidemiology of schistosomiasis, placing particular emphasis on remote sensing; and (ii) to fill an identified gap, namely interdisciplinary research that bridges different strands of scientific inquiry to enhance spatially explicit risk profiling. As a first step, we reviewed key factors that govern schistosomiasis risk. Secondly, we examined remote sensing data and variables that have been used for risk profiling of schistosomiasis. Thirdly, the linkage between the ecological consequence of environmental conditions and the respective measure of remote sensing data were synthesised. Results: We found that the potential of remote sensing data for spatial risk profiling of schistosomiasis is - in principle - far greater than explored thus far. Importantly though, the application of remote sensing data requires a tailored approach that must be optimised by selecting specific remote sensing variables, considering the appropriate scale of observation and modelling within ecozones. Interestingly, prior studies that linked prevalence of Schistosoma infection to remotely sensed data did not reflect that there is a spatial gap between the parasite and intermediate host snail habitats where disease transmission occurs, and the location (community or school) where prevalence measures are usually derived from. Conclusions: Our findings imply that the potential of remote sensing data for risk profiling of schistosomiasis and other neglected tropical diseases has yet to be fully exploited. KW - ecology KW - scale KW - remote sensing KW - risk profiling KW - spatial modelling KW - schistosomiasis KW - geographical information system KW - intermediate host snail KW - epidemology Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148778 VL - 8 IS - 163 ER - TY - JOUR A1 - Walz, Yvonne A1 - Wegmann, Martin A1 - Dech, Stefan A1 - Vounastou, Penelope A1 - Poda, Jean-Noel A1 - N'Goran, Eliézer K. A1 - Raso, Giovanna A1 - Utzinger, Jürg T1 - Modeling and Validation of Environmental Suitability for Schistosomiasis Transmission Using Remote Sensing JF - PLoS Neglected Tropical Diseases N2 - Background Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. Methodology We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d’Ivoire and validated against readily available survey data from school-aged children. Principal Findings Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d’Ivoire. Conclusions/Significance A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data. KW - schistosomiasis KW - Burkina Faso KW - remote sensing KW - surface water KW - habitats KW - agricultural irrigation KW - rivers KW - snails Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125845 VL - 9 IS - 11 ER - TY - JOUR A1 - Walz, Yvonne A1 - Wegmann, Martin A1 - Leutner, Benjamin A1 - Dech, Stefan A1 - Vounatsou, Penelope A1 - N'Goran, Eliézer K. A1 - Raso, Giovanna A1 - Utzinger, Jürg T1 - Use of an ecologically relevant modelling approach to improve remote sensing-based schistosomiasis risk profiling JF - Geospatial Health N2 - Schistosomiasis is a widespread water-based disease that puts close to 800 million people at risk of infection with more than 250 million infected, mainly in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and the frequency, duration and extent of human bodies exposed to infested water sources during human water contact. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. Since schistosomiasis risk profiling based on remote sensing data inherits a conceptual drawback if school-based disease prevalence data are directly related to the remote sensing measurements extracted at the location of the school, because the disease transmission usually does not exactly occur at the school, we took the local environment around the schools into account by explicitly linking ecologically relevant environmental information of potential disease transmission sites to survey measurements of disease prevalence. Our models were validated at two sites with different landscapes in Côte d’Ivoire using high- and moderateresolution remote sensing data based on random forest and partial least squares regression. We found that the ecologically relevant modelling approach explained up to 70% of the variation in Schistosoma infection prevalence and performed better compared to a purely pixelbased modelling approach. Furthermore, our study showed that model performance increased as a function of enlarging the school catchment area, confirming the hypothesis that suitable environments for schistosomiasis transmission rarely occur at the location of survey measurements. KW - Côte d’Ivoire KW - schistosomiasis KW - spatial risk profiling KW - remote sensing KW - ecological relevant model Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126148 VL - 10 IS - 2 ER - TY - JOUR A1 - Wehner, Helena A1 - Huchler, Katharina A1 - Fritz, Johannes T1 - Quantification of foraging areas for the Northern Bald Ibis (Geronticus eremita) in the northern Alpine foothills: a random forest model fitted with optical and actively sensed earth observation data JF - Remote Sensing N2 - The Northern Bald Ibis (Geronticus eremita, NBI) is an endangered migratory species, which went extinct in Europe in the 17th century. Currently, a translocation project in the frame of the European LIFE program is carried out, to reintroduce a migratory population with breeding colonies in the northern and southern Alpine foothills and a common wintering area in southern Tuscany. The population meanwhile consists of about 200 individuals, with about 90% of them carrying a GPS device on their back. We used biologging data from 2021 to model the habitat suitability for the species in the northern Alpine foothills. To set up a species distribution model, indices describing environmental conditions were calculated from satellite images of Landsat-8, and in addition to the well-proven use of optical remote sensing data, we also included Sentinel-1 actively sensed observation data, as well as climate and urbanization data. A random forest model was fitted on NBI GPS positions, which we used to identify regions with high predicted foraging suitability within the northern Alpine foothills. The model resulted in 84.5% overall accuracy. Elevation and slope had the highest predictive power, followed by grass cover and VV intensity of Sentinel-1 radar data. The map resulting from the model predicts the highest foraging suitability for valley floors, especially of Inn, Rhine, and Salzach-Valley as well as flatlands, like the Swiss Plateau and the agricultural areas surrounding Lake Constance. Areas with a high suitability index largely overlap with known historic breeding sites. This is particularly noteworthy because the model only refers to foraging habitats without considering the availability of suitable breeding cliffs. Detailed analyses identify the transition zone from extensive grassland management to intensive arable farming as the northern range limit. The modeling outcome allows for defining suitable areas for further translocation and management measures in the frame of the European NBI reintroduction program. Although required in the international IUCN translocation guidelines, the use of models in the context of translocation projects is still not common and in the case of the Northern Bald Ibis not considered in the present Single Species Action Plan of the African-Eurasian Migratory Water bird Agreement. Our species distribution model represents a contemporary snapshot, but sustainability is essential for conservation planning, especially in times of climate change. In this regard, a further model could be optimized by investigating sustainable land use, temporal dynamics, and climate change scenarios. KW - Northern Bald Ibis KW - conservation KW - species distribution modeling KW - random forest modeling KW - remote sensing KW - reintroduction Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262245 SN - 2072-4292 VL - 14 IS - 4 ER - TY - JOUR A1 - Wohlfart, Christian A1 - Wegmann, Martin A1 - Leimgruber, Peter T1 - Mapping threatened dry deciduous dipterocarp forest in South-east Asia for conservation management JF - Tropical Conservation Science N2 - Habitat loss is the primary reason for species extinction, making habitat conservation a critical strategy for maintaining global biodiversity. Major habitat types, such as lowland tropical evergreen forests or mangrove forests, are already well represented in many conservation priorities, while others are underrepresented. This is particularly true for dry deciduous dipterocarp forests (DDF), a key forest type in Asia that extends from the tropical to the subtropical regions in South-east Asia (SE Asia), where high temperatures and pronounced seasonal precipitation patterns are predominant. DDF are a unique forest ecosystem type harboring a wide range of important and endemic species and need to be adequately represented in global biodiversity conservation strategies. One of the greatest challenges in DDF conservation is the lack of detailed and accurate maps of their distribution due to inaccurate open-canopy seasonal forest mapping methods. Conventional land cover maps therefore tend to perform inadequately with DDF. Our study accurately delineates DDF on a continental scale based on remote sensing approaches by integrating the strong, characteristic seasonality of DDF. We also determine the current conservation status of DDF throughout SE Asia. We chose SE Asia for our research because its remaining DDF are extensive in some areas but are currently degrading and under increasing pressure from significant socio-economic changes throughout the region. Phenological indices, derived from MODIS vegetation index time series, served as input variables for a Random Forest classifier and were used to predict the spatial distribution of DDF. The resulting continuous fields maps of DDF had accuracies ranging from R-2 = 0.56 to 0.78. We identified three hotspots in SE Asia with a total area of 156,000 km(2), and found Myanmar to have more remaining DDF than the countries in SE Asia. Our approach proved to be a reliable method for mapping DDF and other seasonally influenced ecosystems on continental and regional scales, and is very valuable for conservation management in this region. KW - remote sensing KW - vegetation phenology KW - modis NDVI KW - time series analysis KW - Costa Rica KW - time series KW - Burma KW - Myanmar KW - continous fields KW - research priorities KW - deer cervus-eldi KW - land-cover KW - tropical forest KW - biodiversity conservation KW - habitat preferences KW - tropical dry forest conservation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117782 SN - 1940-0829 VL - 7 IS - 4 ER -