TY - JOUR A1 - Chen, Xing A1 - Meng, Guoyun A1 - Liao, Guanming A1 - Rauch, Florian A1 - He, Jiang A1 - Friedrich, Alexandra A1 - Marder, Todd B. A1 - Wang, Nan A1 - Chen, Pangkuan A1 - Wang, Suning A1 - Yin, Xiaodong T1 - Highly Emissive 9-Borafluorene Derivatives: Synthesis, Photophysical Properties and Device Fabrication JF - Chemistry—A European Journal N2 - A series of 9-borafluorene derivatives, functionalised with electron-donating groups, have been prepared. Some of these 9-borafluorene compounds exhibit strong yellowish emission in solution and in the solid state with relatively high quantum yields (up to 73.6 % for FMesB-Cz as a neat film). The results suggest that the highly twisted donor groups suppress charge transfer, but the intrinsic photophysical properties of the 9-borafluorene systems remain. The new compounds showed enhanced stability towards the atmosphere, and exhibited excellent thermal stability, revealing their potential for application in materials science. Organic light-emitting diode (OLED) devices were fabricated with two of the highly emissive compounds, and they exhibited strong yellow-greenish electroluminescence, with a maximum luminance intensity of >22 000 cd m\(^{-2}\). These are the first two examples of 9-borafluorene derivatives being used as light-emitting materials in OLED devices, and they have enabled us to achieve a balance between maintaining their intrinsic properties while improving their stability. KW - boron heterocycles KW - photophysics KW - organic light-emitting diodes KW - luminescence KW - density functional calculations Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256738 VL - 27 IS - 20 ER - TY - JOUR A1 - Rauch, Florian A1 - Endres, Peter A1 - Friedrich, Alexandra A1 - Sieh, Daniel A1 - Hähnel, Martin A1 - Krummenacher, Ivo A1 - Braunschweig, Holger A1 - Finze, Maik A1 - Ji, Lei A1 - Marder, Todd B. T1 - An Iterative Divergent Approach to Conjugated Starburst Borane Dendrimers JF - Chemistry – A European Journal N2 - Using a new divergent approach, conjugated triarylborane dendrimers were synthesized up to the 2nd generation. The synthetic strategy consists of three steps: 1) functionalization, via iridium catalyzed C−H borylation; 2) activation, via fluorination of the generated boronate ester with K[HF\(_{2}\)] or [N(nBu\(_{4}\))][HF\(_{2}\)]; and 3) expansion, via reaction of the trifluoroborate salts with aryl Grignard reagents. The concept was also shown to be viable for a convergent approach. All but one of the conjugated borane dendrimers exhibit multiple, distinct and reversible reduction potentials, making them potentially interesting materials for applications in molecular accumulators. Based on their photophysical properties, the 1st generation dendrimers exhibit good conjugation over the whole system. However, the conjugation does not increase further upon expansion to the 2nd generation, but the molar extinction coefficients increase linearly with the number of triarylborane subunits, suggesting a potential application as photonic antennas. KW - density functional calculations KW - electron storage KW - luminescence KW - redox KW - triarylborane Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218345 VL - 26 IS - 57 SP - 12951 EP - 12963 ER -