TY - JOUR A1 - Wolfahrt, Sonja A1 - Herman, Sandra A1 - Scholz, Claus-Jürgen A1 - Sauer, Georg A1 - Deissler, Helmut T1 - Identification of alternative transcripts of rat CD9 expressed by tumorigenic neural cell lines and in normal tissues JF - Genetics and Molecular Biology N2 - CD9 is the best-studied member of the tetraspanin family of transmembrane proteins. It is involved in various fundamental cellular processes and its altered expression is a characteristic of malignant cells of different origins. Despite numerous investigations confirming its fundamental role, the heterogeneity of CD9 or other tetraspanin proteins was considered only to be caused by posttranslational modification, rather than alternative splicing. Here we describe the first identification of CD9 transcript variants expressed by cell lines derived from fetal rat brain cells. Variant mRNA-B lacks a potential translation initiation codon in the alternative exon 1 and seems to be characteristic of the tumorigenic BT cell lines. In contrast, variant mRNA-C can be translated from a functional initiation codon located in its extended exon 2, and substantial amounts of this form detected in various tissues suggest a contribution to CD9 functions. From the alternative sequence of variant C, a different membrane topology ( 5 transmembrane domains) and a deviating spectrum of functions can be expected. KW - tetraspanin KW - CD9 KW - antigen KW - cancer KW - noncoding RNAs KW - nervous system KW - poor prognosis KW - tetraspanin protein KW - transcript KW - splice variant KW - membrane topology Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131801 VL - 36 IS - 2 ER - TY - JOUR A1 - Harrison, Odile B. A1 - Claus, Heike A1 - Jiang, Ying A1 - Bennett, Julia S. A1 - Bratcher, Holly B. A1 - Jolley, Keith A. A1 - Corton, Craig A1 - Care, Rory A1 - Poolman, Jan T. A1 - Zollinger, Wendell D. A1 - Frasch, Carl E. A1 - Stephens, David S. A1 - Feavers, Ian A1 - Frosch, Matthias A1 - Parkhill, Julian A1 - Vogel, Ulrich A1 - Quail, Michael A. A1 - Bentley, Stephen D. A1 - Maiden, Martin C. J. T1 - Description and Nomenclature of Neisseria meningitidis Capsule Locus JF - Emerging Infectious Diseases N2 - Pathogenic Neisseria meningitidis isolates contain a polysaccharide capsule that is the main virulence determinant for this bacterium. Thirteen capsular polysaccharides have been described, and nuclear magnetic resonance spectroscopy has enabled determination of the structure of capsular polysaccharides responsible for serogroup specificity. Molecular mechanisms involved in N. meningitidis capsule biosynthesis have also been identified, and genes involved in this process and in cell surface translocation are clustered at a single chromosomal locus termed cps. The use of multiple names for some of the genes involved in capsule synthesis, combined with the need for rapid diagnosis of serogroups commonly associated with invasive meningococcal disease, prompted a requirement for a consistent approach to the nomenclature of capsule genes. In this report, a comprehensive description of all N. meningitidis serogroups is provided, along with a proposed nomenclature, which was presented at the 2012 XVIIIth International Pathogenic Neisseria Conference. KW - genetics KW - nuclear magnetic resonance KW - structural determination KW - meningococcal polysaccharides KW - chemical properties KW - serogroup-Y KW - group-B KW - antigen KW - biosynthesis KW - elucidation Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131703 VL - 19 IS - 4 ER - TY - JOUR A1 - Hacker, Jörg A1 - Ott, M. A1 - Schmidt, G. A1 - Hull, R. A1 - Goebel, W. T1 - Molecular cloning of the F8 fimbrial antigen from Escherichia coli N2 - The genetic determinant coding for the Pspecific F8 fimbriae was cloned from · the chromosome of the Escherichia coli wild-type strain 2980 (018: K5: H5: FlC, F8). The F8 determinant was further subcloned into the Pstl site of pBR322 and a restriction map was established. In a Southern hybridization experiment identity between the chromosomally encoded F8 determinant of 2980 and its cloned Counterpart was demonstrated. The cloned F8 fimbriäe and those of the wild type strain consist of a protein subunit of nearly 20 kDa. F8 fimbriated strains were agglutinated by an F8 polyclonal antiserum, caused mannose-resistant hemagglutination and attached to human uroepi thellal cells. The cloned F8 determinant was weil expressed in a variety of host strains. KW - Infektionsbiologie KW - Escherichia coli KW - antigen KW - F8 fimbriae KW - gene cloning Y1 - 1986 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-59391 ER - TY - JOUR A1 - Feller, Tatjana A1 - Thom, Pascal A1 - Koch, Natalie A1 - Spiegel, Holger A1 - Addai-Mensah, Otchere A1 - Fischer, Rainer A1 - Reimann, Andreas A1 - Pradel, Gabriele A1 - Fendel, Rolf A1 - Schillberg, Stefan A1 - Scheuermayer, Matthias A1 - Schinkel, Helga T1 - Plant-Based Production of Recombinant Plasmodium Surface Protein Pf38 and Evaluation of its Potential as a Vaccine Candidate JF - PLOS ONE N2 - Pf38 is a surface protein of the malarial parasite Plasmodium falciparum. In this study, we produced and purified recombinant Pf38 and a fusion protein composed of red fluorescent protein and Pf38 (RFP-Pf38) using a transient expression system in the plant Nicotiana benthamiana. To our knowledge, this is the first description of the production of recombinant Pf38. To verify the quality of the recombinant Pf38, plasma from semi-immune African donors was used to confirm specific binding to Pf38. ELISA measurements revealed that immune responses to Pf38 in this African subset were comparable to reactivities to AMA-1 and \(MSP1_{19}\). Pf38 and RFP-Pf38 were successfully used to immunise mice, although titres from these mice were low (on average 1:11.000 and 1:39.000, respectively). In immune fluorescence assays, the purified IgG fraction from the sera of immunised mice recognised Pf38 on the surface of schizonts, gametocytes, macrogametes and zygotes, but not sporozoites. Growth inhibition assays using \(\alpha Pf38\) antibodies demonstrated strong inhibition \((\geq 60 \% ) \) of the growth of blood-stage P. falciparum. The development of zygotes was also effectively inhibited by \(\alpha Pf38\) antibodies, as determined by the zygote development assay. Collectively, these results suggest that Pf38 is an interesting candidate for the development of a malaria vaccine. KW - malaria vaccine KW - balancing selection KW - N-glycans KW - falciparum KW - expression KW - antibodies KW - identification KW - transmission KW - tobacco KW - antigen Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128221 SN - 1932-6203 VL - 8 IS - 11 ER - TY - JOUR A1 - Barth, Thomas F. E. A1 - Herrmann, Tobias S. A1 - Tappe, Dennis A1 - Stark, Lorenz A1 - Grüner, Beate A1 - Buttenschoen, Klaus A1 - Hillenbrand, Andreas A1 - Juchems, Markus A1 - Henne-Bruns, Doris A1 - Kern, Petra A1 - Seitz, Hanns M. A1 - Möller, Peter A1 - Rausch, Robert L. A1 - Kern, Peter A1 - Deplazes, Peter T1 - Sensitive and Specific Immunohistochemical Diagnosis of Human Alveolar Echinococcosis with the Monoclonal Antibody Em2G11 JF - PLoS Neglected Tropical Diseases N2 - Background: Alveolar echinococcosis (AE) is caused by the metacestode stage of Echinococcus multilocularis. Differential diagnosis with cystic echinococcosis (CE) caused by E. granulosus and AE is challenging. We aimed at improving diagnosis of AE on paraffin sections of infected human tissue by immunohistochemical testing of a specific antibody. Methodology/Principal Findings: We have analysed 96 paraffin archived specimens, including 6 cutting needle biopsies and 3 fine needle aspirates, from patients with suspected AE or CE with the monoclonal antibody (mAb) Em2G11 specific for the Em2 antigen of E. multilocularis metacestodes. In human tissue, staining with mAb Em2G11 is highly specific for E. multilocularis metacestodes while no staining is detected in CE lesions. In addition, the antibody detects small particles of E. multilocularis (spems) of less than 1 mm outside the main lesion in necrotic tissue, liver sinusoids and lymphatic tissue most probably caused by shedding of parasitic material. The conventional histological diagnosis based on haematoxylin and eosin and PAS stainings were in accordance with the immunohistological diagnosis using mAb Em2G11 in 90 of 96 samples. In 6 samples conventional subtype diagnosis of echinococcosis had to be adjusted when revised by immunohistology with mAb Em2G11. Conclusions/Significance: Immunohistochemistry with the mAb Em2G11 is a new, highly specific and sensitive diagnostic tool for AE. The staining of small particles of E. multilocularis (spems) outside the main lesion including immunocompetent tissue, such as lymph nodes, suggests a systemic effect on the host. KW - cells KW - multilocularis KW - antigen Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135371 VL - 6 IS - 10 ER -